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Abstract. The quasilinear parabolic system has been applied to a variety of physical
and engineering problems. However, most works lack effective techniques to deal with
the asymptotic stability. This paper is concerned with the existence and stability
of solutions for a plankton allelopathic model described by a quasilinear parabolic
system, in which the diffusions are density-dependent. By the coupled upper and
lower solutions and its associated monotone iterations, it is shown that under some
parameter conditions the positive uniform equilibrium is asymptotically stable. Some
biological interpretations for our results are given.
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1 Introduction

We consider a coupled system of quasilinear parabolic equations in a bounded
domain. The system of equations is given in the form

∂u1/∂t−∇ ·
(
d1(u1/n1)m∇u1

)
= u1(a1 − b11u1 − b12u2 − e1u1u2)

(t > 0, x ∈ Ω),

∂u2/∂t−∇ ·
(
d2(u2/n2)m∇u2

)
= u2

(
a2 − b21u1 − b22u2 − e2(u1)τu2

)
(t > 0, x ∈ Ω),

∂u1/∂ν = ∂u2/∂ν = 0 (t > 0, x ∈ ∂Ω),

ui(t, x) = ψi(t, x)
(
t ∈ [−τ, 0], x ∈ Ω

)
, i = 1, 2,

(1.1)
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where Ω is a bounded domain in Rn with boundary ∂Ω, ∂/∂ν denotes the
outward normal derivative on ∂Ω. It is assumed that the boundary ∂Ω is of
class C1+α. ψi(t, x) ∈ Cα/2,α([−τ, 0] × Ω) has a positive lower bound and
satisfies the compatibility condition. (u1)τ ≡ u1(t − τ, x) is the discrete delay
term. The density-dependent diffusion coefficient Di(ui) ≡ di(ui/ni)

m (i =
1, 2), in which ni > 0, di > 0 and m ≥ 0, has the property Di(0) = 0, which
means the elliptic operators are degenerate. In the case m = 0, (1.1) is reduced
to the semilinear parabolic system.

The system (1.1) is described by the plankton allelopathic competition
model in aquatic ecology. u1, u2 stand for the population density (number
of cells per liter) of two competing species; a1, a2 are the rates of cell pro-
liferation per hour; b11, b22 are the rates of intra-specific competition of the
first and the second species, respectively; b12, b21 are the rates of inter-specific
competition of the first and the second species, respectively; ai/bii (i = 1, 2)
are environmental carrying capacities (representing number of cell per liter).
e1 and e2 are, respectively, the rates of toxic inhibition of the first species by
the second and vice verse. The units of ai, bij and ei are per hour per cell
and the unit of time is hours. The planktonic allelopathy model is investi-
gated by ordinary differential equations [2, 9, 12, 11] and semilinear parabolic
system [3, 23, 24, 25, 26]. Moreover, we incorporate the effect of disperse
described by Di(ui) = di(ui/ni)

m into the previous planktonic allelopathy
model. Aikman and Hewitt have observed that the coefficients of diffusion are
increasing when the densities of the populations are increasing in the experi-
ment of dispersal patterns for grasshoppers [1]. Murray has first used the form
D(u) = d(u/n)m to describe the density-dependent diffusion. The schematic
solution obtained in [13] coincides with the experimental observation. Pao and
Ruan have first introduced the density-dependent diffusion D(u) = (n−1)um−1

into Lotka–Volterra model [20]. They have investigated the existence, unique-
ness and asymptotic behaviour of positive time-dependent solutions for the
quasilinear parabolic system with quasimonotone nondecreasing reaction func-
tions.

However, the requirement of the reaction functions in [19, 20, 21] are quasi-
monotone nondecreasing. The condition is relaxed in this paper to mixed
quasimonotone nondecreasing reaction functions, which leads to the difficult
point that the ordered upper and lower solutions do not exist. To overcome
it, we construct the coupled upper and lower solutions. In this paper, we aim
to study the existence and asymptotic behaviour of (1.1) by the method of
coupled upper and lower solutions.

The rest of this paper is organized as follows. In Section 2 we extend the
monotone iteration method of [20] for quasimonotone nondecreasing reaction
functions to delayed quasimonotone nondecreasing reaction functions. We show
the existence and asymptotic stability of (1.1). In Section 3, we give the detail
parameter conditions such that the positive uniform equilibrium is asymptoti-
cally stable. Section 4 is devoted to some discussions about the biological and
mathematical senses.
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2 Monotone Iteration Method

In this section, we extend the monotone iteration method of [20] to delayed
reaction functions. For the simplicity, throughout this paper, we denote

D = [0,∞)×Ω, D = [0,∞)×Ω, S = (0,∞)× ∂Ω,

D
(i)
0 = [−τi, 0]×Ω, Q(i) = [−τ,∞)×Ω,

D0 = D
(1)
0 ×D

(2)
0 , Q = Q(1) ×Q(2),

and let Cm(Q), Cα(Q) be the respective space of m−times differentiable and
Hölder continuous functions in Q, where Q represents a domain. For vector
functions with N−components we denote the above function space by Cm(Q)
and Cα(Q), respectively. We also denote

f1(u1, u2) ≡ u1(a1 − b11u1 − b12u2 − e1u1u2),

f2
(
u1, u2, (u1)τ

)
≡ u2(a2 − b21u1 − b22u2 − e2(u1)τu2).

Definition 1. A pair of function ũ = (ũ1, ũ2), û = (û1, û2) ∈ C(Q) ∩ C1,2(Q)
are called coupled upper and lower solutions of (1.1) if û has a positive lower
bound, and ũ ≥ û,

∂ũ1/∂t−∇ ·
(
D1(ũ1)∇ũ1

)
≥ f1(ũ1, û2) in D,

∂ũ2/∂t−∇ ·
(
D2(ũ2)∇ũ2

)
≥ f2

(
û1, ũ2, (û1)τ

)
in D,

∂û1/∂t−∇ ·
(
D1(û1)∇û1

)
≤ f1(û1, ũ2) in D,

∂û2/∂t−∇ ·
(
D2(û2)∇û2

)
≤ f2

(
ũ1, û2, (ũ1)τ

)
in D,

∂ũi/∂ν ≥ 0, ∂ûi/∂ν ≤ 0, i = 1, 2, on S,

ũi(t, x) ≥ ψi(t, x), ûi(t, x) ≤ ψi(t, x), i = 1, 2, in D
(i)
0 . (2.1)

Define a modified function Di(ui) by

Di(ui) =


Di(ui) + (ui − ũi) if ui > ũi,

Di(ui) if ûi ≤ ui ≤ ũi,
Di(ui) + (ûi − ui) if ui < ûi.

(2.2)

Then there exists d0 > 0 such that Di(u) ≥ d0 for all u ∈ R. Define

wi = Ii(ui) =

∫ ui

0

Di(s) ds for ui ≥ 0, i = 1, 2, (2.3)

Derivativing (2.3), we have

I ′i(ui) = dIi/dui = Di(ui) > 0.

Then the inverse ui ≡ qi(wi) exists and is an increasing function of wi > 0.

Math. Model. Anal., 17(4):485–497, 2012.
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For a given pair of coupled upper and lower solutions ũ, û we set

Λi =
{
ui ∈ C(Q) : ûi ≤ ui ≤ ũi

}
, Λ =

{
u ∈ C(Q) : û ≤ u ≤ ũ

}
,

Λ× Λ̄ =
{

(u,w) ∈ C(Q)× C(Q) : (û, ŵ) ≤ (u,w) ≤ (ũ, w̃)
}
,

where w̃i = Ii(ũi) and ŵi = I(ûi). There exist smooth nonnegative functions
βi ≡ βi(t, x) such that

βiDi(ui) +
∂fi
∂ui

(·,u) ≥ 0, for u ∈ Λ. (2.4)

In fact, it suffices to choose any βi(t, x) satisfying

βi(t, x) ≥ max
{
−
(
∂fi/∂ui(t, x,u)

)
/Di(ui) : u ∈ Λ

}
.

Define for each i = 1, 2,

F1(t, x, u1, u2) = β1(t, x)I1(u1) + f1(t, x, u1, u2),

F2(t, x, u1, u2) = β2(t, x)I2(u2) + f2
(
t, x, u1, u2, (u1)τ

)
,

Liwi = ∇ · (∇wi)− βi(t, x)wi. (2.5)

Since (2.4), (2.5) and I ′i(ui) = Di(ui), Fi(·, ui, uj) possess the monotone prop-
erty

Fi(·, vi, uj) ≤ Fi(·, ui, vj) whenever û ≤ v ≤ u ≤ ũ. (2.6)

We consider the system(
Di(ui)

)−1
∂wi/∂t− Liwi = Fi(t, x, ui, uj) in D,

∂wi/∂ν = 0 on S, wi(t, x) = ηi(t, x) in D
(i)
0 ,

ui = qi(wi) for i = 1, 2 in Q
(i)
, (2.7)

where ηi(t, x) = Ii(ψi(t, x)). Note that if Di(ui) = Di(ui), then (2.7) is equiv-
alent to (1.1).

By using u(0) = û and u(0) = ũ as the initial iterations we can construct
sequences {u(m),w(m)} and {u(m),w(m)} from the nonlinear iteration process(

Di

(
u
(m)
i

))−1
∂w

(m)
i /∂t− Liw(m)

i = Fi
(
t, x, u

(m−1)
i , u

(m−1)
j

)
,(

Di

(
u
(m)
i

))−1
∂w

(m)
i /∂t− Liw(m)

i = Fi
(
t, x, u

(m−1)
i , u

(m−1)
j

)
for i = 1, j = 2; or i = 2, j = 1; in D,

∂w
(m)
i /∂ν = ∂w

(m)
i /∂ν = 0 for i = 1, 2 on S,

u
(m)
i = qi

(
w

(m)
i

)
, u

(m)
i = qi

(
w

(m)
i

)
for i = 1, 2 in Q

(i)
,

w
(m)
i (t, x) = w

(m)
i (t, x) = ηi(t, x) for i = 1, 2 in D

(i)
0 . (2.8)

The sequences {u(m),w(m)} and {u(m),w(m)} are well defined by the existence
theorem of [8]. The following lemma gives the monotone property of these
sequences.
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Lemma 1. The sequences {u(m),w(m)}, {u(m),w(m)} governed by (2.8) pos-
sess the monotone property

(û, ŵ) ≤
(
u(m),w(m)

)
≤
(
u(m+1),w(m+1)

)
≤
(
u(m+1),w(m+1)

)
≤
(
u(m),w(m)

)
≤ (ũ, w̃) for m = 1, 2, . . . . (2.9)

Moreover, for each m = 1, 2, . . . , u(m) and u(m) are coupled upper and lower
solutions of (1.1).

Proof. Let z
(1)
i = w

(1)
i − w

(0)
i , i = 1, 2. Then by (2.1) and (2.8), z

(1)
i satisfies(

Di

(
u
(1)
i

))−1
∂z

(1)
i /∂t− Liz(1)i

= Fi
(
·, u(0)i , u

(0)
j

)
−
[(
Di

(
u
(1)
i

))−1
∂w

(0)
i /∂t− Liw(0)

i

]
= Fi

(
·, u(0)i , u

(0)
j

)
−
[(
Di

(
u
(0)
i

))−1
∂w

(0)
i /∂t− Liw(0)

i

]
−
[(
Di

(
u
(1)
i

))−1 − (Di

(
u
(0)
i

))−1]
∂w

(0)
i /∂t

≥ −
[(
Di

(
u
(1)
i

))−1 − (Di

(
u
(0)
i

))−1]
∂w

(0)
i /∂t.

Since by the mean value theorem,(
Di

(
u
(1)
i

))−1 − (Di

(
u
(0)
i

))−1
= −

[
D
′
i

(
ξ(0)
)
/
(
Di

(
ξ(0)
))2](

u
(1)
i − u

(0)
i

)
= −

[
D
′
i

(
ξ(0)
)
/
(
Di

(
ξ(0)
))3](

w
(1)
i − w

(0)
i

)
,

for some intermediate value ξ(0) ≡ ξ(0)(t, x) between u
(0)
i and u

(1)
i , we have(

Di

(
u
(1)
i

))−1
∂z

(1)
i /∂t− Liz(1)i + γ(0)z

(1)
i ≥ 0,

γ(0) = −
[
D
′
i

(
ξ(0)
)
/
(
Di

(
ξ(0)
))3]

∂w
(0)
i /∂t. (2.10)

And the boundary and initial inequalities satisfy

∂z
(1)
i /∂ν = 0 on S, z

(1)
i (0, x) = ηi(0, x)− ηi(0, x) = 0 in Ω. (2.11)

In view of the definition of Di in (2.2), the function Di(u
(1)
i )γ(0) of (2.10) is

bounded. By Lemma 2.1 of [20] z
(1)
i ≥ 0 on D. This gives w

(1)
i ≥ w

(0)
i and

thus u
(1)
i ≥ u

(0)
i . A similar argument yields w

(1)
i ≤ w

(0)
i and u

(1)
i ≤ u

(0)
i .

Moreover, letting z
(1)
i = w

(1)
i − w

(1)
i , by (2.8), and after the similar above

argument(
Di

(
u
(1)
i

))−1
∂z

(1)
i /∂t− Liz(1)i + γ

(0)
i z

(1)
i

= Fi
(
·, u(0)i , u

(0)
j

)
− Fi

(
·, u(0)i , u

(0)
j

)
≥ 0 in D,

∂z
(1)
i /∂ν = 0 on S, z

(1)
i (0, x) = ηi(0, x)− ηi(0, x) = 0 in Ω,

where γ
(0)
i = −

[
D
′
i

(
ξ
(0)
i

)
/
(
Di

(
ξ
(0)
i

))3]
∂w

(0)
i /∂t, for some intermediate value

ξ
(0)
i ≡ ξ(0)i (t, x) between u

(0)
i and u

(0)
i . It follows again from Lemma 2.1 of [20]

that w(1) ≥ w(1) and thus u(1) ≥ u(1). The above conclusions show that(
u(0),w(0)

)
≤
(
u(1),w(1)

)
≤
(
u(1),w(1)

)
≤
(
u(0),w(0)

)
. (2.12)

Math. Model. Anal., 17(4):485–497, 2012.
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Now we show that u(1) and u(1) are coupled upper and lower solutions of

(1.1). Since (2.2) and (2.12), Di(u
(1)
i ) = Di(u

(1)
i ) for i = 1, 2. It suffices to

show u(1) and u(1) satisfy (2.1). Since (2.6), (2.8) and (2.11), we have(
Di

(
u
(1)
i

))−1
∂w

(1)
i /∂t− Liw(1)

i = Fi
(
·, u(0)i , u

(0)
j

)
≥ Fi

(
·, u(1)i , u

(1)
j

)
,(

Di

(
u
(1)
i

))−1
∂w

(1)
i /∂t− Liw(1)

i = Fi
(
·, ·, u(0)i , u

(0)
j

)
≤ Fi

(
·, u(1)i , u

(1)
j

)
,

∂u
(1)
i /∂ν = ∂u

(1)
i /∂ν = 0, u

(1)
i (0, x) = ηi(0, x), u

(1)
i (0, x) = ηi(0, x).

Next we use an induction method. By choosing u(1) and u(1) as the coupled
upper and lower solutions ũ and û, after the similar above argument, we have(

u(1),w(1)
)
≤
(
u(2),w(2)

)
≤
(
u(2),w(2)

)
≤
(
u(1),w(1)

)
,

u(2) and u(2) are coupled upper and lower solutions of (1.1). The conclusion of
the lemma follows from the induction principle. ut

In view of Lemma 1, the pointwise limits

lim
m→∞

(
u(m),w(m)

)
= (u,w), lim

m→∞

(
u(m),w(m)

)
= (u,w)

exist. Since (2.2) and (2.9), Di(u
(m)
i ) = Di(u

(m)
i ) for i = 1, 2. Then by letting

m→∞ in (2.8), we obtain the following system

∂u1/∂t−∇ ·
(
D1(u1)∇u1

)
= u1(a1 − b11u1 − b12u2 − e1u1u2),

∂u2/∂t−∇ ·
(
D2(u2)∇u2

)
= u2

(
a2 − b21u1 − b22u2 − e2(u1)τu2

)
,

∂u1/∂t−∇ ·
(
D1(u1)∇u1

)
= u1(a1 − b11u1 − b12u2 − e1u1u2),

∂u2/∂t−∇ ·
(
D2(u2)∇u2

)
= u2

(
a2 − b21u1 − b22u2 − e2(u1)τu2

)
in Q,

∂ui/∂ν = ∂ui/∂ν = 0 for i = 1, 2, on S,

ui(t, x) = ui(t, x) = ψi(t, x) for i = 1, 2, in D
(i)
0 . (2.13)

Next we show that the (u,u) are the solutions of (2.13) using the standard
regularity argument.

Lemma 2. (u(t, x),u(t, x)) is the solution of (2.13).

Proof. Since (2.8), u
(m)
i (i = 1, . . . , N) is a solution of the scalar quasilinear

system

∂u/∂t−∇ ·
(
aiDi(u)∇u

)
+ bi ·

(
Di(u)∇u

)
+ βiIi(u)

= Fi
(
·, u(m−1)i , u

(m−1)
i , u

(m−1)
j

)
in D,

∂u/∂ν = 0 on S, u(t, x) = ψi(t, x) in D
(i)
0 ,

by hypothesis (H1) and Theorem 7.4 of Chapter V in [8], there is a constant

α > 0 such that u
(m)
i ∈ C1+α/2,2+α(Q) for all m = 1, 2, . . . . Furthermore, since
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the sequence u
(m)
i is uniformly bounded in C(Q), it follows from Theorem 7.2

of Chapter V in [8] that there exist positive constants M and δ, independent
of m, such that∣∣u(m)

i

∣∣
C1+α/2,2+α(Q)

≤M,
∣∣∇u(m)

i

∣∣
C(Q)

≤M. (2.14)

We now show that the limit ui of u
(m)
i satisfies the first equation of (2.13) in Q.

For each u
(m)
i , we let the operator L(m) and the function F (m) be defined by

L(m) = ∂u/∂t−∇ ·
(
aiDi(u)∇u

)
+ bi ·

(
Di(u)∇u

)
≡ ∂u/∂t− aiDi(u)∇2u+

[
Di(u)∇ai + aiD

′
i(u)∇u+Di(u)bi

]
· ∇u,

F (m) = Fi
(
·, u(m−1)i , u

(m−1)
i , u

(m−1)
j

)
− βiIi

(
u(t, x)

)
. (2.15)

In view of (2.11), u
(m)
i satisfies the linear equation L(m)u = Fm in Q. Let Q′ be

an arbitrary subdomain of Q whose distance from Q has a positive lower bound.
Then by (2.15), all the conditions in Theorem 15 of [4] are satisfied in Q′.

Hence there is a subsequence u(m
′) such that ∇u(m

′), ∇2u(m
′), and ∂u(m

′)/∂t

are all uniformly convergent in Q
′
T , and the coefficients of L(m) converge to the

corresponding limits. This proves that the limit ui is in C1,2(Q
′
) and satisfies

the equation

∂u

∂t
−∇ ·

(
aiDi(u)∇u

)
+ bi ·

(
Di(u)∇u

)
= fi

(
·, u(m−1)i , u

(m−1)
i , u

(m−1)
j

)
in Q′.

Since Q′ is arbitrary, ui satisfies the first equation of (2.13) in the whole do-
main Q. Similarly, ui also satisfies the second equation of (2.13). Thus the
proof is completed. ut

We call u, u quasisolutions of (1.1). Moreover, by observing the first and
fourth equation of (2.13), we conclude that (u1, u2) is the solution of (1.1).
Similarly, (u1, u2) is also the solution of (1.1). It thus leads to the existence
theorem from Lemma 2.

Theorem 1. Let ũ, û be a pair of coupled upper and lower solutions of (1.1).
Assume that û ≥ δ > 0, then

(i) (u1, u2) and (u1, u2) are the solutions of (1.1). Moreover for all m ≥ 1

û ≤ u(m) ≤ u(m+1) ≤ u ≤ u ≤ u(m+1) ≤ u(m) ≤ ũ in D. (2.16)

(ii) If u = u(≡ u∗), then u∗ is the unique solution in Λ.

Next we discuss the asymptotic behaviour of the problem (1.1) by using
the method as in [15, 16, 17, 18]. Assume that the coupled upper and lower
solutions are constant vectors c̃ ≡ (c̃1, c̃2), ĉ ≡ (ĉ1, ĉ2). By using c(0) = ĉ and
c(0) = c̃ as the initial iteration, after the nonlinear iteration process (2.8), we
can construct constant sequences {c(m), c(m)} and {c(m), c(m)}. We set the
pointwise limits

lim
m→∞

(
c
(m)
1 , c

(m)
2

)
= (c1, c2), lim

m→∞

(
c
(m)
1 , c

(m)
2

)
= (c1, c2).

Math. Model. Anal., 17(4):485–497, 2012.
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Such as in (2.16), (c1, c2) and (c1, c2) satisfy the following relation

c1(a1 − b11c1 − b12c2 − e1c1c2) = 0 = c1(a1 − b11c1 − b12c2 − e1c1c2),

c2(a2 − b21c1 − b22c2 − e2c1c2) = 0 = c2(a2 − b21c1 − b22c2 − e2c1c2). (2.17)

After the similar argument as in the proof of Lemma 2, we have the following
asymptotic property.

Theorem 2. Let c̃, ĉ be a pair of coupled constant upper and lower solutions
of (1.1). Assume that ĉ ≥ δ > 0, then the quasisolutions (c1, c2) and (c1, c2)
satisfy (2.17) and

ĉ ≤ c(m) ≤ c(m+1) ≤ c ≤ c ≤ c(m+1) ≤ c(m) ≤ c̃ in Q, m = 1, 2, . . . . (2.18)

If (c1, c2) = (c1, c2) ≡ (c∗1, c
∗
2), then for any ĉi ≤ ψi(t, x) ≤ c̃i in Di, the unique

solution (u1(t, x), u2(t, x)) possesses the convergence property is the unique so-
lution

lim
t→∞

(
u1(t, x), u2(t, x)

)
= (c∗1, c

∗
2) (x ∈ Ω̄).

3 Existence and Asymptotic Behavior of Solutions

First we show the existence by seeking the coupled upper and lower solutions
of (1.1). It is easy to verify that if (ũ1, ũ2) and (û1, û2) satisfy (ũ1, ũ2) ≥ (û1, û2)
and the following inequalities

∂ũ1/∂t−∇ ·
(
D1(ũ1)∇ũ1

)
≥ ũ1(a1 − b11ũ1 − b12û2 − e1ũ1û2),

∂ũ2/∂t−∇ ·
(
D2(ũ2)∇ũ2

)
≥ ũ2

(
a2 − b21û1 − b22ũ2 − e2(û1)τ ũ2

)
,

∂û1/∂t−∇ ·
(
D1(û1)∇û1

)
≤ û1(a1 − b11û1 − b12ũ2 − e1û1ũ2),

∂û2/∂t−∇ ·
(
D2(û2)∇û2

)
≤ û2

(
a2 − b21ũ1 − b22û2 − e2(ũ1)τ û2

)
in D,

∂ûi/∂ν ≤ 0 ≤ ∂ũi/∂ν for i = 1, 2, on S,

ûi(t, x) ≤ ψi(t, x) ≤ ũi(t, x) for i = 1, 2, in Di. (3.1)

then the pair (ũ1, ũ2), (û1, û2) are coupled upper and lower solutions of (1.1).
To guarantee (3.1), we seek such a constant pair in the form (c̃1, c̃2) = (M1,M2),
(ĉ1, ĉ2) = (δ1, δ2), where for each i = 1, 2, Mi are positive constants and δi are
some sufficiently small constants. Thus (3.1) is satisfied if

c̃1(a1 − b11c̃1 − b12ĉ2 − e1c̃1ĉ2) ≤ 0 ≤ ĉ1(a1 − b11ĉ1 − b12c̃2 − e1ĉ1c̃2),

c̃2(a2 − b21ĉ1 − b22c̃2 − e2ĉ1c̃2) ≤ 0 ≤ ĉ2(a2 − b21c̃1 − b22ĉ2 − e2c̃1ĉ2),

ψi(t, x) ≤ c̃i for i = 1, 2, in D
(i)
0 . (3.2)

If we set M1 = a1/b11 < a2/b21, M2 = a2/b22 < a1/b12, then (3.2) is satisfied.
Therefore we conclude the existence results.

Theorem 3. Suppose there exists a positive constant δ such that the initial

functions δ ≤ ψi(x, t) < ai/bii (i = 1, 2) in D
(i)
0 . If

b12/b22 < a1/a2 < b11/b21, (3.3)

then the system (1.1) admits at least one positive solution.
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In order to investigate the asymptotic behaviour of the coupled system (1.1),
we consider the scalar logistic parabolic equation

∂u1/∂t−∇ ·
(
d1(u1/n1)m∇u1

)
= u1(a1 − b11u1) (t > 0, x ∈ Ω),

∂u1/∂ν = 0 (t > 0, x ∈ ∂Ω),
u1(t, x) = ψ1(t, x)

(
t ∈ [−τ, 0], x ∈ Ω

)
.

(3.4)

Lemma 3. There exists the unique solution u1(x, t) of (3.4), which satisfies

lim
t→∞

u1(x, t) = a1/b11.

Proof. It is obvious that

c̃1 = max
{
a1/b11, max

(x,t)∈D1

ψ1(t, x)
}
, ĉ1 = min

(x,t)∈D1

ψ1(t, x)

are upper and lower solutions of (3.4). Thus the existence of u1(x, t) is ensured
by Theorem 1. Applying Theorem 2, (2.17) is reduced to

c1(a1 − b11c1) = 0 = c1(a1 − b11c1). (3.5)

Since (2.16), 0 < c1 < c1 holds. Thus it follows from (3.5) that c1 = c1 =
a1/b11, which proves the theorem by using Theorem 2. ut

We now give the global attractivity of the system (1.1) in the following
lemma.

Lemma 4. For any given initial function ψi(x, t) ≥ δ in D
(i)
0 for i = 1, 2, if

(3.3) holds, then the solution (u1(x, t), u2(x, t)) of the system (1.1) satisfies

lim
t→∞

u1(x, t) ≤ a1
b11

, lim
t→∞

u2(x, t) ≤ a2
b22

in Q. (3.6)

Proof. We essentially use the positive lemma of Lemma 2.1 in [20]. Consid-
ering the scalar quasilinear parabolic problem as the following

∂u1/∂t−∇ ·
(
(u1/n1)m∇u1

)
= u1(a1 − b11u1 − b12u2)

≤ u1(a1 − b11u1) in Q,

∂u1/∂ν = 0 on S,

u1(t, x) = ψ1(t, x) in D
(1)
0 ,

in view of the positive lemma that u1(t, x) ≤ U1(t, x), where U1(t, x) is the
unique solution of (3.4). Letting t → ∞, limt→∞ u1(x, t) ≤ limt→∞ U1(x, t) ≤
a1/b11. Similarly, limt→∞ u2(x, t) ≤ a2/b22. Thus the proof is completed. ut

From Lemma 4, for any initial functions, the solution of (1.1) will go into
the attractor [0, a1/b11]× [0, a2/b22]. Therefore in this case Theorem 3 is valid.

Corollary 1. If (3.3) holds, then the system (1.1) admits at least one positive
solution. Moreover, (3.6) holds.

Math. Model. Anal., 17(4):485–497, 2012.



494 C. Tian and P. Zhu

Now we study the global stability of the uniform equilibrium for (1.1). After
some algebra calculations similar as in the argument in [12], we get the suffi-
cient conditions such that system (1.1) has the positive uniform equilibrium,
moreover the positive uniform equilibrium is locally stable.

Lemma 5. If

b12/b22 < a1/a2 < b11/b21, b12/b22 < e1/e2 < b11/b21, (3.7)

then (1.1) admits the unique positive uniform equilibrium E∗ : (N∗1 , N
∗
2 ), where

N∗1 , N∗2 are the positive constants depending on the coefficients ai, bij, ei.

Lemma 6. If (3.7) holds, then the positive uniform equilibrium E∗ : (N∗1 , N
∗
2 )

of (1.1) is locally stable.

Proof. First, for sake of simplicity, we denote

f(u) =

(
f1(u1, u2)

f2(u1, u2, (u1)τ )

)
.

The linearization of (1.1) around the state E∗ gives

∂u/∂t−D∆um+1 = fu(E∗)u, (3.8)

where D = diag(d1/(m+ 1)nm1 , d2/(m+ 1)nm2 ), and

fu(E∗) =

(
−N∗1 (b11 + e1N

∗
2 ) −N∗1 (b12 + e1N

∗
1 )

−N∗2 (b21 + e2N
∗
2 e
−λτ ) −N∗2 (b22 + e2N

∗
1 )

)
,

(
fu11 fu12

fu21 fu22

)
.

Setting 0 = µ1 < µ2 < · · · → ∞ be the eigenvalues of −∆um+1 on Ω under
no-flux boundary conditions, direct calculation shows that the characteristic
polynomial of (3.8) is given by

ψi(λ) = λ2 −Biλ+ Ci,

where

Bi = −N∗1 (b11 + e1N
∗
2 )−N∗2 (b22 + e2N

∗
1 )− d1µi − d2µi,

Ci =
(
N∗1 (b11 + e1N

∗
2 ) + d1µi

)(
N∗2 (b22 + e2N

∗
1 ) + d2µi

)
−N∗1N∗2 (b12 + e1N

∗
1 )
(
b21 + e2N

∗
2 e
−λτ).

Recalling condition (3.7), it is easy to verify that Bi and Ci are negative. Thus,
for each i ≥ 1, the two roots λi,1, λi,2 of ψi(λ) = 0 all have negative real parts,
and this concludes the proof. ut

Based on the local stability of the equilibrium of (1.1), we can have the
global stability of the equilibrium by using of Theorem 2.

Theorem 4. Suppose there exists a positive constant δ such that the initial

functions δ ≤ ψi(x, t) (i = 1, 2) in D
(i)
0 . If (3.7) holds, then the positive

E∗ : (N∗1 , N
∗
2 ) is asymptotically stable.
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Proof. In view of Lemma 4, we have the following estimates

lim
t→∞

u1(x, t) ≤ a1/b11, lim
t→∞

u2(x, t) ≤ a2/b22.

For any given ε1, ε2 > 0, there exists t0 > 0 such that u1(x, t) ≤ a1/b11 + ε1,
u2(x, t) ≤ a2/b22 + ε2. As the asymptotic behaviour is concerned, it suffices to
consider the case t ≥ t0. Hence the globally asymptotic behaviour of system
(1.1) for any initial function is equivalent to 0 < ηi(x, t) ≤ ai/bii+ εi (i = 1, 2).
In order to apply the conclusions of Theorem 2, we seek the coupled upper and
lower solutions c̃ and ĉ.

We set c̃1 = a1/b11 + ε1, c̃2 = a2/b22 + ε2, ĉ1 = δ1, ĉ2 = δ2, where

ε1 = a2b11 − a1b21/2b11b21, ε2 = a1b22 − a2b12/2b12b22,
δ1 ≤ b12(a1b22 − a2b12)/

[
2b11b12b22 + e1(a1b22 + a2b12)

]
,

δ2 ≤ b21(a2b11 − a1b21)/
[
2b11b21b22 + e2(a1b21 + a2b11)

]
.

It follows from (3.7) that ε1, ε2, δ1, δ2 are positive. After some algebra calcu-
lations, c̃, ĉ satisfy (3.2), which ensures c̃ and ĉ are coupled upper and lower
solutions of the system (1.1). From (2.18), the quasisolutions c and c satisfy
c ≥ c > 0. (2.17) is reduced to{

a1 − b11c1 − b12c2 − e1c1c2 = 0 = a1 − b11c1 − b12c2 − e1c1c2,
a2 − b21c1 − b22c2 − e2c1c2 = 0 = a2 − b21c1 − b22c2 − e2c1c2.

(3.9)

The relation (3.9) induces the following

(b21e1 − b11e2)(c1 − c1) + (b12e2 − b22e1)(c2 − c2) = 0. (3.10)

Combining (3.7) and (3.10), we have c1 = c1 = N∗1 , c2 = c2 = N∗2 . By
Theorem 2, we conclude limt→∞(u1(x, t), u2(x, t)) = (N∗1 , N

∗
2 ). ut

4 Discussions

The main method in Section 2 is the upper and lower solutions and its mono-
tone iteration. The technique is used in many papers for analysis of coupled
parabolic systems, see, e.g. [5, 6, 7, 10, 14]. The virtue of the technique is by
which the results of existence and stability is extended from the scalar equation
to the coupled system. In particular, Pao and Ruan [20] have developed the
method to deal with quasilinear parabolic system. Because iterative sequences
in Section 2 are independent of the time, the delayed reaction terms of (1.1)
can be obtained in analytical form. Our conclusions of Theorems 1, 2 are
the extensions from the quasi-monotone nondecreasing reaction term of [20] to
mixed quasi-monotone nondecreasing reaction term. By comparing the results
between the quasilinear parabolic system and semilinear parabolic system [26],
the conditions for the positive uniform equilibrium being asymptotic stable are
coincident. It means that the theory of existence and stability in Theorems 1,
2 is usefulness and applicable to the general Lotka–Volterra type model.
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All of the previous phytoplankton models, such as [2, 3, 9, 11, 12, 23, 24,
25, 26], did not take density-dependent diffusion effects into account. In fact,
plankton can move around subject to diffusion. Thus, it is more realistic to
introduce the density-dependent diffusion of the plankton into the system. The
concern of the density-dependent diffusion is reasonable in animal disperse
model (see [22] for a review). The biological implications of Theorems 3 and 4
are that if the ratios of the intra-competition to the inter-competition belong
to some parameter domain, the long term behaviours of the species tend to the
positive uniform equilibrium. The two competitive species are coexistent. The
results also have applicability to 3 species Lotka–Volterra model.
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