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Abstract. We consider the second order BVP x′′ = f(t, x, x′), x′(a) = A, x′(b) = B
provided that there exist α and β (lower and upper functions) such that:
β′(a) < A < α′(a) and β′(b) < B < α′(b). We consider monotone and non-monotone
approximations of solutions to the Neumann problem. The results and examples are
provided.
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1 Introduction

The classical results (see, for instance, [10]) say that the quasi-linear problem

x′′ + p(t)x′ + q(t)x = f(t, x, x′),

k1x(a) + k2x
′(a) = A, k3x(a) + k4x

′(a) = B

is solvable (all the involved functions are continuous and f is bounded) if the
homogeneous problem

x′′ + p(t)x′ + q(t)x = 0, k1x(a) + k2x
′(a) = 0, k3x(a) + k4x

′(a) = 0

has only the trivial solution. If f is not bounded this is not true. There are
results, however, which ensure the existence of a solution to boundary value
problems with unbounded f .

The solvability results are well known [5, 9] for the second-order differential
equation with unbounded function f

x′′ = f(t, x, x′), (1.1)
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given together with appropriate boundary conditions. We mention the exis-
tence results given in terms of the lower and upper functions α and β. Func-
tions α(t) and β(t), according to the definition, satisfy the following conditions:

α ≤ β, α′′ ≥ f(t, α, α′), β′′ ≤ f(t, β, β′), ∀t ∈ [a, b]. (1.2)

First results using the lower and upper functions α and β simply state the
existence of a solution to the boundary value problem under consideration.
Later it was observed in the works by L.K. Jackson, K.W. Schrader [5] and
H.W. Knobloch [7, 8] that solutions with a specific property (B) exist if α and
β as above exist. These B-solutions, roughly speaking, can be obtained as
lower (upper) limits of sequences of neighboring solutions on the whole interval
I = [a, b]. In the work by L.K. Jackson, K.W. Schrader [5] this question was
studied with respect to the Dirichlet boundary conditions

x(a) = A, x(b) = B. (1.3)

It was shown that in presence of α and β and a Nagumo type condition a specific
solution x(t) of the problem exists which can be obtained as a uniform limit of
monotone sequences of solutions of auxiliary the Dirichlet type problems.

In our work [4] we considered different solutions of the problem x′′ = f(t, x),
(1.3) and we have shown that there exist solutions which are limits of monotone
sequences of solutions, and there may be also solutions, which can not be
approximated by monotone sequences.

The objective of this paper is to consider the Neumann problem. We show
that in presence of the lower and upper functions α and β there exists a solution
with the specific property which can be obtained as a limit of a monotone
sequence of solutions of auxiliary the Neumann type problems. We show that
there may exist also solutions which cannot be approximated by monotone
sequences. We introduce the scheme of non-monotone iterations for non-linear
second-order boundary value problem and explain how it works on particular
examples.

The structure of the paper is the following: in Section 2 lower and upper
solutions are described, in Section 3 definitions are given, in Section 4 the main
result is formulated: characteristics of solutions of the analyzed problems are
given and the example of its application is shown.

2 Upper and Lower Solutions

We consider the problem

x′′ = f(t, x, x′), f(t, x, x′) ∈ C1
(
[a, b]× R× R,R

)
(2.1)

with boundary conditions

x′(a) = A, x′(b) = B. (2.2)

A solution of problem (2.1)–(2.2) exists according to the following result.
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Theorem 1. 1 Assume there exist α(t), β(t) such that ∀t ∈ [a, b] α(t) ≤ β(t),
α′′(t) ≥ f(t, α(t), α′(t)), β′′(t) ≤ f(t, β(t), β′(t)). If A and B are such that
β′(a) ≤ A ≤ α′(a) and β′(b) ≥ B ≥ α′(b), and the Nagumo condition2 fulfils,
then the BVP (2.1)–(2.2) has a solution x(t) satisfying

α(t) ≤ x(t) ≤ β(t), ∀t ∈ [a, b].

Many authors, for example [1, 2, 3] considered the monotone iterations in
presence of upper and lower functions. The monotone sequences of problem
(2.1)–(2.2) exist according to the following theorem.

Theorem 2. Assume there exist α(t), β(t) for problem (2.1)–(2.2) such that
α(t) < β(t), α′′(t) ≥ f(t, α(t), α′(t)), β′′(t) ≤ f(t, β(t), β′(t)) and the Nagumo
condition is satisfied. If A and B are such that β′(a) < A < α′(a) and
β′(b) > B > α′(b), then there exist sequences {xi}, {xi} such that

β(t) > x1(t) > x2(t) > · · · > xn(t) > · · · x∗(t)

α(t) < x1(t) < x2(t) < · · · < xn(t) < · · · x∗(t).

Proof. We construct the sequence {xn(t)}. Choose Ai ∈ (β′(a), A) such that
Ai monotonically converge to A. Choose Bi ∈ (B, β′(b)) such that Bi mono-
tonically converge to B. Consider the problem

x′′ = f(t, x, x′), x′(a) = A1, x′(b) = B1, β′(a) < A1, B1 < β′(b).

Then a solution x1(t) exists, such that α(t) < x1(t) < β(t). Set β1(t) = x1(t).
Consider the problem

x′′ = f(t, x, x′), x′(a) = A2, x′(b) = B2.

This is solvable because α(t), β1(t) = x1(t) exist and A1 = β′1(a) < A2,
B1 = β′1(b) > B2. Then x2(t) exists such that α(t) < x2(t) < x1(t). Proceeding
this way, we construct a sequence {xn(t)} such that

α(t) < · · · < xn(t) < · · · < x2(t) < x1(t) < β(t).

Applying the Arzela–Ascoli criterium we can show that some subsequence of
{xn} converges to x∗.3 The same type arguments show that {xn} also exists,
xn → x∗.

4 Notice that xn < x∗ by construction and, therefore, x∗ ≤ x∗. ut

To illustrate the existence of monotone sequence let us consider the simple
example.

Example 1. Consider the BVP

x′′ = x3, x′(−1) = 0, x′(1) = 0. (2.3)

The upper and lower functions are defined as β(t) = t2 + 2, α(t) = −t2 − 2.
Conditions (1.2) are satisfied. This problem has a unique trivial solution. The
elements of monotone sequences {xn} and {xn} and the respective phase plane
are shown in Fig. 1 and 2.

1 Theorem 2, p. 35 in [10], adapted for the Neumann conditions.
2 |f(t, x, y)| ≤ ϕ(|y|), (t, x) ∈ {a ≤ t ≤ b, α ≤ x ≤ β},

∫∞
0

s ds
ϕ(s)

= +∞.
3 x∗ is called a maximal solution.
4 x∗ is called a minimal solution.

Math. Model. Anal., 17(4):589–597, 2012.
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Figure 1. Monotone sequence converging
to the unique (trivial) solution of the

Neumann problem (2.3).
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Figure 2. The phase plane of monotone
subsequences for problem (2.3).

3 Definitions

If a function f(t, x, x′) has partial derivatives fx(t, x, x′) and fx′(t, x, x′) then
the equation of variations for a solution ξ(t) of problem (2.1)–(2.2) can be
considered.

Definition 1. We say that the type of a solution ξ(t) of the Neumann BVP
is i (i ≥ 0), if a solution of initial value problem of variations with respect to
ξ(t)

y′′ = fx
(
t, ξ(t), ξ′(t)

)
y + fx′

(
t, ξ(t), ξ′(t)

)
y′, y(a) = 1, y′(a) = 0 (3.1)

has exactly i zeros in the interval (a, b) and y(b) 6= 0. We denote type(ξ) = i.
If moreover y(b) = 0, then we denote type(ξ) = (i, i+ 1).

In order to construct non-monotone sequences let us introduce “diagonal”
sequences. By diagonal sequence we mean a sequence of solutions of equation
(1.1) which satisfy the following boundary conditions

x′(a) = Ai < A, x′(b) = Bi < B or

x′(a) = Ai > A, x′(b) = Bi > B. (3.2)

Remark. We use the term “diagonal” because in our previous work [4] on the
Dirichlet problem x(a) = A, x(b) = B we constructed non-monotone sequences
as solutions of the auxiliary problems x(a) = Ai > A, x(b) = Bi < B (or
x(a) = Ai < A, x(b) = Bi > B), which look “diagonal”.

4 Main Result

Theorem 3. 5 If there exists a sequence {xn}, consisting of solutions of the
same type i (i 6= 0) of the above auxiliary problems and α(t) < xn < β(t),
then there exists a subsequence converging to a similar type solution
x(t) of the problem (2.1)–(2.2) and type(x) = (i− 1, i), or type(x) = i, or
type(x) = (i, i+ 1).

5 Iterations in Theorem 3 need not to be monotone.
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Proof. Let us construct the initial value problem of variations for the solution
xn(t)

y′′n = fx
(
t, xn(t), x′n(t)

)
yn + fx′

(
t, xn(t), x′n(t)

)
y′n (4.1)

yn(a) = 1, y′n(a) = 0. (4.2)

If the Nagumo conditions hold, then a constant N > 0 exists such that any
solution of the problem which satisfies α(t) ≤ x(t) ≤ β(t), t ∈ [a, b] satisfies also
|x′(t)| < N , ∀t ∈ [a, b]. Therefore we consider f(t, x, x′) only for α ≤ x ≤ β,
|x′| < N . Thus we may assume that f is bounded: |f(t, x, x′)| < M .

According to Arzela–Ascoli criterium [6], any infinite compact sequence
contains a convergent subsequence. In order to do it, compactness of the infinite
number of functions {xn} and {yn} within the space C1 is to be shown, however
it means that {xn}, {x′n}, {yn} and {y′n}, are equicontinuous and equibounded.
Let us show compactness of the sequence {xn(t)} of the solution of the problem
(2.1)–(2.2). First of all, show that the infinite sequence {xn(t)} is bounded.
That is because ∣∣xn(t)

∣∣ < max
{∣∣β(t)

∣∣, ∣∣α(t)
∣∣}

Introduce a constant K = max{|β(t)|, |α(t)|}. We get that ∀t ∈ [a, b], n ∈ N,
|xn(t)| < K is bounded.

Let us prove the equicontinuity. First of all, show this feature for the infinite
number of functions {xn(t)}. According to the definition of that equicontinuity
∀ε > 0, ∃δ > 0, such that as soon as |t2− t1| < δ ⇒ |xn(t1)− xn(t2)| < ε. One
has, according to Lagrange’s Mean Value Theorem, that

xn(t1)− xn(t2) = x′n(ξ)(t1 − t2),

where t1 < ξ < t2, ∀t1, t2 ∈ [a, b]. We can evaluate the modulus of the difference∣∣xn(t1)− xn(t2)
∣∣ =

∣∣x′n(ξ)
∣∣|t1 − t2| < N |t1 − t2|.

As a result, get the value δ > 0 as δ = ε/N .
Now let us evaluate the modulus of the difference |x′n(t1)−x′n(t2)| and find

the corresponding δ. Using Lagrange’s Mean Value Theorem, it is possible to
state: |x′n(t1)− x′n(t2)| = |x′′n(η)||t1 − t2|, t1 < η < t2, ∀t1, t2 ∈ [a, b].

Using the condition of the problem (2.1), in the last expression change x′′n(η)
to f(η, xn(η), x′n(η)), and then apply the fact that the function f is bounded
within the interval [a, b] :∣∣x′n(t1)− x′n(t2)

∣∣ =
∣∣f(η, xn(η), x′n(η)

)∣∣|t1 − t2| < M |t1 − t2|.

As the result of this analysis we get δ = ε/M .
We wish to show now that {yn(t)} contains a converging to {y(t)} subse-

quence. Let us prove that the sequences {yn(t)} and {y′n(t)} are uniformly
bounded. Denote fx(t, xn(t), x′n(t)) = ϕ(t) and fx′(t, xn(t), x′n(t)) = ψ(t). It is
clear that |ϕ(t)| < M1 = const and |ψ(t)| < K1 = const because a ≤ t ≤ b and
α < xn < β. We want to show that there exists N1 = const and |yn(t)| < N1

for all t ∈ [a, b]. In order to show that the limiting function x(t) possesses the

Math. Model. Anal., 17(4):589–597, 2012.
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property described in the statement of theorem let us write equation (4.1) as
a system {

y′ = u,
u′ = ϕ(t)y + ψ(t)u.

(4.3)

and introduce polar coordinates{
u′ = ρ′ cos θ − ρ sin θ,
y′ = ρ′ sin θ + ρ cos θ,

(4.4)

where u = ρ cos θ, y = ρ sin θ. Using formulas (4.4) we get

ρ′ =

∣∣∣∣u′ −ρ sin θ
y′ ρ cos θ

∣∣∣∣∣∣∣∣cos θ −ρ sin θ
sin θ ρ cos θ

∣∣∣∣ =
u′ρ cos θ + y′ρ sin θ

ρ cos2 θ + ρ sin2 θ
= u′ cos θ + y′ sin θ.

Using the system (4.3) we get

ρ′ =
(
ϕ(t)y + ψ(t)u

)
cos θ + u sin θ

= ϕ(t)ρ sin θ cos θ + ψ(t)ρ cos2 θ + ρ cos θ sin θ

=
1

2
ρ
[
ϕ(t) sin 2θ + ψ(t)(1 + cos 2θ) + sin 2θ

]
.

According to the initial conditions (4.2) is ρ(0) = 1.
Further, ρ(t) = ρ(0) exp (

∫
R(t) dt), therefore

R(t) =
1

2

[
ϕ(t) sin 2θ + ψ(t)(1 + cos 2θ) + sin 2θ

]
≤ 1 +M1 + 2K1

2
.

Hence, |yn(t)| < N1, where N1 = e0.5(1+M1+2K1)(b−a). One has that {y′n(t)} is
bounded because y′ = ρ′ sin θ + ρ cos θ.

Now let us evaluate the modulus of the difference |yn(t1)− yn(t2)| and find
the corresponding δ. For this, we write

yn(t) = yn(0) +

∫ t

0

y′n(s) ds,
∣∣yn(t1)− yn(t2)

∣∣ =
∣∣∣∫ t2

t1

y′n(s) ds
∣∣∣ < P |t2 − t1|,

where |y′n(t)| < P = const , ∀t ∈ [a, b]. As result, get the value δ = ε/P .
Consider the {y′n(t)} and evaluate the modulus of the difference

∣∣y′n(t1)− y′n(t2)
∣∣ =

∣∣∣∫ t2

t1

y′′n(s) ds
∣∣∣

=
∣∣∣∫ t2

t1

fx
(
s, xn(s), x′n(s)

)
yn(s) ds+

∫ t2

t1

fx′
(
s, xn(s), x′n(s)

)
y′n(s) ds

∣∣∣
≤
∣∣∣∫ t2

t1

fx
(
s, xn(s), x′n(s)

)
yn(s) ds

∣∣∣+
∣∣∣∫ t2

t1

fx′
(
s, xn(s), x′n(s)

)
y′n(s) ds

∣∣∣
≤M1

∫ t2

t1

∣∣yn(s)
∣∣ ds+M2

∫ t2

t1

∣∣y′n(s)
∣∣ ds ≤ (M1N1 +M2P )|t2 − t1|.
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As a result we get that δ = ε/(M1N1 +M2P ).
There are sequences {xn(t)}, {yn(t)} and limiting functions x(t), y(t). It

follows from the hypotheses of the theorem that a polar function θn(t) cor-
responding to {yn(t)} fulfils the condition π(i + 1) > θn(b) > πi. This is
the same as yn(t) have exactly i zeros on the interval, yn(b) 6= 0. Then
the limiting function y(t) is such that the respective θ satisfies the
inequalities π(i + 1) ≥ θ(b) ≥ πi, and this is the same as either type(x) = i,
type(x) = (i− 1, i), or type(x) = (i, i+ 1). The proof is complete. ut

Example 2. We consider the BVP

x′′ = x3 − k2x, x′(0) = x′(2) = 0, k = 2. (4.5)

The upper and lower functions are β(t) = 3.5 + (t− 1)2, α(t) = −3.5− (t− 1)2.
The solutions of problem (4.5) are ξ1 ≡ 2, ξ2 ≡ −2, ξ3 ≡ 0. Some elements of
monotone and diagonal sequences are shown in Fig. 3.

ΒHtL

ΑHtL

0.5 1.0 1.5 2.0
t

-4

-2

2

4

xHtL

Figure 3. Sequences converging to the solutions of Neumann problem (4.5).

We consider the equation of variations. For ξ1 and ξ2 this problem is given
by

y′′ = fx
(
t, ξ(t), ξ′(t)

)
y = 8y, y(0) = 1, y′(0) = 0

Solution for this problem is not equal to zero in the interval [0, 2]. Therefore
type(ξ1) = 0 and type(ξ2) = 0. Hence, these solutions can be approximated
with monotone sequences.

For ξ3 equation of variations is y′′ = −4y. This problem with initial condi-
tions y(0) = 1, y′(0) = 0 has a solution y(t), which has one zero in the interval
[0, 2]. Hence, type(ξ3) = 1 and ξ3 can be approximated with non-monotone
sequence.

Theorem 4. Suppose a solution ξ of the Neumann problem of type i (i > 0)
exists. Then ξ can be approximated by solutions of similar type (as formulated
in Theorem 36) of auxiliary problems (as formulated in (3.2)).

Proof. Suppose i is an even number. A solution ξ(t) solves the problem

x′′ = f(t, x, x′), x′(a) = A, x′(b) = B

6 type(x) = (i− 1, i), or type(x) = i, or type(x) = (i, i+ 1).

Math. Model. Anal., 17(4):589–597, 2012.
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and is such that a solution y(t) of the Cauchy problem (3.1) has exactly i zeros
in (a, b) and y(b) 6= 0. This means that the difference w(t) := x(t; ε) − ξ(t) is
not zero at t = a, has exactly i zeros in the interval (a, b) and is not equal to
zero at t = b. Also w′(a) = 0. Let x(t; ε) be a solution to the Cauchy problem

x′′ = f(t, x, x′), x(a) = ξ(a) + ε, x′(a) = ξ′(a) = 0.

Due to the assumption that i is an even integer one has that x(b; ε)− ξ(b) > 0
for small enough ε > 0. Then, by continuous dependence of solutions with
respect to the initial data, a solution x(t; ε, δ) of the Cauchy problem

x′′ = f(t, x, x′), x(a) = ξ(a) + ε, x′(a) = ξ′(a) + δ = 0

is such that the difference x(t; ε, δ) − ξ(t) has exactly i zeros in the interval
(a, b) and x(b; ε, δ)− ξ(b) > 0 for sufficiently small δ > 0. Moreover, a solution
y(t; ε, δ) of the respective equation of variations behaves like a solution y(t) of
the equation of variations for ξ(t). Therefore ξ(t) and x(t; ε, δ) have the same
index. Then a sequence {εn, δn} → (0, 0) (as n→∞) exists such that solutions
of the Cauchy problems

x′′ = f(t, x, x′), x(a) = ξ(a) + εn, x′(a) = ξ′(a) + δn = 0

all have the same index i.
It turns out that x(t; εn, δn) are solutions of the equation x′′ = f(t, x, x′),

which locate between α and β and satisfy the following boundary conditions

x′(a) = A+ δn, x′(b) = x′(b; εn, δn) := Cn > B.

The proof for odd i is similar with the only difference that δn are negative
and Cn < B. ut

5 Conclusion

If α and β exist and a Nagumo type condition holds, then monotone sequences
of solutions of auxiliary problems can be constructed converging to maximal x∗

and minimal x∗ solutions of the Neumann problem.
If there exist multiple solutions of the Neumann problem then we have

to distinguish solutions by types. Solutions of nonzero type cannot be ap-
proximated by monotone sequences. They can be approximated, however, by
solutions of auxiliary problems, which do not converge monotonically.
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