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Abstract. In this paper, we study the existence and location of turning points of
the convex solutions for a certain class of the ordinary differential equations subject
to the Dirichlet boundary conditions. We propose a practical and effective method
for calculating the lower and upper bounds of turning point location.
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1 Introduction

We consider the following nonlinear second-order Dirichlet boundary value
problem

y′′ + f(x, y, y′) = 0, x ∈ [a, b] (1.1)

y(a) = A, y(b) = B. (1.2)

In this paper, f ∈ C([a, b] × R2) is a negative-valued function and A, B are
the real numbers. We note that from the assumption f < 0 it follows that the
solution of problem (1.1), (1.2) is a convex function on [a, b].

We focus our attention on the existence and an estimate of location of so
-called turning points xTP of the solutions y of the problem (1.1), (1.2). We
define a turning point of a solution y as the point xTP ∈ (a, b) such that
y′(xTP ) = 0 and y′′(xTP ) 6= 0. Obviously, under our assumption, there exists
at most one turning point xTP of solution y and y′′(xTP ) > 0, that is, xTP is
a point of local minimum of the solution y. The problem of computing a value
xTP for which a solution y (or other function) has a turning point occurs
frequently in scientific work. In many cases of practical interest, however, an
analytic form for y or y′ is unavailable or difficult to obtain.
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The problem of existence and uniqueness of concave and convex solutions for
third-order autonomous differential equation arising in the study of the mixed
convection boundary layer flow along a semi-infinite vertical plate embedded
in a saturated porous medium was examined in [1].

To our knowledge, no paper exists addressing the question of turning points
location of the solutions for second-order equations directly from differential
equations.

Boundary value problems (1.1), (1.2) can also arise in the study of the
steady–states of a heated or cooled bar with a thermostat described by a scalar
partial differential equation

∂y

∂t
=
∂2y

∂x2
+ f

(
x, y,

∂y

∂x

)
with stationary condition ∂y/∂t = 0, where the controller at x = b maintains
a temperature according to the temperature registered by a sensor at x =
a. In this case, we consider a uniform bar of length b − a with non-uniform
temperature lying on the x-axis from x = a to x = b and the temperature B on
the right end of bar is a function of the temperature A on the left end of bar,
B = φ(A); the point xTP , if one exists, is the minimum temperature point on
the considered bar.

2 Necessary and Sufficient Condition for the Existence of
Turning Point

Now we derive a necessary and sufficient condition for the existence of turning
point for solution of problem (1.1), (1.2).

Theorem 1. The point xTP ∈ (a, b) is a turning point of the solution y of the
problem (1.1), (1.2) if and only if the integral identity

(b−a)

∫ xTP

a

f
(
s, y(s), y′(s)

)
ds = (B−A)+

∫ b

a

f
(
s, y(s), y′(s)

)
(b−s) ds (2.1)

holds.

Proof. Let y be the solution of the problem (1.1), (1.2). Integrating (1.1)
twice with respect to the independent variable between a and x we obtain

y′(x) = y′(a)−
∫ x

a

f
(
s, y(s), y′(s)

)
ds, (2.2)

y(x) = A+ y′(a)(x− a)−
∫ x

a

(∫ z

a

f
(
s, y(s), y′(s)

)
ds

)
dz. (2.3)

From (2.3) we have

y′(a) =
1

b− a

(
B −A+

∫ b

a

(∫ z

a

f
(
s, y(s), y′(s)

)
ds

)
dz

)
. (2.4)
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Putting (2.4) into (2.2) we get

y′(x) =
1

b− a

(
B −A+

∫ b

a

(∫ z

a

f
(
s, y(s), y′(s)

)
ds

)
dz

)
−
∫ x

a

f
(
s, y(s), y′(s)

)
ds. (2.5)

Equating (2.5) with zero, which is a necessary and sufficient condition for the
existence of a turning point xTP of solution y, we obtain an integral equa-
tion

(b− a)

∫ xTP

a

f
(
s, y(s), y′(s)

)
ds = (B −A) +

∫ b

a

(∫ z

a

f
(
s, y(s), y′(s)

)
ds

)
dz.

Changing the order of integration in the integral on the right side (Fubini’s
theorem), we obtain (2.1). ut

Corollary 1. Let y be the solution of the problem (1.1), (1.2) with A = B. Then
the solution y has an unique turning point xTP .

Proof. The mean value theorem for integrals implies the existence of λ ∈ (a, b]
such that

(b− a)

∫ λ

a

f
(
s, y(s), y′(s)

)
ds =

∫ b

a

f
(
s, y(s), y′(s)

)
(b− s) ds

holds. Moreover, from the assumption f < 0 it follows that the λ is unique
and λ ∈ (a, b). Thus, λ = xTP . ut

Remark 1. If A 6= B, then the existence of a turning point is not guaranteed.
Indeed, consider the trivial problem y′′− 1 = 0 subject to the boundary condi-
tions (1.2) on the interval [0, 1]. The solution of this boundary value problem
is

y(x) =
x2

2
+
(
B −A− 1

2

)
x+A

with a turning point xTP = 1
2 − (B − A). Hence, for |B − A| ≥ 1

2 there is no
turning point of solution in the interval (0, 1).

2.1 The existence of solutions

In this subsection, we prove the existence of solutions for problem (1.1), (1.2).
To do so we make the following assumption about the growth rate of f(x, y, y′)
with respect to the variable y′.

(H) Let f satisfy the Nagumo condition, that is, for each K > 0 there exists
a continuous function hK : [0,∞)→ [aK ,∞) with aK > 0 and∫ ∞

0

sds

hK(s)
=∞

such that for all y, |y| ≤ K all x ∈ [a, b] and all y′ ∈ R is∣∣f(x, y, y′)
∣∣ ≤ hK(|y′|).
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The growth condition (H) on f(x, y, y′) along with the assumed existence of
solutions α(x), β(x) (α ≤ β on [a, b]) of certain types of differential inequalities
plays an important role in demonstrating the existence of solutions of boundary
value problems not only for second-order differential equations, see e.g. [3, 4, 5].
The most general type of the functions f , satisfying the Nagumo condition, are
the following: ∣∣f(x, y, y′)

∣∣ = O
(
|y′|2

)
as |y′| → ∞

for all (x, y) ∈ [a, b]× [α(x), β(x)]. The importance of Nagumo condition is that
it provides a priori bounds on the first derivative of the possible solutions of the
problem under consideration lying between α and β on [a, b]. More concretely,
|y′| ≤ L where ∫ L

µ

sds

hK(s)
> max
x∈[a,b]

β(x)− min
x∈[a,b]

α(x)

(see, e.g. [2]) with

K = max
x∈[a,b]

{∣∣β(x)
∣∣, ∣∣α(x)

∣∣} and µ =
1

b− a
max

{∣∣β(b)− α(a)
∣∣, ∣∣β(a)− α(b)

∣∣}.
A comprehensive overview and applications of the lower and upper solutions
method can be found in [2] and [3].

Let us denote

Ω = [a, b]×
[
α(x), β(x)

]
×
[
min

{
−L,α′(x), β′(x)

}
,max

{
L,α′(x), β′(x)

}]
.

Theorem 2. Let f be a continuous function such that

m ≤ f(x, y, y′) ≤M < 0

for every (x, y, y′) ∈ Ω, where m 6= M are the negative real constants, α(x) =
ym(x) and β(x) = yM (x) are the solutions of the problem y′′ + m = 0 and
y′′ +M = 0, respectively, satisfying the boundary conditions yi(a) = A, yi(b) =
B, i = m,M .

Let f satisfy the Nagumo condition (H). Then the problem (1.1), (1.2) has
at least one solution y lying between ym and yM on [a, b].

Proof. We use the method of lower and upper solutions. As usual (see e.g. [3]),
a function α ∈ C2([a, b]) is a lower solution for (1.1), (1.2) if α′′ + f(x, α, α′) ≥
0 and α(a) ≤ A, α(b) ≤ B. An upper solution β ∈ C2([a, b]) is defined
analogously by reversing the inequalities. If α ≤ β on [a, b] then, under the
assumption (H), there exists a solution y of problem (1.1), (1.2) satisfying
α ≤ y ≤ β on [a, b].

For α(x) = ym(x) and β(x) = yM (x) we have

α′′(x) + f
(
x, α(x), α′(x)

)
= −m+ f

(
x, α(x), α′(x)

)
≥ 0,

β′′(x) + f
(
x, β(x), β′(x)

)
= −M + f

(
x, β(x), β′(x)

)
≤ 0

and α, β satisfy the boundary conditions required for the lower and upper
solutions for (1.1), (1.2). It remains to prove that α ≤ β on [a, b].

Math. Model. Anal., 17(5):642–649, 2012.
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Let γ(x) = β(x)− α(x). Then γ′′(x) = (m−M) < 0 and γ(a) = γ(b) = 0.
Thus, the function γ is positive on (a, b) and on the basis of the method of
lower and upper solutions there exists a solution y of the problem (1.1), (1.2)
such that

ym(x) ≤ y(x) ≤ yM (x)

for every x ∈ [a, b] where

yi(x) = −x
2i

2
+ c1x+ c2, i = m,M,

c1 =
k2 − k1
b− a

, c2 =
k1b− k2a
b− a

, k1 = A+
a2i

2
, k2 = B +

b2i

2
. ut

3 An Estimate of a Turning Point Location

In this section we state and prove a theorem which is the main result of article
concerning the estimate of location of a turning point xTP of solution y of the
problem (1.1), (1.2).

Theorem 3. Let the assumptions of Theorem 2 are fulfilled. Suppose in addi-
tion that

m ≤ gL(x)φL(y) ≤ f(x, y, y′) ≤ gU (x)φU (y) ≤M < 0

for every (x, y, y′) ∈ Ω with the continuous functions gL(x), gU (x) on the inter-
val [a, b] and with the continuous monotone nondecreasing functions φL(y) > 0,
φU (y) > 0 on the interval [minx∈[a,b] α(x),maxx∈[a,b] β(x)]. Let A = B.

Then
xL ≤ xTP ≤ xU , (3.1)

where xL and xU are the solutions of equations

(b− a)

∫ xL

a

gL(s)φL
(
β(s)

)
ds =

∫ b

a

gU (s)φU
(
α(s)

)
(b− s) ds (3.2)

and

(b− a)

∫ xU

a

gU (s)φU
(
α(s)

)
ds =

∫ b

a

gL(s)φL
(
β(s)

)
(b− s) ds, (3.3)

respectively, and

xU − xL ≤
(m
M
− M

m

)b− a
2

. (3.4)

Proof. The relation xL ≤ xTP ≤ xU can be obtained in the case of nonde-
creasing φL(y) and φU (y) as follows:

(b− a)

∫ xTP

a

f
(
s, y(s), y′(s)

)
ds =

∫ b

a

f
(
s, y(s), y′(s)

)
(b− s) ds

≤
∫ b

a

gU (s)φU
(
α(s)

)
(b− s) ds = (b− a)

∫ xL

a

gL(s)φL
(
β(s)

)
ds.
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Then ∫ xTP

a

f
(
s, y(s), y′(s)

)
ds ≤

∫ xL

a

gL(s)φL
(
β(s)

)
ds

and in view of
0 > f(x, y, y′) ≥ gL(x)φL

(
β(x)

)
and ∫ xTP

a

[
−f
(
s, y(s), y′(s)

)]
ds ≥

∫ xL

a

[
−gL(s)φL

(
β(s)

)]
ds

it follows that xTP ≥ xL. We analogously obtain the second part of the relation
(3.1) (xTP ≤ xU ) by using (2.1) and (3.3).

The estimate (3.4) of the difference between xU and xL results from (3.2)
and (3.3) if we put gL(x)φL(y) = m and gU (x)φU (y) = M . ut

Remark 2. In Theorem 3, we only consider the case of nondecreasing func-
tions φL(y) and φU (y). The remaining three combinations of monotonicity
assumptions on the functions φL(y), φU (y) can be analyzed analogously to get
corresponding to (3.2) and (3.3) equations.

To illustrate how our main result can be used in practice we present an
example.

Example 1. Let us consider the nonlinear boundary value problem

y′′ −
(

|y + y′|
3 + (y + y′)2

)6

− cosx = 0, y(0) = A = B = y

(
π

4

)
(3.5)

on the interval [0, π4 ]. The functions gL, gU , φL and φU may be chosen as

gL(x) = − 27

46656
− cosx, φL(y) ≡ 1 (m = −46683

46656
= −1.0005787),

gU (x) = − cosx, φU (y) ≡ 1 (M = −
√

2

2
= −0.707106781 . . .)

for (x, y, y′) ∈ [0, π4 ] × R2 ⊃ Ω. The existence of solution (see Fig. 1) follows
from Theorem 2.

Further, for a lower bound xL of the unique turning point xTP of solution
for the considered boundary value problem we obtain from (3.2) the equation

π

4

∫ xL

0

( 27

46656
+ cos s

)
ds =

∫ π
4

0

cos s
(π

4
− s
)

ds

and analogously from (3.3) for an upper bound xU we have the equation

π

4

∫ xU

0

cos sds =

∫ π
4

0

( 27

46656
+ cos s

)(π
4
− s
)

ds.

Hence,

27

46656
xL + sinxL = 0.372923228 . . . and sinxU = 0.373150485 . . . .

Math. Model. Anal., 17(5):642–649, 2012.
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Figure 1. Solution of (3.5) for A = B = 0.

The values of xL and xU are found by solving these equations separately; the
root xL is computed by using numerical method. Thus we obtain the estimate
for xTP :

0.38191934169462 . . . ≤ xTP ≤ 0.38240246919875 . . . .

The following is MATLAB code that graphically solves Example 1 (Fig. 1):

function bvp4

xlow=0; xhigh=pi/4;

solinit=bvpinit(linspace(xlow,xhigh,10),[0 -1]);

sol=bvp4c(@bvp4ode,@bvp4bc,solinit);

xint=linspace(xlow,xhigh,20);

Sxint=deval(sol,xint);

plot(xint,Sxint(1,:),’k’)

xlabel(’x’)

ylabel(’y’)

%----------------------------------------

function dydx=bvp4ode(x,y)

dydx=[y(2) (abs(y(1)+y(2))/(3+(y(1)+y(2))^2))^6+cos(x)];

%----------------------------------------

function res=bvp4bc(ya,yb)

res=[ya(1) yb(1)];

4 Conclusions

The techniques for finding the points at which the solution of differential equa-
tion attains its local extrema (turning points) provide an additional useful tool
to test the validity of the observation-based models.

In this short paper, we focused on the calculation of turning point location
for the convex solutions of second-order ordinary differential equation subject
to the Dirichlet boundary conditions.
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We have first proved the existence of solutions of a parabola shape (a U
shape) by using the method of lower and upper solutions. Then we have derived
the integral formulas for calculating the lower and upper bounds of the turning
point location without needing to know the exact solution of the boundary
value problem under consideration. The efficiency of the proposed approach
was demonstrated by the example.

In future research it will be interesting to examine the solutions with more
than one turning point.
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