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Abstract. We consider a singular second-order boundary value problem. The dif-
ferential problem is approximated by the Galerkin finite element scheme. The main
goal is to compare the well known apriori Bakhvalov and Shishkin meshes with the
adaptive mesh based on the aposteriori dual error estimators. Results of numerical
experiments are presented.
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1 Problem Formulation

We consider the one-dimensional singularly perturbed boundary value problem{
−ε2u′′ + q(x)u = f(x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,
(1.1)

where f = f(x), q(x) ≥ a > 0 are given sufficiently smooth functions, 0 <
ε � 1. It is well-known that solutions of this problem can have steep ex-
ponential boundary layers, therefore a numerical approximation of singularly
perturbed problems is a challenging task. A good review on the state of art
in this field is given in [13, 19]. Two general strategies can be used to con-
struct efficient and uniformly convergent numerical algorithms for problems
with boundary layers. The first one is based on special types of finite differ-
ence or finite volume approximations. Here we mention exponentially fitted
finite difference and finite element schemes [9, 11, 20, 22, 23]. Exponentially
fitted finite difference schemes can be obtained approximating coefficients of
the differential equation by piece-wise constant functions and solving exactly
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the obtained perturbed differential equations. In finite element algorithms the
Petrov–Galerkin method is used by upwinding the test functions.

The second strategy uses standard finite difference or finite element dis-
cretizations on non-uniform meshes. The main idea is to resolve exponential
boundary layers by a suitable mesh. Starting from the paper of Bakhvalov [4],
efficient numerical algorithms were constructed using special adaptive meshes.
These meshes are exponentially stretched within the boundary layers. In [21],
Shishkin proposed a simpler type of adaptive meshes, which can be constructed
a priori as a function of the singular parameter ε and are piecewise-uniform.
It was proved that such meshes can be used for wide classes of singularly per-
turbed problems.

Roos and Linß have proposed simple sufficient conditions to prove a uniform
convergence on layer-adapted meshes [18]. They have applied these conditions
not only for the Bakhvalov and Shishkin meshes, but also have analyzed dis-
crete schemes proposed by Vulanovic [24, 25], Boglaev [7]. The Bakhvalov
and Shishkin meshes were compared in [25], where a quasi-linear singularly
perturbed boundary value problem was considered and the Shishkin grid was
generalized and improved.

The other important trend of theoretical analysis deals with a posteri-
ori error estimates for the numerical solutions of singularly perturbed elliptic
equations. Such computable estimates for singularly perturbed or convection-
dominated problems where investigated, e.g. in [2, 3, 16, 17]. These estimates
can be used to construct non-uniform adaptive meshes by using the equidis-
tribution of a computed approximation of the error monitoring function. The
benchmark adaptive meshes can be constructed by the equidistribution of mon-
itoring functions that are based on the exact solution (see, [17] for convection
dominated test problems).

For convection–diffusion equations different a posteriori error estimators
were considered by John [12], including gradient indicator, residual based error
estimators for different norms and two error estimators which are defined by so-
lution of local Neumann problems. The accuracy of numerical approximations
was investigated on adaptive meshes. The obtained results show that none
of the considered error estimators work robustly in all tests. In [6], the finite
difference approximation of a model singularly perturbed reaction–diffusion
boundary value problem (1.1) is investigated. The meshes are based on the
equidistribution of a positive monitoring function that takes into account a
power of the second derivative of the solution.

Reliable a posteriori estimators for the error in H1 norm for a 2D sin-
gularly perturbed reaction–diffusion model were constructed and investigated
in [14]. Vulanovic [26] analyzed the relationship between layer-resolving trans-
formations and mesh generating functions for numerical solution of singularly
perturbed boundary value problems. Linß [15] considered non-monotone FEM
discretization for singularly perturbed problem (1.1). He proved a priori and a
posteriori error bounds in the maximum norm.

Non-local boundary conditions are also considered for singularly perturbed
diffusion–reaction problems. Exponentially fitted schemes were used to ap-
proximate the problem with three-point nonlocal condition by Amiraliyev and
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Cakir [1]. For integral nonlocal conditions such schemes were investigated by
Čiegis [9], Cakir and Amiraliyev [8].

Our goal is to investigate the optimality of the Bakhvalov and Shishkin
meshes for singularly perturbed diffusion–reaction problems. We compare these
meshes with the adaptive meshes constructed by using general duality-based
a priori error estimators in the L2 and energy norms [5, 10]. A standard
technique of the equidistribution of a computed error monitoring function is
applied in order to construct optimal meshes for different norms. It is well-
known that only the uniform norm enables us to resolve boundary layers
for general meshes. The usage of integral L2 and energy norms is justified
for adaptive meshes, which can be seen as special layer-resolving transforma-
tions.

The rest of the paper is organized as follows. In Section 2, the Galerkin
method is presented. The mesh generation routines are developed in Section 3.
In Section 4, we compare different meshes and results of numerical experiments
are presented. Some final conclusions are presented in Section 5.

2 The Galerkin Finite Element Method

Let us define the test functions space

V =

{
v :

∫
Ω

(
|v′|2 + v2

)
dx <∞, v(0) = v(1) = 0

}

and we take the trial functions space V 1 = V . We apply the standard Galerkin
method to problem (1.1) and integrate the differential equation by parts, this
gives the variational problem formulation: find u ∈ V such that

1∫
0

(
ε2u′v′ + quv

)
dx =

1∫
0

fv dx ∀v ∈ V. (2.1)

We consider piecewise linear trial and test functions. Let Wh : 0 = x0 < x1 <
· · · < xN−1 < xN = 1 be a partition of [0, 1] and let Vh ⊂ V be the correspond-
ing finite element space of continuous piecewise linear functions. The finite
element method is obtained by applying the Galerkin method to (2.1) with the
finite dimensional space Vh ⊂ V replacing V and reads: find U ∈ Vh such that

1∫
0

(
ε2U ′v′ + qUv

)
dx =

1∫
0

fv dx ∀v ∈ Vh. (2.2)

Let ϕi be nodal basis functions

ϕi =


(x− xi−1)/hi−0.5, x ∈ [xi−1, xi),

(xi+1 − x)/hi+0.5, x ∈ [xi, xi+1],

0, otherwise,
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where hj−0.5 = xj − xj−1, then any v ∈ Vh can be written as v(x) =∑N−1
j=1 µjϕj(x), where µj are coefficients. We write U in terms of nodal basis

functions ϕj , j = 1, . . . N − 1,

U(x) =

N−1∑
j=1

Ujϕj(x), (2.3)

and substitute this expression into (2.2). Choosing v in (2.2) to be ϕi, i =
1, . . . , N − 1, we obtain the system of equations for Uj which is tridiagonal.
Solving this system gives U(x) from (2.3).

3 Mesh Generation Using Duality-Based Technique

In this section, we apply the well-known duality-based error estimates for the
problem (1.1). A standard technique described e.g. in [10] for general second
order boundary value problems is used. We make no attempt to construct
special uniform in small parameter ε error estimates, since boundary layers
should be resolved by special layer-resolving transformations based on adaptive
meshes. The error is estimated in the L2 and energy norms.

3.1 Error estimation in the L2 norm

Let us define Au := −ε2u′′ + qu, then problem (1.1) can be written as{
Au = f, in x ∈ (0, 1),

u(0) = 0, u(1) = 0.

A scalar product and the L2 norm are defined as

(u, v) =

1∫
0

uv dx, ‖u‖ =
√

(u, u).

Let us denote the error e = u−U . In order to estimate this error, we find z as
a solution of the dual problem{

A∗z = e, in x ∈ [0, 1],

z(0) = 0, z(1) = 0.
(3.1)

In our caseA∗ = A. Multiplying (3.1) by e, integrating by parts and considering
v = πhz in (2.2), where πhz ∈ Vh is the piecewise linear interpolant of z, we
get the estimate

(e, e) ≤
∥∥h2(qU − f)

∥∥∥∥h−2(z − πhz)
∥∥. (3.2)

Here h = h(x) = xi − xi−1 in xi−1 < x ≤ xi. The error of the the piecewise
linear interpolant πhz can be estimated as [10]∥∥h−2(z − πhz)

∥∥ ≤ Ci‖z′′‖. (3.3)
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To estimate the term ‖z′′‖ in (3.3) we consider the following problem{
Aw = ψ, in x ∈ [0, 1],

w(0) = 0, w(1) = 0,
(3.4)

where ψ = ψ(x) ∈ V are functions that represent all possible error functions
e = e(x). Then the strong stability factor S is defined by

S = max
ψ∈V

‖w′′‖
‖ψ‖

.

Consider there ψ = e, then from (3.1) we get that w = z and obtain the
estimate

‖z′′‖ ≤ S ‖e‖ . (3.5)

Finally, from (3.2), (3.3) and (3.5) we obtain the aposteriori error estimate in
the L2 norm

‖e‖ ≤ C̄i
∥∥h2q(U − f)

∥∥. (3.6)

Here C̄i = SCi is a constant and it has no effect on construction of adaptive
meshes.

3.2 Error estimation in the energy norm

Let us define the energy norm ‖e′‖ =
√

(e′, e′). Replacing v ∈ V with an error
function e ∈ V in variational problem (2.1), considering v = πhe in (2.2), where
πhe ∈ Vh is a piecewise linear interpolant of e, integrating by parts and using
the Cauchy inequality, gives

ε2 ‖e′‖2 ≤
∥∥h(qU − f)

∥∥∥∥h−1(e− πhe)
∥∥. (3.7)

The interpolation error can be estimated as [10]∥∥h−1(e− πhe)
∥∥ ≤ C̃i ‖e′‖ ,

where C̃i is a constant. Using this inequality in (3.7) we get an aposteriori
error estimate in the energy norm

‖e′‖ ≤ C̃i
ε2
∥∥h(qU − f)

∥∥. (3.8)

We note that in both aposteriori error estimates (3.6) and (3.8) the residual
R(U) = qU − f of the FE scheme multiplied by hp defines the contribution to
the total error from the element [xj−1, xj ].

3.3 Adaptive mesh generation

The adaptive mesh is obtained by solving the minimization problem

min
x1,...,xN−1

N∑
j=1

rj−0.5,

N∑
j=1

hj−0.5 = 1, (3.9)



Comparison of Adaptive Meshes for a Singularly Perturbed Problem 737

where rj−0.5 is a local error estimate on the interval [xj−1, xj ]. To minimize
the total error the standard local error equidistribution technique is applied for
a given monitoring function [10]. It reads: find hj−0.5, j = 1, . . . , N , such that
rj−0.5 = const , j = 1, . . . , N .

Using aposteriori error estimates (3.6), (3.8) we get the following error
equidistribution problem

rj−0.5 = h2pj−0,5

xj∫
xj−1

(qU − f)2 dx = const , j = 1, 2, . . . , N, (3.10)

here p = 1 for the energy norm and p = 2 for the L2 norm, respectively.
Problem (3.10) can be solved by the inverse interpolation method.

4 Comparison with Apriori Adaptive Meshes

In this section we compare the adaptive mesh based on aposteriori error esti-
mates with the well known Shishkin and Bakhvalov meshes.

4.1 Comparison with the Bakhvalov mesh

The Bakhvalov mesh [4] is generated by equidistributing

xj∫
xj−1

MB(x) dx = const , j = 1, 2, . . . , N (4.1)

the monitoring function

MB(x) = max
{
α, e(−

ρx
σε ), e(−

ρ(1−x)
σε )

}
, (4.2)

where % = minx∈[0,1]
√
q(x), σ is a freely defined parameter, and α is a regu-

larization parameter.
The information on function f is not used in the Bakhvalov mesh. Also,

we note, that in the Bakhvalov mesh the function q(x) is approximated by the
constant % = minx∈[0,1]

√
q(x).

In order to find a relation between duality-based a posteriori mesh and the
Bakhvalov mesh we consider the problem{

−ε2u′′ + ρ2u = f̄ , in x ∈ (0, 1),

u(0) = 0, u(1) = 0,
(4.3)

where f̄ = const . To obtain an analytical formula of the adaptive meshes in the
L2 and energy norms we use the exact solution of (4.3) instead of the Galerkin
approximation (3.10):

u(x) =
f̄

ρ2
−e(

ρx
ε ) + e(−

ρx
ε ) − e(

ρ(1−x)
ε ) + e(−

ρ(1−x)
ε ) − e(−

ρ
ε ) + e(

ρ
ε )

e(
ρ
ε ) − e(− ρε )

.
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Then the residual of the Galerkin scheme can be computed as

R(u) =
f̄

e(
ρ
ε ) − e(− ρε )

(
−e(

ρx
ε ) + e(−

ρx
ε ) − e(

ρ(1−x)
ε ) + e(−

ρ(1−x)
ε )

)
.

We are interested to analyze the adaptive mesh only in the neighbourhood of
boundary layers 0 ≤ x ≤ cε/ρ and 0 ≤ 1−x ≤ cε/ρ, thus it is sufficient to take
the following asymptotical approximation of the residual

R̃(u) = −f̄
(
e−

ρx
ε + e−

ρ(1−x)
ε

)
. (4.4)

Then from (3.10) we get the following error equidistribution problem

h2pj−0,5

xj∫
xj−1

(
e−

ρx
ε + e−

ρ(1−x)
ε

)2
dx = const , j = 1, 2, . . . , N. (4.5)

First, let us consider a left boundary layer at x = 0. Since ε � 1, equa-
tions (4.5) can be simplified to

h2pj−0,5

xj∫
xj−1

e−2ρx/ε dx = const , j = 1, 2, . . . , N/2.

Applying the standard midpoint rule for numerical integration after simple
computations we derive the mesh equidistribution equations in the following
form

xj∫
xj−1

e−
2ρx

ε(2p+1) dx = const , j = 1, 2, . . . , N/2. (4.6)

A boundary layer at x = 1 is considered similarly. Thus the duality based
adaptive mesh can be obtained by using the monitoring function

M(x) =

e
− 2ρx
ε(2p+1) , in x ∈ [0, 0.5),

e
2ρ(x−1)
ε(2p+1) , in x ∈ [0.5, 1].

(4.7)

By taking σ = 2p+1
2 in (4.7) we get the monitoring function (4.2), which was

used to construct the Bakhvalov mesh. In addition we have derived a rule
to define parameter σ for the Bakhvalov mesh: σ = 5

2 , if the global error is
estimated in the L2 norm, and σ = 3

2 , if the energy norm is used.
At the end of this subsection we present explicit formulas for the adaptive

mesh, generated by the monitoring function (4.7). From (4.6) we get a system
of nonlinear equations

xj∫
0

e(−
ρx
σε ) dx =

2j

N

1/2∫
0

e−(
ρx
σε ) dx, j = 1, . . . , N/2,
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Figure 1. The solution of problem (4.3) and apriori adaptive meshes: a) the Bakhvalov
mesh for N = 40, ε = 0.05, σ = 5

2
, k = q = f = p = 1, b) the Shishkin mesh for N = 40,

ε = 0.01, σ = 5
2

, k = q = f = p = 1.

from which xj is defined by:

xj = −σε
ρ

ln

(
1− 2j

N

(
1− e−

ρ
2σε

))
, j = 1, . . . , N/2. (4.8)

Since the mesh is symmetric with respect to point x = 0.5, then xj = xN−j for
j = N/2 + 1, . . . , N .

The Bakhvalov mesh is exponentially fitted at boundary layers. In Figure 1a
an example of the Bakhvalov mesh is shown for f = q = k = p = 1, ε = 0.05,
discretization nodes are marked by vertical lines, N = 40.

4.2 Comparison with the Shishkin mesh

In this subsection we investigate a relation between the Bakhvalov and Shish-
kin meshes. The Shishkin mesh is computed in two steps: first we define the
thickness of boundary layers

λ = min

(
1

4
,
σε

ρ
lnN

)
.

Next the interval [0, 1] is partitioned into three parts: [0, λ), (λ, 1−λ), (1−λ, 1].

Intervals [0, λ) and (1 − λ, 1] are uniformly divided into N
4 parts, the interval

(λ, 1− λ) is uniformly divided into N
2 parts. An example of the Shishkin mesh

is presented in Fig. 1b.

Our aim is to find a relation between formula (4.8), which defines the
Bakhvalov mesh, and the Shishkin mesh. We restrict to the case when a mesh
is still not very dense, then the parameter λ is defined by

λ =
σε

ρ
lnN. (4.9)

Since e(−σε/ρ) � 1 and N � 1, then we get from (4.8) that

Math. Model. Anal., 17(5):732–748, 2012.
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xN/2−1 = −σε
ρ

ln

(
1− N − 2

N

(
1− e−

ρ
2σε

))
≈ −σε

ρ
ln

(
1− N − 2

N

)
≈ σε

ρ
lnN.

Thus the Bakhvalov mesh gives a simple rule how to obtain the value of pa-
rameter λ for the Shishkin mesh: take λ = xN/2−1.

We summarize main assumptions that were used to derive the Bakhvalov
and Shishkin meshes from the adaptive mesh constructed by using duality-
based a posteriori estimates:

1. The apriori meshes do not depend on local values of q(x), the global
parameter ρ = minx∈[0,1]

√
q(x) is used, i.e. both methods ignore the

fact that the thickness of left and right boundary layers can be different.

2. The apriori meshes do not depend on local values of f(x), i.e. both meth-
ods ignore the fact that the stiffness of boundary layers can be different.

3. Exponentially fitted distribution of nodes in the Bakhvalov mesh is chan-
ged to a piecewise uniform one in the Shishkin mesh.

We note that the convergence rate of standard finite difference schemes is
O(N−2) for the Bakhvalov mesh and O(N−2 ln2N) for the Shishkin mesh. The
difference in convergence rates is not essential, at the same time the Shishkin
mesh is much simpler and it can be generalized for multidimensional problems
with different types of boundary layers.

4.3 Modifications of the Shishkin mesh

In this section we modify the Shishkin mesh by relaxing the first two assump-
tions. Mackenzie and Beckett [6] have proposed to use different boundary layer
thickness parameters for different boundaries. We also apply this rule. The
thicknesses of boundary layers are defined by using local values function q(x):

λ0 =
σε√
q(0)

lnN, λ1 =
σε√
q(1)

lnN,

where σ = 2p+1
2 . We divide the whole interval [0, 1] into three parts: [0, λ0),

(λ0, λ1) and (λ1, 1]. A regular part (λ0, λ1) is divided into N
2 intervals, and N

2

intervals are used to discretize boundary layers (0, λ0) and (λ1, 1).
Aposteriori error estimates (4.4) show that the source function f(x) affects

the residual error for different boundary layers. We use a simple rule how to
define the numbers of mesh points in each boundary layer. By applying the
mid-point integral approximation, Let us rewrite the equidistribution equation
(3.10) as

hj−0.5
∣∣(qU − f)j−0.5

∣∣1/σ = const , j = 1, 2, . . . , N,

with p = 1, 2. By using the differential equation (1.1) we get the equivalent
formulation, that the adaptive grid is generated by equidistributing the moni-
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toring functional

M(u) :=

1∫
0

∣∣u′′(x)
∣∣1/σ dx, σ =

2p+ 1

2
. (4.10)

Substituting asymptotics of the solution at the boundary layers

u(x) =


f(0)
q(0) e

−
√
q(0)/ε2 x, 0 ≤ x ≤ λ0,

f(1)
q(1) e

−
√
q(1)/ε2 (1−x), 1− λ1 ≤ x ≤ 1,

into the monitoring functional (4.10), we get that the numbers of mesh points
within each layer should be proportional to weights of the monitoring indicators

W0 :=

λ0∫
0

∣∣u′′(x)
∣∣1/σ dx = c

|f(0)|1/σ√
q(0)

, W1 :=

1∫
1−λ1

∣∣u′′(x)
∣∣1/σ dx = c

|f(1)|1/σ√
q(1)

,

where c = σε1−2/σ(1 − 1/N). Thus the numbers of mesh points within each
layer are defined as (see, also [6]):

N0 =
N

2

|f(0)|1/σ/
√
q(0)

|f(0)|1/σ/
√
q(0) + |f(1)|1/σ/

√
q(1)

, N1 =
N

2
−N0. (4.11)

The uniform norm. The Shishkin mesh was developed for the numerical
analysis of singular boundary problems in the uniform norm. The aposteriori
error estimates are defined for the L2 and energy norms. We propose the
following heuristic algorithm, which is based on the error estimation of the
piecewise linear interpolant πh. Let us denote by h0 = λ0

N0
and h1 = λ1

N1
.

Consider the left-hand layer in detail. Simple computations prove that

max
0≤x≤λ0

∣∣∣∣(I − πh)

(
f(0)

q(0)
e−
√
q(0)/ε2x

)∣∣∣∣
=
|f(0)|
q(0)

h20
4

∣∣(e−√q(0)/ε2x)′′∣∣
x=

h0
2

∣∣+O
(
h4
)

=
h20
4ε2
∣∣f(0)

∣∣e−√q(0)/ε2h0/2 +O
(
h4
)

=
h20
4ε2
∣∣f(0)

∣∣+O
(
h3
)
.

For the right-hand layer we get similarly that

max
1−λ1≤x≤1

∣∣∣∣(I − πh)

(
f(1)

q(1)
e−
√
q(1)/ε2(1−x)

)∣∣∣∣ =
h21
4ε2
∣∣f(1)

∣∣+O
(
h3
)
.

Thus the numbers of mesh points within the different layers should satisfy the
following requirement

N1

N0
=

√
f(1)λ1√
f(0)λ0

=

√
f(1)/q(1)√
f(0)/q(0)

.
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742 A. Bugajev and R. Čiegis

By using the equality N0 +N1 = N/2 we get

N0 =
N

2

√
f(0)/q(0)√

f(0)/q(0) +
√
f(1)/q(1)

, N1 =
N

2
−N0. (4.12)

Comparing (4.12) with (4.11), we see that for the uniform norm the distribution
of mesh nodes is defined by the same formula but with the parameter σ = 2.

In order to guarantee that mesh steps in boundary layers are not larger
than in a regular area, we formulate a modification of the Shishkin algorithm:

1. Calculate thicknesses of boundary layers

λ0 = min

(
0.25,

σε√
q(0)

lnN

)
, λ1 = min

(
0.25,

σε√
q(1)

lnN

)
.

2. Calculate from (4.12) the numbers of mesh nodes in boundary layers.

3. Regularize the mesh:

a) If h1/2 > hN0+1/2, then N0 = λ0/hN0+1/2, N1 = N/2−N0;

b) If hN−1/2 > hN0+1/2, then N1 = λ1/hN0+1/2, N0 = N/2−N1.

4. Intervals [0, λ0), (λ0, λ1) and (λ1, 1] are uniformly divided into N0, N/2
and N1 parts, respectively.

4.4 Numerical experiments

In this section we investigate how assumptions used to construct the Shishkin
mesh affect the accuracy of the discrete solution. For error computations we
have computed numerical solutions by taking a very big number of mesh points
N = 16000 of the Bakhvalov mesh, the mesh regularization parameter α in
formula (4.2) is defined by the technique offered in Beckett and Mackenzie [6].
In all computations we use σ = 5

2 . Computational experiments are done for
the Shishkin mesh and adaptive mesh based on a posteriori error estimate in
the L2 norm. Nodal errors e(x) = u(x)− U(x) in the maximum norm are also
presented.

Example 1. Consider the following singular problem{
−ε2u′′ + u = x, in x ∈ (0, 1),

u(0) = 0, u(1) = 0.
(4.13)

The solution of this problem do not have boundary layer singularity on the left
side of interval. The adaptive mesh based on a posteriori error estimate, the
Galerkin solution and global errors of this solution are presented in Fig. 2. The
most of mesh points are distributed on the right boundary layer at x = 1 and
they are adapted to local values of f .

At it was stated above, the Shishkin mesh does not depend on local values
of the function f(x) and the mesh points are adapted to both boundary layers,
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Figure 2. Results for Example 1 with ε = 0.01: a) an adaptive mesh based on a posteriori
error estimates and the Galerkin solution, b) the global error |e(x)| for problem (4.13).
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Figure 3. Results for Example 1 with ε = 0.01: a) the Shishkin mesh and the Galerkin
solution, b) the global error |e(x)| for problem (4.13).

Table 1. Errors of the Galerkin solution in the L2 norm and the experimental convergence
rates for problem (4.13).

n the Shishkin mesh rate adaptive mesh rate

20 1.08E-2 – 1.81E-4 –
40 4.36E-3 1.31 3.78E-5 2.26
80 1.58E-3 1.46 8.70E-6 2.12
160 5.36E-4 1.56 2.09E-6 2.06
320 1.74E-4 1.63 5.11E-7 2.03
640 5.45E-5 1.67 1.26E-7 2.02

though the left one is not presented in this example. We see in Fig. 3, that for
the Shishkin mesh the largest errors of the Galerkin solution are distributed
near the right boundary layer.

Next we have solved problem (4.13) and computed the error by using both
meshes with different numbers of nodes N . The errors in the L2 norm and the
experimental convergence rates are given in Table 1.

It follows from the presented results, that the adaptive mesh based on a pos-
teriori error estimates gives more accurate Galerkin solution than the Shishkin
mesh. However the difference between both results is not big.

Math. Model. Anal., 17(5):732–748, 2012.
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Figure 4. Results for Example 2: a) an adaptive mesh based on a posteriori error
estimates and the Galerkin solution, b) the global error |e(x)| for problem (4.14).
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Figure 5. Results for Example 2: a) the Shishkin mesh and the Galerkin solution, b) the
global error |e(x)| for problem (4.14).

Example 2. In this example we consider a singular problem with different
thicknesses of boundary layers:{

−ε2u′′ +
(
1 + 2x2

)
u = 1, in x ∈ (0, 1),

u(0) = 0, u(1) = 0.
(4.14)

The thickness of the right boundary layer is smaller than the thickness of the
left boundary layer. The adaptive mesh based on a posteriori error estimate,
the Galerkin solution and global errors of this solution are presented in Fig. 4.
We see that global error of the Galerkin solution is well balanced at both
boundary layers.

The Shishkin mesh does not depend on local values of the function q(x),
thus the thickness of both boundary layers is taken the same in this case. We
see in Fig. 5, that for the Shishkin mesh the largest errors of the Galerkin
solution are distributed near the right boundary layer, where the real thickness
is smaller than defined by the mesh and some mesh points are redundant there.

Next we have solved problem (4.14) and computed the error by using adap-
tive and the Shishkin meshes with different numbers of nodes N . The errors
in the L2 norm and the experimental convergence rates are given in Table 2.
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Table 2. Errors of the Galerkin solution in the L2 norm and the experimental convergence
rates for problem (4.14).

n the Shishkin mesh rate adaptive mesh rate

20 1.28E-2 – 1.82E-3 –
40 5.33E-3 1.27E 3.31E-4 2.46E
80 1.96E-3 1.44E 7.02E-5 2.24E
160 6.70E-4 1.55E 1.66E-5 2.08E
320 2.18E-4 1.62E 4.14E-6 2.01E
640 6.84E-5 1.67E 1.04E-6 2.00E
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Figure 6. Results for Example 1: a) the modificated Shishkin mesh and the Galerkin
solution, b) the global error |e(x)| for problem (4.13).
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Figure 7. Results for Example 2: a) the modificated Shishkin mesh and the Galerkin
solution, b) the global error |e(x)| for problem (4.14).

We have solved the same test problems by using the modified Shishkin
mesh. Results are presented in Fig. 6 for problem (4.13) and in Fig. 7 for
problem (4.14). Comparing these results with results obtained using the clas-
sical Shishkin mesh (see, Figs. 3 and 5), we conclude that in both cases the
distribution of nodes with the modified Shishkin mesh gives smaller errors.

Also, we have solved problem (4.13) with a smaller parameter ε = 10−3 and
computed the error by using the classical and modified Shishkin meshes with
different numbers of nodes N . The errors in the L2 norm and the experimental
convergence rates are given in Table 3.

Math. Model. Anal., 17(5):732–748, 2012.
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Table 3. Errors of the Galerkin solution in the L2 norm and the experimental convergence
rates for problem (4.14), ε = 10−3.

n the Shishkin mesh rate the modified Shishkin mesh rate

20 3.42E-3 – 9.23E-4 –
40 1.38E-3 1.31 3.56E-4 1.37
80 5.00E-4 1.46 1.26E-4 1.49
160 1.69E-4 1.56 4.36E-5 1.54
320 5.49E-5 1.63 1.41E-5 1.63
640 1.72E-5 1.67 4.45E-6 1.66
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Figure 8. The dependence of global errors on parameter σ: a) the L2 norm, b) the
energy norm.

From Table 3 we see that Galerkin solutions for both meshes have similar
rates of convergence. But absolute values of errors differs four times, that means
that using the classical Shishkin mesh we must take two times more nodes than
for the modified Shishkin mesh in order to achieve the same accuracy of the
solution. Similar results are obtained for problem (4.14).

Optimal values of parameter σ. In Section 4 we have derived optimal
values of parameter σ for the apriori adaptive Bakhvalov and Shishkin meshes,
i.e. σ = 5

2 should be used for the global error control in the L2 norm and σ = 3
2

is optimal for the energy norm.
Next we present results of numerical experiments, where the optimality of

these parameters is investigated Let us consider a singular problem{
−10−8u′′ + u = 1, in x ∈ (0, 1),

u(0) = 0, u(1) = 0.
(4.15)

We use the Bakhvalov mesh with N = 160 nodes and α = 0.
In Figure 8a we show the dependence of the error ‖e‖ on the mesh param-

eter σ, and in b part of this figure the dependence of the error ‖e′‖ is shown.
It follows from the presented results that experimental optimal values σ =

2.37 and σ = 1.54 are close to theoretical values σ = 2.5 and σ = 1.5 obtained
from adaptive meshes based on a posteriori error estimates.
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5 Conclusions

• The Bakhvalov and Shishkin meshes were derived from a posteriori dua-
lity based error estimations.

• We have derived a relation between a norm in which the error is controlled
and optimal values of parameter σ which is used in definition of the
Bakhvalov and Shishkin meshes.

• The modification of the Shishkin mesh is proposed and investigated.
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