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1 Introduction

If an ordinary differential equation includes not only a perturbation parameter
but also a delay term, it is called a singularly perturbed differential-difference
equation. These equations arise frequently in science and engineering field. For
instance, they occur in the study of human pupil light reflex [19], first-exit prob-
lems in neurobiology [24], models of physiological processes and diseases [20],
optimal control theory [13], models of climate systems [15], optically bistable
devices [7] and signal transmission [9], and other models [10].

On the other hand, in recent years many methods have been developed for
solving singularly perturbed delay differential problems. In [4,16,17] have been
considered some asymptotic analysis of boundary value problems for second
order singularly perturbed differential-difference equations and some numerical
techniques for solving of this type of problems with large and small shifts
were considered in [12,14,18] and references therein. Particularly, reproducing
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kernel method [12], initial value technique [25], some special finite element
method [23,26] have been used for solving these problems.

Motivated by the above works, we are interested in the following model
problem:

Lu := εu′′(x) + a(x)u′(x) + f(x, u(x), u(x− r)) = 0, x ∈ Ω, (1.1)

subject to the interval and boundary conditions,

u(x) = ϕ(x), x ∈ Ω0; u(l) = A, (1.2)

where Ω = Ω1 ∪ Ω2, Ω1 = (0, r], Ω2 = (r, l), Ω̄ = [0, l], Ω0 = [−r, 0] and
0 < ε � 1 is the perturbation parameter, a(x) ≥ α > 0, f(x, u, v), and ϕ(x)
are given sufficiently smooth functions satisfying certain regularity conditions
in Ω̄, Ω̄ × R2 and Ω0 respectively, to be specified and r is a constant delay,
which is independent of ε, and A is a given constant and furthermore

0 ≤ ∂f

∂u
≤ b∗ <∞,

∣∣∣∣∂f∂v
∣∣∣∣ ≤ c∗.

The special case r = 0 and ϕ(x) = B (B a real constant) of the above prob-
lem so called two-point boundary value problem of singularly perturbed differ-
ential equations and typically boundary layers occur in their solutions. Such
problems appear in the Navier-Stokes equations of fluid flow at high Reynolds
number, the equations governing flow in a porous medium, the drift-diffusion
equations of semiconductor device physics, fluid mechanics, elasticity, quantum
mechanics, plasticity, oceanography, meteorology, reaction-diffusion processes
and mathematical models of liquid materials and of chemical reactions [21,22].

Besides, for small values of ε, standard numerical methods for solving such
problems are unstable and do not give accurate results. Therefore, it is impor-
tant to develop suitable numerical methods for solving these problems, whose
accuracy does not depend on the parameter value ε, i.e., methods that are
convergent ε-uniformly. These include fitted finite difference methods, finite
element methods using special elements such as exponential elements, and
methods which use a priori refined or special non-uniform grids which con-
dense in the boundary layers in a special manner. One of the simplest ways of
derive parameter-uniform methods consists of using a class of special piecewise
uniform meshes, such as Shishkin meshes (see [6, 11, 21, 22] for the motiva-
tion for this type of mesh), which are constructed a priori and depend on
the parameter ε, the problem data, and the number of corresponding mesh
points. The various approaches to the design and analysis of appropriate nu-
merical methods for singularly perturbed differential equations can be found
in [8,11,21,22] (see also references cited in them). The numerical method pre-
sented here comprises a finite-difference scheme on a Shishkin type mesh. We
have derived this approach on the basis of the method of integral identities
with the use of interpolating quadrature rules with the weight and remainder
terms in integral form. These results in a local truncation error containing only
first second derivatives of exact solution and hence facilitates examination of
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the convergence. The solution of a singularly perturbed problem of the form
(1.1)–(1.2) normally has a boundary layer at x = 0.

The remainder paper is organized as follows. In Section 2, we state some
important properties of the exact solution. The finite difference discretization
is introduced in Section 3. In Section 4, we present the error analysis for the
approximate solution. Uniform convergence is proved in the discrete maximum
norm. In Section 5, we formulate the iterative algorithm for solving the discrete
problem and present numerical results which validate the theoretical analysis
computationally. The paper ends with a summary of the main conclusions.

Henceforth, C denotes a generic positive constant independent of ε and the
mesh parameter. Some specific, fixed constants of this kind are indicated by
subscripting C. For any continuous function g(x) denote norms which

‖g‖∞ ≡ ‖g‖∞,Ω̄ = max
06x6l

|g(x)| , ‖g‖1 ≡ ‖g‖1,Ω =

∫ l

0

|g(x)| dx,

‖g‖∞,k ≡ ‖g‖∞,Ω̄k , ‖g‖1,k ≡ ‖g‖1,Ωk , k = 0, 1, 2.

2 Properties of exact solution

Firstly, we show some properties of the solution of (1.1)–(1.2), which are needed
in later sections for the analysis of appropriate numerical solution.

Lemma 1. Let a(x) ∈ C(Ω̄), f(x, ·, ·) ∈ C1(Ω̄,R2), ϕ(x) ∈ C(Ω0) and

ρ := α−1c∗(l − r) < 1, (2.1)

then for the solution u(x) of the problem(1.1)–(1.2) the following estimates
hold:

‖u‖∞ 6 C0, |u′ (x)| 6 C
(
1 + e−

αx
ε /ε

)
, 0 6 x 6 l,

where F (x) = −f(x, 0, 0),

C0 = (|ϕ(0)|+ |A|+ α−1 ‖F‖1 + α−1c∗ ‖ϕ‖1,0)(1− ρ)−1,

providing that ∂f
∂x (x, u, v) is bounded for x ∈ Ω̄ and |u| , |v| 6 C0.

Proof. We rewrite (1.1) in the form

εu′′ + a (x)u′ − b (x)u+ c(x)u(x− r) = F (x) ,

with

b(x) =
∂f

∂u
(x, ũ, ṽ), c(x) =

∂f

∂v
(x, ũ, ṽ),

ũ = γu, ṽ = γu(x − r), (0 < γ < 1) -intermediate values. After using the
Maximum Principle for the differential operator L∗u = εu′′+a (x)u′− b (x)u,
with first type boundary conditions, we get |u(x)| 6 w(x), where w(x) is the
solution of the boundary value problem:

− εw′′ − a (x)w′ = |c(x)u(x− r)| − |F (x)| ,
|w(0)| = |ϕ(0)| , |w(l)| = |A| .

The further analysis is almost identical to that of [1]. ut
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Lemma 2. Let a(x) ∈ C1(Ω̄), f(x, ·, ·) ∈ C1(Ω̄,R2), ϕ(x) ∈ C1(Ω0) and con-
dition (2.1) be satisfied. Then

|u′′ (x)| 6

{
C
(
1 + 1

ε2 e
−αxε

)
, x ∈ Ω1,

C
(

1 + x−r
ε2 e

−α(x−r)
ε

)
, x ∈ Ω2,

(2.2)

providing that ∂f
∂x (x, u, v) is bounded for x ∈ Ω̄.

Proof. Differentiating (1.1), we get

εu′′′ (x) + a (x)u′′ (x) = Φ (x) , (2.3)

with

Φ (x) = −∂f
∂x

(x, u(x), u(x− r))− [a′(x) +
∂f

∂u
(x, u(x), u(x− r))]u′ (x)

−∂f
∂v

(x, u(x), u(x− r))u′ (x− r) .

Hence for x ∈ Ω1 we have

u′′ (x) = u′′ (0)e−
1
ε

∫ x
0
a(η)dη +

1

ε

∫ x

0

Φ (ξ) e−
1
ε

∫ x
ξ
αdηdξ,

|u′′ (x)| 6 |u′′ (0)| e− 1
ε

∫ x
0
αdη

+
1

ε

∫ x

0

∣∣∣∣−∂f∂ξ (ξ, u(ξ), u(ξ − r))− [a′(ξ) +
∂f

∂u
(ξ, u(ξ), u(ξ − r))]u′ (ξ)

−∂f
∂v

(ξ, u(ξ), u(ξ − r))u′ (ξ − r)
∣∣∣∣ e− 1

ε

x∫
ξ

αdη

dξ. (2.4)

Moreover, from (1.1) it follows that

|u′′ (0)| 6 1

ε
[|f(0, u(0), u (−r))|+ |a (0)| |u′ (0)|] .

This, together with Lemma 1 implies that

|u′′ (0)| 6 C/ε2. (2.5)

From the (2.4), (2.5), with the use of (1) we derive

|u′′ (x)| 6 C

ε2
e−

αx
ε +

1

ε
C

∫ x

0

(1 + |u′ (ξ)|+ |u′ (ξ − r)|)e−
1
ε

∫ x
ξ
αdηdξ

6
C

ε2
e−

αx
ε +

1

ε
C

∫ x

0

(1+
1

ε
e−

αξ
ε )e−

α(x−ξ)
ε dξ+

1

ε
C

∫ x

0

|ϕ′ (ξ−r)| e−
α(x−ξ)

ε dξ

6 C
(

1 +
1

ε2
e−

αx
ε +

1

ε

∫ x

0

(
1

ε
e−

αξ
ε )e−

α(x−ξ)
ε dξ

)
, x ∈ Ω1,

which leads to first bound in (2.2).
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Further, for x ∈ Ω2, from (2.3) we obtain

u′′ (x) = u′′ (r)e−
1
ε

∫ x
r
a(η)dη +

1

ε

∫ x

r

Φ (ξ) e−
1
ε

∫ x
ξ
αdηdξ,

|u′′ (x)| 6 |u′′ (r)| e− 1
ε

∫ x
r
αdη

+
1

ε

∫ x

r

∣∣∣∣−∂f∂ξ (ξ, u(ξ), u(ξ−r))−[a′(ξ)+
∂f

∂u
(ξ, u(ξ), u(ξ − r))]u′ (ξ)

−∂f
∂v

(ξ, u(ξ), u(ξ − r))u′ (ξ − r)
∣∣∣∣ e− 1

ε

∫ x
ξ
αdηdξ. (2.6)

From this by the first bound in (2.2) we can write

|u′′ (r)| 6 C
(
1 + ε−2e−

αr
ε

)
,

so|u′′ (r)| 6 C. After inserting this estimate and Lemma 1 in (2.6), we arrive
at

|u′′ (x)| 6 Ce−
α(x−r)

ε +
1

ε
C

∫ x

r

(1 + |u′ (ξ)|+ |u′ (ξ − r)|)e−
α(x−ξ)

ε dξ

6 C(1 +
1

ε

∫ x

r

(
1

ε
e−

αξ
ε +

1

ε
e−

α(ξ−r)
ε )e−

α(x−ξ)
ε dξ)

= C(1 +
1

ε

∫ x

r

(
1

ε
e−

α(ξ−r)
ε )e−

α(x−ξ)
ε dξ),

which implies the second bound in (2.2). ut

3 Discrete problem

In this section, we will develop the new finite difference schemes for (1.1)–(1.2).
Let ωN be a nonuniform mesh on Ω :

ω̄N = {0 = x0 < x1 < . . . < xN0
< . . . < xN−1 < xN = l, hi = xi − xi−1}.

For simplicity, we will suppose that N/2 = N0 (or l = 2r) is integer, i.e.,
xN0

= r. Before describing our numerical method, we introduce some notation
for the mesh functions. For any mesh function g (x) defined on ω̄N we use

gi = g(xi), gx̄,i =
gi − gi−1

hi
, gx,i =

gi+1 − gi
hi+1

, gx̄x̂,i =
gx,i − gx̄,i

~i
,

~i =
hi+hi+1

2
, ‖g‖∞ ≡ ‖g‖∞,ω̄N = max

06i6N
|gi| , ‖g‖1 = ‖g‖1,ωN =

N−1∑
i=1

~i |gi|.

The approach of generating difference method is through the integral identity

~−1
i

xi+1∫
xi−1

Lu(x)ψi(x)dx = 0, 0 < i < N
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with the linear basis functions

ψi(x) =


x−xi−1

hi
, xi−1 < x < xi,

xi+1−x
hi+1

, xi < x < xi+1,

0, x /∈ (xi−1, xi+1).

We easily obtain

εux̄x̂,i + aiux,i + f(xi, ui, ui−N0
) +Ri = 0, i = 1, 2, . . . , N − 1,

with remainder term
Ri = R

(1)
i +R

(2)
i +R

(3)
i , (3.1)

R
(1)
i = ai[~−1

i

∫ xi+1

xi−1

ψi(x)u′(x)dx− ux,i],

R
(2)
i = ~−1

i

∫ xi+1

xi−1

[a(x)− a(xi)]u
′(x)ψi(x)dx,

R
(3)
i = ~−1

i

∫ xi+1

xi−1

dxψi(x)

∫ xi+1

xi−1

d

dx
f(ξ, u(ξ), u(ξ − r))[T0(x− ξ)−T0(xi−ξ)]dξ,

(Tn(λ) = λn/n!, λ > 0; Tn(λ) = 0, λ < 0).
Based on foregoing, we propose the following difference scheme for approx-

imating (1.1)–(1.2):

`yi ≡ εyx̄x̂,i + aiyx,i + f(xi, yi, yi−N0) = 0, 0 < i < N, (3.2)

yi = ϕi, −N0 6 i 6 0, yN = B. (3.3)

The difference scheme (3.2)–(3.3), in order to be ε-uniform convergent, we will
use the special nonuniform mesh on ωN , with Shishkin’s transition point.
For the even number N0, the piecewise uniform mesh ωN,1 divides each of the
interval [0, σ] and [σ, r] into N0/2 equidistant subintervals, where the transition
point σ, which separates the fine and coarse portions of the mesh is obtained
by taking

σ = min
{
r/2, α−1ε lnN0

}
,

so ωN = ωN,1 ∪ ωN,2,

ωN,1=

{
xi = ih(1), i = 1, 2, . . . , N0/2, h

(1) = 2σ/N0;
xi = σ+(i−N0/2)h(2), i=N0/2+1, . . . , N0, h

(2)=2(r − σ)/N0

}
,

ωN,2 =
{
xi = r + (i−N0)h(3), i = N0 + 1, . . . , N − 1, h(3) = r/N0

}
.

In the rest of the paper we only consider this mesh.

4 Uniform error estimates

In order to investigate the convergence of present method, note that the error
function z = y − u, x ∈ ω̄N is the solution of the discrete problem

εzx̄x̂,i + aizx,i + f(xi, yi, yi−N0)− f(xi, ui, ui−N0) = Ri, 0 < i < N, (4.1)

zi = 0, −N0 6 i 6 0 , zN = 0, (4.2)

where the truncation error Ri is given by (3.1).

Math. Model. Anal., 23(4):568–581, 2018.
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Lemma 3. If a(x) ∈ C1(Ω̄), f(x, ·, ·) ∈ C1(Ω̄,R2) and ϕ(x) ∈ C1(Ω0), then
for the truncation error Ri we have

‖R‖1 6 CN
−1
0 lnN0. (4.3)

Proof. We will estimate R
(k)
i (k = 1, 2, 3) separately. Let us first proves bound

for R
(1)
i . Using interpolating quadrature formula on interval (xi−1, xi+1) with

respect to points xi, xi+1 with remainder term in integral form we can write

u(x) = h−1
i+1(xi+1−x)ui + h−1

i+1(x−xi)ui+1+r(x) = ui+(x−xi)ux,i+r(x),

r(x) =

∫ xi+1

xi−1

[T1(x− ξ)− h−1
i+1(xi+1 − x)T1(xi − ξ)

−h−1
i+1(xi+1 − ξ)(x− xi)]u′′(ξ)dξ

and from here it follows that

u′(x) = ux,i+

∫ xi+1

xi−1

[T0(x−ξ) + h−1
i+1T1(xi − ξ)− h−1

i+1(xi+1 − ξ)]u′′(ξ)dξ.

Multiplying it by ψi(x) and integrating over (xi−1, xi+1) we obtain

~−1
i

∫ xi+1

xi−1

ψi(x)u′(x)dx = ux,i + ~−1
i

∫ xi+1

xi−1

dxψi(x)

∫ xi+1

xi−1

[T0(x− ξ)

+ h−1
i+1T1(xi − ξ)−h−1

i+1(xi+1−ξ)]u′′(ξ)dξ = ux,i + ~−1
i

∫ xi+1

xi−1

Φi(ξ)u
′′(ξ)dξ,

where

Φi(ξ) =

∫ xi+1

xi−1

ψi(x)[T0(x− ξ) + h−1
i+1T1(xi − ξ)− h−1

i+1(xi+1 − ξ)]dx

=

{
− (ξ−xi−1)2

2hi
, ξ < xi

− (xi+1−ξ)
2hi+1

(ξ − xi−1), ξ > xi.

That is

R
(1)
i = ai~−1

i

∫ xi+1

xi−1

Φi(ξ)u
′′(ξ)dξ. (4.4)

We consider first the case σ = r/2, and so α−1ε lnN0 > r/2. Then h(1) =
h(2) = h(3) = rN−1

0 and∣∣∣R(1)
i

∣∣∣ 6 C ∫ xi+1

xi−1

|u′′(x)| dx, 1 6 i 6 N − 1.

Therefore∥∥∥R(1)
∥∥∥

1
6 CN−1

0

∫ l

0

|u′′(x)| dx

6 C(N−1
0 +N−1

0

∫ r

0

1

ε2
e−

αx
ε dx+N−1

0

∫ l

r

x− r
ε2

e−
α(x−r)

ε dx)
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and using the inequality te−t 6 e−
t
2 (t > 0) for t = (x− r)/ε we get∥∥∥R(1)

∥∥∥
1
6 C(N−1

0 +N−1
0

∫ r

0

1

ε2
e−

αx
ε dx+N−1

0

∫ l

r

1

ε
e−

α(x−r)
2ε dx)

6 C(N−1
0 +N−1

0 /ε).

Thereby, for σ = r/2 ∥∥∥R(1)
∥∥∥

1
6 CN−1

0 lnN0. (4.5)

We now consider the case σ = α−1ε lnN0. For 1 6 i 6 N0/2− 1 from (4.4) we
have ∣∣∣R(1)

i

∣∣∣ 6 C ∫ xi+1

xi−1

|u′′(x)| dx 6 C(h(1) +
1

ε2

∫ xi+1

xi−1

e−
αx
ε dx).

Therefore

N0/2−1∑
i=1

~i
∣∣∣R(1)

i

∣∣∣ 6 C(h(1) +
h(1)

ε2

∫ xN0/2−1

x0

e−
αx
ε dx)

6 C(h(1) + α−1h
(1)

ε
(1− e−

αxN0/2−1
ε )) 6 C(h(1) +

h(1)

ε
) = O(N−1

0 lnN0).

For N0/2, using the representation (4.4) and performing summation by parts,
we obtain

~N0/2

∣∣∣R(1)
N0/2

∣∣∣ 6 C(N−1
0 +

1

ε2

∫ xN0/2+1

xN0/2−1

∣∣ΦN0/2

∣∣ e−αxε dx)

since ΦN0/2 = 0 both xN0/2−1 and xN0/2+1 points

~N0/2

∣∣∣R(1)
N0/2

∣∣∣ 6 C(N−1
0 +

1

ε

∫ xN0/2

xN0/2−1

x− xN0/2

hN0/2
e−

αx
ε dx

+
1

ε

∫ xN0/2+1

xN0/2

~N0/2

hN0/2+1
e−

αx
ε dx) 6 C(N−1

0 +
1

ε

∫ xN0/2+1

xN0/2−1

e−
αx
ε dx)

6 C(N−1
0 +

α−1ε

ε
(e−

αxN0/2−1
ε − e−

αxN0/2+1
ε ))

6 C(N−1
0 + α−1e−

αxN0/2−1
ε ),

from which, clearly

~N0/2

∣∣∣R(1)
N0/2

∣∣∣ 6 CN−1
0 .

For N0/2 + 1 6 i 6 N0 − 1 we have

N0−1∑
i=N0/2+1

~i
∣∣∣R(1)

i

∣∣∣ 6 C(h(2) +
h(2)

ε2

∫ xN0−1

xN0/2+1

e−
αx
ε dx)

6 C(h(2) +
h(2)

ε
e−

αxN0/2
+h(2)

ε ) 6 C(h(2) +N−1
0

h(2)

ε
e−

h(2)

ε ).
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Using the inequality te−t 6 e−t/2 (t > 0) for t = h(2)/ε and taking into account
that h(2) 6 2rN−1

0 , we find that

N−1∑
i=N0/2+1

~i
∣∣∣R(1)

i

∣∣∣ 6 CN−1
0 .

For N0 6 i 6 N − 1, evidently

N−1∑
i=N0

~i
∣∣∣R(1)

i

∣∣∣ 6 CN−1
0 . (4.6)

Consequently, (4.5)–(4.6) imply the desired estimate∥∥∥R(1)
∥∥∥

1
6 CN−1

0 lnN0, (4.7)

which will be held true for any ε > 0.
Next, for any ε > 0 and a ∈ C1(Ω) we have

∥∥∥R(2)
∥∥∥

1
=

N−1∑
i=1

~i
∣∣∣R(2)

i

∣∣∣ 6 CN−1
N∑
i=1

∫ xi+1

xi−1

|u′(x)| dx = CN−1

∫ l

0

|u′(x)| dx

6 CN−1

∫ l

0

1

ε
e−

αx
ε dx = CN−1α−1(1− e−αlε ) = O(N−1).

Also, under f ∈ C1(Ω̄,R2) and from R
(3)
i taking into account that

~−1
i

∫ xi+1

xi−1
ψi(x)dx = 1 we get

∣∣∣R(3)
i

∣∣∣ ≤ C(

xi+1∫
xi−1

∣∣∣∣∂f(ξ, u(ξ), u(ξ − r))
∂ξ

∣∣∣∣ dξ +

xi+1∫
xi−1

∣∣∣∣∂f∂u du(ξ)

dξ
+
∂f

∂v

du(ξ − r)
dξ

∣∣∣∣ dξ)
≤ C[~i +

∫ xi+1

xi−1

(|u′(ξ)|+ |u′(ξ − r)|)dξ].

Hence,

∥∥∥R(3)
∥∥∥

1
=

N−1∑
i=1

~i
∣∣∣R(3)

i

∣∣∣ 6 C N−1∑
i=1

[~2
i + ~i

∫ xi+1

xi−1

(|u′(x)|+ |u′(x− r)|)dx]

6 CN−1(1 +

∫ l

0

|u′(x)| dx+

∫ l

0

|u′(x− r)| dx)

= CN−1(2 +

∫ 0

−r
|ϕ′(s)| ds+

∫ l−r

0

|u′(s)| ds)

6 CN−1(2 + ‖ϕ‖1,0 + α−1(1− e−
α(l−r)
ε )) = O(N−1). (4.8)

Substituting the estimates (4.7)–(4.8) into (3.1), we arrive at (4.3). ut
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Lemma 4. Let zi be the solution (4.1)–(4.2) and (2.1) holds true. Then

‖z‖∞,ω 6 ‖R‖1,ω . (4.9)

Proof. (4.1) can be rewritten as

εzx̄x̂,i + aizx,i − b̃izi + c̃izi−N0
= Ri , 0 < i < N,

where

b̃i =
∂f

∂u
(xi, ỹi, ỹi−N0

), c̃i =
∂f

∂v
(xi, ỹi, ỹi−N0

),

ỹi, ỹi−N0
intermediate points called for by the mean value theorem.

Here we use the discrete Green’s function Gh(xi, ξj) for the operator

Lhzi := −εzx̄x̂,i − aizx,i, 1 6 i 6 N − 1,

z0 = zN = 0.

As a function of xi for fixed ξj this function is being defined as

LhGh(xi, ξj) = δh(xi, ξj), xi ∈ ω, ξj ∈ ω,
Gh(0, ξj) = Gh(l, ξj), ξj ∈ ω,

where δh(xi, ξj) = ~−1
i δij and δij is the Kronecker delta. Using Green’s func-

tion, we can write down the following relation for solution of problem (4.1)–(4.2)

zi =

N−1∑
j=1

~iGh(xi, ξj)(c̃izj−N0 −Rj), xi ∈ ω. (4.10)

In the analogous manner as in [1, 2] one can show that 0 6 Gh(xi, ξj) 6 α−1.
Then from (4.10) it follows that

‖z‖∞,ω 6 α
−1{c∗

N−1∑
j=1

~i|zj−N0
|+ ‖R‖1,ω}

and after replacing j −N0 = k, we have

‖z‖∞,ω 6 α
−1c∗

N−N0−1∑
k=1−N0

~i|zk|+ α−1 ‖R‖1,ω = α−1c∗
N−N0−1∑
k=1

~i|zk|

+ α−1 ‖R‖1,ω 6 α
−1c∗(N −N0 − 1)~i ‖z‖∞,ω + α−1 ‖R‖1,ω

6 ρ ‖z‖∞,ω + α−1 ‖R‖1,ω ,

which implies validity of (4.9). ut

Combining the previous lemmas yield the main result of the paper.

Theorem 1. Let u be the solution of (1.1)–(1.2)and y – the solution of (3.2)–
(3.3). Then under hypotheses Lemmas 3 and 4

‖y − u‖∞,ω̄N 6 CN
−1
0 lnN0.

Math. Model. Anal., 23(4):568–581, 2018.
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5 Algorithm and numerical results

In this section, we shall propose the following iterative technique for solv-
ing problem (3.2)–(3.3). In addition, we demonstrate the effectiveness of the
present method by applying it to an example of problem (1.1)–(1.2).

εy
(n)
x̄x̂,i + aiy

(n)
x,i + f(xi, y

(n−1)
i , y

(n−1)
i−N0

)

+
∂f

∂y
(xi, y

(n−1)
i , y

(n−1)
i−N0

)[y
(n)
i − y(n−1)

i ] = 0, 0 < i < N,

y
(n)
i = ϕi , −N0 6 i 6 0 , y

(n)
N = A,

n = 1, 2, . . . ; y
(0)
i given 0 < i < N .

Now, we consider the test problem:

εu′′(x) + 32(x2 + 9)u′(x) = 3x2 + e−u(x) + tanh[x+ u(x− 1)], 0 < x < 2,

subject to the interval and boundary conditions,

u(x) = x2, −1 6 x 6 0; u(2) = 1.

The initial guess in the iteration process is y
(0)
i = (1 − xi)2 and the stopping

criterion is
max
i
|y(n)
i − y(n−1)

i | 6 10−5.

The exact solution of our test problem is unknown. Therefore we use the double
mesh principle to estimate the errors and compute the experimental rates of
convergence in our computed solutions. That is, we compare the computed
solutions with the solutions on a mesh that is twice as fine (see [3, 5, 8, 11]).
The error estimates obtained in this way are denoted by:

eNε = max
i

∣∣∣yε,Ni −yε,2N2i

∣∣∣ ,
the convergence rates are pNε = log2

(
eNε /e

2N
ε

)
. Approximations to the ε-

uniform rates of convergence are estimated byeN = maxε e
N
ε and the corre-

sponding ε-uniform convergence rates are computed using the formula

pN = log2

(
eN/e2N

)
.

The values of ε for which we solve the test problem are ε = 2−i, i = 4, 8, . . . , 24.
The resulting errors eN and the corresponding numbers pN which are obtained
after only a few iterations are listed in Table 1.

6 Conclusions

In this paper, we have developed a finite difference method for solving the sin-
gularly perturbed boundary-value problem for a nonlinear second order delay
differential equation. To solve this problem, a difference scheme on a piecewise
uniform mesh was presented. Almost first order convergence, in the discrete
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Table 1. Computed errors and convergence rates of the test problem

ε N0 = 128 N0 = 256 N0 = 512 N0 = 1024 N0 = 2048

2−4 0.0068089 0.0038818 0.0021810 0.0012010 0.0006379
0.81 0.83 0.86 0.91

2−8 0.0068366 0.0038578 0.0021378 0.0011604 0.0006123
0.83 0.85 0.88 0.92

2−12 0.0068922 0.0038860 0.0021504 0.0011642 0.0006115
0.83 0.85 0.89 0.93

2−16 0.0068917 0.0038855 0.0021499 0.0011637 0.0006110
0.83 0.85 0.89 0.93

2−20 0.0068917 0.0038855 0.0021499 0.0011637 0.0006110
0.83 0.85 0.89 0.93

2−24 0.0068917 0.0038855 0.0021499 0.0011637 0.0006110
0.83 0.85 0.89 0.93

eN 0.0068922 0.0038860 0.0021810 0.0012010 0.0006379
pN 0.83 0.83 0.86 0.91

maximum norm, independently of the perturbation parameter was obtained.
Furthermore, the approximate errors and the rates of convergence for test prob-
lem was computed for different values of ε and N0 in Table 1. Numerical results
were carried out to show the efficiency and accuracy of the method. Theoretical
results represent undergoing more complicated delay differential problems.
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