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Abstract. The three natural modifications of the known mathematical macroe-
conomics model of macroeconomics are studied in which a delay factor is presumed.
This led to the replacement of the ordinary differential equation, which cannot exhibit
periodic cycles on the equations with a deviating argument (functional-differential
equations). It was possible to show the existence of periodic solutions that can and
are intended to describe the periodic cycles in the market economy in two of the three
variants of such changes in the classical form of the model.

The mathematical portion is based on the application of the modern theory of
dynamical systems with an infinite-dimensional space of initial conditions. This
will allow us to apply the Andronov-Hopf Theorem for equations with a deviating
argument in such a form that the parameters of the cycles are located. We will
also apply the well-known Krylov-Bogolyubov algorithm that is extended to infinite-
dimensional dynamical systems that is used and reduces the problem to the analysis of
the finite-dimensional system of ordinary differential equations-the normal Poincare-
Dulac form.

Keywords: Solow model, functional-differential equations, stability, bifurcations, normal

form, asymptotic formulas.
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1 Introduction

In macroeconomics, there are a large number of mathematical models that are
traditionally considered classical and basic. Traditionally among them, a math-
ematical model proposed by the Nobel Prize winner in economics R. M. Solow

�
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[21] (see also [22]). This model is usually called the Solow model, less often
Solow-Swan.

This model describes the dynamics of the variable p = p(τ), where τ is
time. This variable is frequently called the variable capital – labor in economic
literature [2,3,4,5,23,24,25]. It is usually defined as the ratio p = K/L, where
K = K(τ) denotes the physical capital, and L = L(τ) denotes the number of
people employed in the economy. For example, recall in [25], the dynamics of
the variable p = p(τ) can be described by the following equation

p′ = −αp+ βpk, (1.1)

where α, β, k are positive constants.
Note that a different version of such an equation is possible with a more

general form of the right-hand side (see [23,25])

p′ = −αp+ f(p),

where f(p) is a monotonically increasing convex function. In our case, f(p) =
pk and if satisfies the necessary requirements if k ∈ (0, 1).

After replacements (normalizations)

τ = γ0t, p = γ1x, γ0α = 1, βγ0γ
k−1
1 = 1,

γ0 = 1/α, γ1 =
(
α/β

)1/(k−1)
, β, γ0, γ1 > 0.

Equation (1.1) acquires the following form:

ẋ = −x+ xk, x = x(t). (1.2)

The first terms on the right-hand side of equations (1.1)–(1.2) are responsible
for the depreciation of the capital/labour stock. The second terms are propor-
tional to the gross investment. Next we will consider equation (1.1) for the
normalized function x(t) > 0, via equation (1.2).

Observe that equation (1.2) has a unique positive equilibrium state x(t) = 1
if k 6= 1. Then for k ∈ (0, 1), this equilibrium state is globally asymptotically
stable (all solutions of the equation (1.2) with positive initial conditions con-
verge to a given equilibrium position).

In this particular model, it is usually assumed that k ∈ (0, 1) is a stable
economic equilibrium x = 1. Notice that when k ∈ (1,∞), the positive equi-
librium state x = 1 is unstable. In the view of most economists, this option of
choosing k is less attractive [23,25]. For k = 1, we obtain a completely inconsis-
tent version of equation (1.2) (ẋ = 0). We also assume that for all k, equation
(1.1) cannot have stationary solutions with the exception of the equilibrium
states. Hence this mathematical model does not quite adequately describe the
real economic processes, for which, of course, periods of ups and downs are
the characteristic. As a result, equation (1.2) needs modifications. The most
natural method is based on the consideration of the delay factor characteristic
for economic processes in a market economy (see [2, 3, 5, 15,16,18,19,23,24]).

In this paper, we will show that the assumption of the delay factor in the
Solow model leads to a meaningful change in the dynamics of the solutions and
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makes it possible to isolate the range of the parameters of the problem under
which the periodic cycles exist. From a logical point of view, there are three
options for including the lag factor.

The first option is the introduction of delay in the term responsible for the
disposal of funds. This option leads to the necessity of analyzing the following
equation:

ẋ = −y + xk, k ∈ (0, 1), (1.3)

where y = y(t) = x(t− h), h > 0. This option is quite sustainable from an eco-
nomic point of view as it is quite natural to assume that the rate of retirement
of fixed assets (depreciation) depends on their value at the previous point in
time and on their value during the previous time.

The second option is the introduction of lag involves in the analysis of the
following equation:

ẋ = −x+ yk, (1.4)

where y = x(t − h). The delay is introduced into the second term that is in
charge of the investment.

Finally, it is possible that the delay is introduced into both terms, which
produces the following equation:

ẋ = −y + yk, (1.5)

where as previously y = x(t− h). Naturally, we see that h > 0.
If we supplement equations (1.3)–(1.5) with the initial condition

x(t) = ϕ(t), (1.6)

where the given function x(t) ∈ C[−h, 0] to the space of continuous functions
defined on [−h, 0], then we obtain three Cauchy problems: (1.3), (1.6); (1.4),
(1.6); (1.5), (1.6). Each of them generates a local semiflow or in another words
a dynamical system in the phase space of solutions.

Observe that equation (1.5) has an equilibrium state x(t) = 1. In the next
section, we will address the stability question. Equation (1.5) can be rewritten
in the following form:

u̇ = −v + kv +
k(k − 1)

2
v2 +

k(k − 1)(k − 2)

6
v3 + o(v3), (1.7)

after replacement which is acquired from equation (1.5) we get

x = 1 + u, y = 1 + v, u = u(t), v = v(t) = u(t− h),

and applying the Taylor’s formula. Analogous substitutions reduce equation
(1.3) to the following form:

u̇ = −v + ku+
k(k − 1)

2
u2 +

k(k − 1)(k − 2)

6
u3 + o(u3), (1.8)

and equation (1.4) can be replaced by the following substitution:

u̇ = −u+ kv +
k(k − 1)

2
v2 +

k(k − 1)(k − 2)

6
v3 + o(v3). (1.9)
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Notice that all three equations have a zero equilibrium state corresponding to
the equilibrium states x = 1 of the original equations (1.3)–(1.5). Now we will
consider the equations (1.7)–(1.9) for which the structure of the neighborhood
of the zero equilibrium state will be studied. In the next section, we will review
the stability of the zero equilibrium solution for all three previous equations
with a deviating argument.

2 Analysis of linearized equations

First of all, we will address the stability question of the zero equilibrium state of
equation (1.7). To address this question, the analysis of the linearized equation
(1.7) will be necessary. In this case we acquire the following equation:

u̇ = −v + kv. (2.1)

In fact, it is well known [7] that stability of solutions of the linear differential
equation (2.1) can be reduced to an analysis of the characteristic equation,
which in this case exhibits the following form:

λ = (k − 1) exp(−λh). (2.2)

Observe when h = 0 then we have the root λ = k− 1 < 0. To find the positive
minh = H for which roots with Reλ = 0 emerge in Equation (2.2). The case
when λ = 0 is not possible for any h. Indeed, by substituting λ = 0 in the
characteristic equation leads to the equality k − 1 = 0, k 6= 1 (k ∈ (0, 1)).

Consequently, the critical case in the stability problem is possible. In fact,
as follows: for the corresponding value h, the stability spectrum (the set of
roots of the characteristic equation (2.2)) contains the pair of purely imaginary
roots ±iσ, where σ > 0.

The corresponding pairs (h, σ) are defined as solutions of the system

(k − 1) cosσh = 0, σ = (1− k) sinσh.

In this case, k − 1 6= 0 (k ∈ (0, 1)). Therefore, we finally obtain a system for
determining H and σ already of the following form

cosσh = 0, σh = (1− k)h sinσh (2.3)

or after relabeling ω = σh, the system (2.3) can be written in the following
form

cosω = 0, (1− k)h sinω = ω. (2.4)

Observe that system (2.4) has the following set of solutions

ωm =
π

2
+ πm, hm =

ωm
(1− k) sinωm

, m = 0,±1,±2, . . .

The smallest H = min{hm} > 0 is possible if

ω =
π

2
, H =

π

2(1− k)
, σ = 1− k.
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Applying this terminology for H = π
2(1−k) , the stability spectrum contains a

pair of pure imaginary roots λ1,2 = ±iσ and for the remaining λk the inequality
Reλk < 0 is valid.

Now let h = H(1 + γε). Then from the characteristic equation (2.2) we

obtain λ′0 = dλ(ε)
dε |ε=0 = τ ′0 + iσ′0, and the equality

λ′0 = −iσHλ′0 +Hσ2γ,

which allows us to determine λ′0. In our case we acquire the following equality:

τ ′0 =
2π(1− k)

4 + π2
γ.

Note that if we choose the constant γ = 1, then the inequality τ ′0 > 0 will hold
true. In this case, as h increases, the roots ±iσ go to the right half-plane of
the complex plane. Consequently, the zero solution of the auxiliary equation
(1.7) loses its stability; in particular, the existence of a stable cycle is possible.
The last question will be addressed in the next section.

Analogous constructions must also be implemented for equations (1.8) and
(1.9). Thus, for equation (1.8) we acquire the following version of the linearized
equation:

u̇ = −v + ku. (2.5)

The stability question of the solutions of Equation (2.5) reduces to an analysis
of the following characteristic equation:

λ = − exp(−λh) + k. (2.6)

When h = 0, we have the root λ = k − 1 < 0. To find the positive minh = H,
for which roots with Reλ = 0 emerge in equation (2.6). The case λ = 0 is
impossible for any h. Therefore, the critical case in the stability problem is
possible if the corresponding value h, the stability spectrum (the set of roots of
the characteristic equation (2.6)) has a pair of pure imaginary roots ±iσ, where
σ > 0. The corresponding pairs (h, σ) are defined as solutions of the following
system

0 = k − cosσh, σ = sinσh.

Now let σh = ω (h 6= 0). Then ωm = arccos k + 2πm, hm =
ωm

sinωm
, or ωp =

− arccos k + 2πp, hp =
ωp

sinωp
, where m, p ∈ Z is the set of integers. An

elementary analysis of the previous two equalities confirms that the smallest
H = h > 0 is defined by the following equality:

H =
arccos k√

1− k2
=

a√
1− k2

, a = arccos k.

Moreover, the corresponding σ =
√

1− k2 > 0. Naturally, for h = H there is a
conjugate root −iσ.

We will show that with increasing h, i.e. for h > H the roots ±iσ of the
characteristic equation go to the right half-plane. Then to this end, we set
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h = H(1 + ε), where ε is a sufficiently small parameter. For such h = h(ε) we
acquire the following characteristic equation

λ(ε) = k − exp(−λ(ε)(1 + ε)H).

From where we then determine

λ′0 =
dλ(ε)

dε
|ε=0 =

iσH(k − iσ)

(1−Hk) + iHσ

and, consequently, we obtain that Reλ′0 =
Hσ2

(1−Hk)2 +H2σ2
> 0, with in-

creasing h (h > H), the roots ±iσ go to the right half-plane Reλ > 0. We
emphasize that for small ε the remaining roots of the characteristic equation
lie in the half-plane Reλ ≤ −γ0 < 0, where γ0 is independent of ε. This result
follows from the results presented in the monographs [1, 7].

During the analysis of the linearized equation (1.9), we acquire the following
characteristic equation

λ = −1 + k exp(−λh), k ∈ (0, 1).

Note when h = 0, we get λ = −1 + k < 0. We show that this equation cannot
have roots with Reλ = 0. In fact, the root λ = 0 is impossible, as we obtain
the equality k = 1. The previous equation cannot have roots in the form ±iσ.
Indeed, this assumption leads us to the following system

cosσh = 1/k, k sinσh = −σ.

There is no solution as 1/k > 1 by assumption. Hence it follows that the
characteristic equation does not have roots with Reλ > 0. Therefore as a result,
it is shown that further study of equation (1.9) is unsubstantiated. Such an
option of introducing delay does not bring new effects in comparison with the
analysis of the ordinary differential equation (1.2).

In the next two sections, equations (1.7) and (1.8) will be analyzed in a
nonlinear formulation on the basis of the application of the Andronov-Hopf
theorem for equations with deviating argument. The proof of the Andronov-
Hopf theorem itself for equations with a deviating argument can be found
in [7, 12, 17]. Our goals of this paper are to present a modern version of the
presentation of this question using the modified Krylov-Bogolyubov algorithm
and the theory of normal forms of Poincare-Dulac. This method of analyzing
macroeconomic models was applied in [15,16,18,19].

3 Periodic solutions

Our intents of this section are to study the existence and stability of cycles of
equation (1.7). The existence and stability of cycles of equation (1.8) will be
in the next section. In equation (1.6) we set:

t =
h(ε)

H
Θ, h(ε) = H(1 + γε), γ ∈ R, ε ∈ (0, ε0), 0 < ε0 << 1, H =

π

2(1− k)
.
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Notice that Θ is a new normalized time. As a result of such a time change,
equation (1.7) is rewritten in the form

u′ = (1 + γε)[−v + kv +
k(k − 1)

2
v2 +

k(k − 1)(k − 2)

6
v3 + o(v3)], (3.1)

where u = u(Θ), v = u(Θ −H), and the prime in the equation (3.1) denotes
the derivative with respect to the variable Θ.

In the neighborhood of the zero equilibrium state equation (3.1) has a two-
dimensional smooth invariant manifoldM2(ε) [6,8,14]. In this case, all solutions
of equation (3.1) approach it with the velocity of the exponent with time if
their initial conditions are small in the sense of the norm of the phase space
of solutions. Recall that in our case this is C[−H, 0] (C[−H, 0]; the space of
continuous functions g(Θ) on [−H, 0] with the norm ||g|| = max

Θ∈[−H,0]
|g(Θ)|),

and the dynamics of the solutions of equation (3.1) is restored after analyzing
the system of two ordinary differential equations - normal form (NF). In the
assumed case, NF can be written in complex form [15,16,18,19]

z′ = (α+ iβ)z + (d+ ic)z|z|2 +O(ε), (3.2)

where α, β, d, c ∈ R. These coefficients can be written out in an explicit form,
which will be done below after the implementation of the algorithm for con-
structing the defining equation, which is commonly called NF. These coeffi-
cients depend on the parameters of equation (3.1). In our case, these are k
and H. For this purpose, recently it has been customary to use the adap-
tation of the Krylov-Bogolyubov algorithm to infinite-dimensional dynamical
systems [15, 16, 18, 19]. In the NF (3.2), z = z(s) is a complex function, and
s = εΘ, ε ∈ (0, ε0). If we assume that the first Lyapunov value d(d 6= 0) is
non-zero a priori, then the solution of Equations (3.1) with initial conditions
in a small neighborhood of the zero solution can be expediently sought in the
following form [15,16,18,19]

u(Θ, ε) = ε1/2u1(Θ, z) + εu2(Θ, z) + ε3/2u3(Θ, z) +O(ε2), (3.3)

where u1(Θ, z) = z(s) exp(iσΘ) + z(s) exp(−iσΘ), z(s) - one of the solutions
of the NF (see Section 3). The sufficiently smooth functions u2(Θ, z), u3(Θ, z)
with respect to the variable Θ have period 2π/σ and in addition we obtain

M±(um) =
σ

2π

∫ 2π/σ

0

um(Θ, z) exp(±iσΘ)dΘ = 0,

for m = 2, 3 and any z(s) is assumed. Note that v(Θ, ε) = u(Θ − H, ε), and
also that O(ε2) denote the function ψ(z, z, ε) for which the estimate

|ψ(z, z, ε)| ≤Mε2[|z|+ |z|],M > 0.

is valid. We substitute the sum (3.3) into Equation (3.1) and equate the co-
efficients for the powers ε, ε3/2. Hence we obtain two linear nonhomogeneous
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delayed differential equations. Thus, to determine u2(Θ, z), we obtain the fol-
lowing equation

∂u2
∂Θ

+ (1− k)v2 = Φ2(Θ, z), (3.4)

where Φ2(Θ, z) = k(k−1)
2 v21 , v2 = u2(Θ − H, z), v1(Θ) = u1(Θ − H). When

deriving the equation for u3(Θ, z), one can note that d
dΘψ(Θ, s) = ∂ψ

∂Θ + ∂ψ
∂s ε.

Therefore, we obtain the following equation

∂u3
∂Θ

+ v3 − kv3 = Φ3(Θ, z), (3.5)

Φ3(Θ, z) = k(k − 1)v1v2 +
k(k − 1)(k − 2)

6
v31 + γ(k − 1)v1

− z′iπ
2

exp(iσΘ) + z′i
π

2
exp(−iσΘ)− z′ exp(iσΘ)− z′ exp(−iσΘ),

z = z(s), σ = 1− k, z′ =
dz

ds
, v1 = −iz exp(iσΘ) + iz exp(−iσΘ).

In the previous formulas we use the equality H = π
2(1−k) , exp(iπ2 ) = i.

Comment.Linear differential equation with a deviating argument

du

dΘ
+ (1− k)u(t−H) = Φ(Θ),

where H =
π

2(1− k)
, Φ(Θ) – a periodic function of the variable Θ with period

2π/σ has periodic solutions with the same period if

M±(Φ(Θ)) =
σ

2π

∫ 2π/σ

0

Φ(Θ) exp(±iσΘ)dΘ = 0.

The equalities of M±(u) = 0 single one such solution.
Therefore, in the case of equation (3.4), when

Φ2(Θ, z) =
k(1− k)

2
[z2 exp(2iσΘ)− 2|z|2 + z2 exp(−2iσΘ)],

the solution of this equation should be selected in the following form

u2(Θ, z) = η2z
2 exp(2iσΘ) + η0|z|2 + η2z

2 exp(−2iσΘ),

where η2 ∈ C, η0 ∈ R. After substituting u2(Θ, z) in the selected form in the
corresponding equation we determine that

η0 = −k, η2 = − k

10
(1 + 2i).

We now analyze the nonhomogeneous differential equation (3.5). From the
solvability conditions for this equation in the class 2π/σ of periodic functions,
we obtain the following equality

k(1− k)

5

[
k − (3k + 5)i

]
z|z|2 − γi(k − 1)z − (1 + i

π

2
)z′ = 0.
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This equation should be transformed to a standard notation for differential
equations by selecting z′. Hence we obtain the following equation:

z′ = (α+ iβ)z + (d+ ic)z|z|2. (3.6)

In our case we get

α = 2πγ
1− k
4 + π2

, β = 4γ
1− k
4 + π2

,

d = −4k(1− k)

5(4 + π2)

[
(
3π

2
− 1)k +

5π

2

]
, c = −4k(1− k)

5(4 + π2)

[
5 + (3 +

π

2
)k
]
.

We emphasize that equation (3.6) is a ”shorter” version of the NF. Note that
for all k under the assumption of the first Lyapunov value d < 0.

Lemma 1. Equation (3.6) has a periodic solution z(s) = ρ exp(iνs), where

ρ =

√
γ 5π

2k

[
( 3π

2 − 1)k + 5π
2

]−1
, ν = β + cρ2, if γ > 0. Moreover, this periodic

solution is stable while the zero solution is unstable. For γ < 0 this equa-
tion has no non-trivial periodic solutions and the zero solution of the NF is
asymptotically stable.

The proof of the lemma is trivial. In fact, similar statements can be found
in many textbooks and monographs (see, for example, [6, 8]).

Now by substituting z(s) = ρ exp(iνs) into Equation (3.6) leads to a system
of algebraic equations for determining ρ and ν

αρ+ dρ3 = 0, ν = β + cρ2.

The first equation of the given system has a non-trivial solution ρ > 0, if α and
d of different signs and only the zero solution if the signs α, d coincide. The
stability analysis of a non-trivial periodic solution is described by the standard
scheme. Now we set z = ρ exp(iνs)(1 + w). The linearized version for the
vector-valued function η = (w1, w2) (w = w1 + iw2) has the following form
η′ = 2Bη, with the following matrix

B =

(
dρ2 0
cρ2 0

)
.

One eigenvalue of the matrix is λ1 = dρ2 < 0, if d < 0 (α > 0) and this is an
eigenvalue of λ1 > 0, if d > 0 (α < 0), and the second eigenvalue of the matrix
is λ2 = 0. The Andronov-Witt theorem implies the validity of the lemma’s
assertion. We emphasize that a simpler version of the proof of the lemma’s
assertion is compared with the earlier papers. The results from [10,11,12,14,17]
simply the validity of the assertion.

Theorem 1. There exists ε0 > 0, such that for all ε ∈ (0, ε0) equation (3.1)
for γ > 0 has a stable (orbitally asymptotically stable) limit cycle corresponding
to the NF cycle with the following asymptotic formula

u∗(Θ, ε) = ε1/2ρ[exp(i(σ + εν)Θ + iϕ) + exp(−i(σ + εν)Θ − iϕ)]

+ ερ2[η2 exp(2i(σ+εν)Θ+2iϕ)+η0+η2 exp(−2i(σ+εν)Θ−2iϕ)] + o(ε),

where ϕ ∈ R and the constants ρ, σ, ν, η0, η2 were indicated earlier.

Math. Model. Anal., 24(2):297–310, 2019.
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These substitutions allow us to transfer the results of the Theorem 1 to
equation (1.5). Now let h = H(1 + ε). Then the periodic solution u∗(Θ, ε)
corresponds to the periodic solution of equation (1.5)

x∗(t, ε) = 1 + u∗

( t

1 + ε
, ε
)

(γ = 1).

Naturally, the solution x∗(t, ε) is stable in the sense of A.M. Lyapunov.
Also notice that the periodic solutions depend on the selection of the pa-

rameter k. For instance when k = 1 − δ and δ is sufficiently small, we obtain
periodic solutions with long periods that can be interpreted as “long waves”,
N.D. Kondratiev (see also [13,20]).

4 Nonlinear analysis of an alternative version of the
modified version of the Solow equation

In this section we will analyze Equation (1.8). Similar to the previous section,
we set

t =
h(ε)

H
Θ, h(ε) = H(1 + γε), γ ∈ R, ε ∈ (0, ε0), 0 < ε0 << 1, H =

π

2(1− k)
.

Θ is a new normalized time. As a result of this time change, Equation (1.8) is
rewritten as follows

u′ = (1 + γε)[−v + ku+
k(k − 1)

2
u2 +

k(k − 1)(k − 2)

6
u3 + o(u3)], (4.1)

where u = u(Θ), v = u(Θ −H), and the prime in the Equation (4.1) denotes
the derivative with respect to the variable Θ in the new normalized time.

In the neighborhood of the zero equilibrium state, equation (4.1) has a
two-dimensional smooth invariant manifold M2(ε). In this case, if their initial
conditions are small in the sense of the norm of the phase space of solutions,
then all the solutions of equation (4.1) approach it with the velocity of the ex-
ponent with time. Recall that in our case the phase space is C[−H, 0] (C[−H, 0]
is the space of continuous functions on [−H, 0], and the functions g(Θ) with
the norm ||g|| = max

Θ∈[−H,0]
|g(Θ)|), and the dynamics of the solutions of equation

(4.1). It can be restored after the analysis of the system of two ordinary dif-
ferential equations (NF). In this case, the NF can be written in complex form
and has the same structure as in the previous section

z′ = (α+ iβ)z + (d+ ic)z|z|2 +O(ε),

where α, β, d, c ∈ R. These coefficients can be written out in an explicit form,
which will be performed below after the implementation of the algorithm for
constructing the determining equation (NF). If we assume that a priori d 6= 0,
then the solution of equation (4.1) with the set of initial conditions from a
small neighborhood of the zero solution it is possible and expedient to look for
in the following form (see Section 3)

u(Θ, ε) = ε1/2u1(Θ, z) + εu2(Θ, z) + ε3/2u3(Θ, z) +O(ε2), (4.2)
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where u1(Θ, z) = z(s) exp(iσt) + z(s) exp(−iσt), z(s) – one of the solutions
of the NF. The sufficiently smooth functions u2(Θ, z), u3(Θ, z) with respect to
the variable Θ have period 2π/σ, where σ is selected after the analysis of the
corresponding linearized equation in the second section.

We substitute the sum (4.2) into equation(4.1) and equate the coefficients
for the powers ε, ε3/2. As a result, we obtain two linear nonhomogeneous de-
layed differential equations. Thus, to determine u2(Θ, z), we get the following
equation

∂u2
∂Θ

+ v2 − ku2 = Φ2(Θ, z), (4.3)

where Φ2(Θ, z) = k(k−1)
2 u21, v2 = u2(Θ −H, z), and

∂u3
∂Θ

+ v3 − ku3 = Φ3(Θ, z), (4.4)

where

Φ3(Θ, z) = k(k − 1)u1u2 +
k(k − 1)(k − 2)

6
u31 + γ[−v1 + ku1]

+ z′H exp(−iσH) exp(iσΘ) + z′H exp(iσH) exp(−iσΘ)

− z′ exp(iσΘ)− z′ exp(−iσΘ), z = z(s), z′ =
dz

ds
.

In this case we obtain the following solution of equation (4.3)

u2(Θ, z) = η2z
2 exp(2iσΘ) + η0|z|2 + η2z

2 exp(−2iσΘ),

where

η0 = −k, η2 = η21 + iη22, η21 =
k(2k + 1)

2(5 + 4k)
, η22 =

k
√

1− k2
5 + 4k

.

From the analysis of equation (4.4) we acquire

α = γ
(1− k2)3/2a

Q
, β =

1− k2

Q
γ(
√

1− k2 − ak), d =
k(1− k2)3/2

(5 + 4k)Q

×
[
(k + 5)

√
1− k2 − 6ak

]
, c=− k(1− k2)2

(5+4k)Q(1+k)

[
k
√

1−k2 + a(6k + 5)
]
,

Q = (
√

1− k2 − ak)2 + a2(1− k2) > 0.

In the case when a > 0, we immediately notice that the sign α coincides
with the sign γ, and the sign of the Lyapunov value d is determined by the
sign of the factor ϕ(k) = (k + 5)

√
1− k2 − 6ak, as the remaining factors in

the formula for d are certainly positive. It is easy to see that ϕ(k) > 0 for
all k ∈ (0, 1). Obviously, we obtain ϕ(k) = ϕ(a) = (5 + cos a) sin a − 6a cos a,
where a = arccos k (a ∈ (0, π/2)). The sign, ϕ(a) coincides with the sign of the
function

ψ(a) =
ϕ(a)

cos a
= 5 tan a+ sin a− 6a,

Math. Model. Anal., 24(2):297–310, 2019.
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where ψ(0) = 0, a ψ′(a) =
5

cos2 a
+ cos a− 6 > 0 for all a ∈ (0, π/2), and

ψ′(a) ≥ 1

cos2 a
(5 + cos4 a− 6 cos2 a) =

1

cos2 a
(5 sin2 a− sin2 a cos2 a) > 0,

where a ∈ (0, π/2). Therefore, in the case of equation (1.8) when the first
Lyapunov value d > 0, then the NF has a periodic solution if α < 0 (γ = −1)

z = z(s) = ρ exp(iωs), ρ =
√
−α/d,

and α, d, β are indicated above and hence this solution is unstable. Conse-
quently, the following assertion is true.

Theorem 2. Suppose that k ∈ (0, 1− δ), δ > 0. Then there exists ε0 = ε0(δ) >
0, that for all ε ∈ (0, ε0) Equation (4.1) has an unstable limit cycle for h =
(1 − ε)H. For the corresponding periodic solutions we acquire the following
asymptotic formula

u∗(Θ, ε) = ε1/2ρ[exp(i(σ + εω)Θ + iϕ0) + exp(−i(σ + εω)Θ − iϕ0)]

+ ερ2[η exp(2i(σ+εω)Θ+2iϕ0)−k+η exp(−2i(σ+εω)Θ−2iϕ0)] + o(ε).

ϕ0 ∈ R, the constants ρ, η were specified earlier.

It is pertinent to note that the unstable cycles exist when k ∈ (0, 1 − δ).
For k → 1 − 0, the amplitude ρ = ρ(k) → ∞. Consequently, the case when
k → 1− 0 requires additional investigation. Certainly, for such k and σ = σ(k)
the limit equality lim

k→1−0
σ(k) = 0 also holds. Finally, equation (1.3) exhibits

the following periodic solutions

x∗(t, ε) = 1 + u∗

( t

1− ε
, ε
)
.

In this case we acquired a family of periodic solutions, since u∗(Θ, ε) depends
on an arbitrary constant ϕ0 ∈ R. All these solutions are naturally unstable.

5 Conclusions

In this paper we have shown that the delay effects can significantly change
the dynamics of solutions in the classical Solow model. At least in two of the
presented forms of the correspondingly modified Solow Equation may appear to
fluctuate the variable capital-labor, which is typical for pricing within a market
economy. Especially the introduction of a delay was very informative in both
terms on the right-hand side of the Solow equation. If we consider the delay
factor for depreciation of funds and investments at the same time, a stable
cycle will emerge in the equation that describes the cyclical nature of the price
change and on a qualitative level explains the cyclic character inherent in the
economic processes.

In the second form, when the delay is introduced only in one of the terms
responsible for the depreciation of funds, the cycle is unstable but the price
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fluctuations are possible. Recall that in the classic version of the Solow model
the price fluctuations are impossible. Solutions of the corresponding equation
p(τ) → p0 > 0 are monotonic functions. For p(0) < p0, p(τ) increases and
decreases as p(0) > p0, where p0 is the equilibrium price.

A similar effect occurs if a delay is introduced into another classical model of
macroeconomics - the “supply-demand” model (market model). In this classical
version, there are no oscillatory solutions but the assumption of the delay
showed that under certain variations periodic cycles may exist. The selection
of the parameters of the problem has a modified version of the equation that
already has a periodic cycle (see [15,18,19]).

In macroeconomics, a similar situation is reproduced for the one that oc-
curred in mathematical ecology. If we consider the well-known Verhulst equa-
tion

Ṅ = αN(1−N),

then of course it does not exhibit periodic solutions. Notice that α > 0, N =
N(t) resembles the number of species. This is a significant contribution by
Hutchinson [9], who proposed to study the following equation

Ṅ = αN(1−N(t− h)), h > 0,

which is already capable of describing fluctuations in the population size in a
single-species bio-sinopsis.
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