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Abstract. We study the mathematical model of the point charge oscillator which
has been derived by A. Beléndez et al. [2]. First we determine the global phase
portrait of this model in the Poincaré disk. It consists of a family of closed orbits
surrounding the unique finite equilibrium point and of a continuum of homoclinic
orbits to the unique equilibrium point at infinity.
Next we derive analytic expressions for the relationship between period (frequency)
and amplitude. Further, we prove that the period increases monotone with the am-
plitude and derive an expression for its growth rate as the amplitude tends to infinity.
Finally, we determine a relation between period and amplitude by means of the com-
plete elliptic integral of the first kind K(k) and of the Jacobi elliptic function cn.
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1 Introduction

Consider a uniformly charged ring with a conducting wire placed along the
axis of the ring. Assume that a point charge q whose sign is opposite to
the sign of the charge Q of the ring, is confined with the wire. Under the
assumption that the loss of energy per oscillation due to radiation is negligibly
small, the oscillations of this point charge can be modelled by the following
scalar nonlinear autonomous differential equation due to A. Beléndez et al. [2]

d2x

dt2
+

x

(1 + x2)3/2
= 0. (1.1)

�
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Since (1.1) has a first integral representing a family of closed orbits surrounding
the origin in the phase plane, the initial value problem

x(0) = A,
dx

dt
(0) = 0

has to any A, 0 < A < +∞, a unique solution x(t, A) representing a peri-
odic solution with (positive) primitive period T (A). The parameter A can be
interpreted as the amplitude of the periodic solution x(t, A). The relation be-
tween the amplitude A and the frequency ω(A) = 2π/T (A) is of fundamental
interest. In [2], an expression for ω(A) is presented which contains a wrong
factor (see [3]). This incorrect relation has been used in several recent publi-
cations [7, 8, 9, 10].

For applications, a key interest is to derive simple approximate frequency-
amplitude relations. For this purpose there are a lot of methods, we mention
only a few ones: harmonic balance, energy balance, variational iteration and
homotopy perturbation. A survey about these methods can be found in [7].

The focus of our paper is not on deriving approximate relations for the de-
pendence of the frequency (period) on the amplitude. We present a study of the
mathematical model (1.1) under two different aspects: the qualitative aspect
focuses on the determination of the global phase portrait of equation (1.1), the
analytical aspect aims to study the dependence of period and frequency of the
periodic solutions on the amplitude.

The qualitative investigations show that the global phase portrait of this
model consists in the Poincaré disk of a family of closed orbits surrounding the
unique finite equilibrium point and of a continuum of homoclinic orbits to the
unique equilibrium point at infinity. The local phase portrait of this equilibrium
point is investigated by means of the method of desingularization [6] consisting
of changes of variables called blow-ups (see chapter 3 in [6]).

The analytical studies provide an expression for the dependence of the fre-
quency of the point charge oscillations on the amplitude. Further, we prove
that the period increases monotone with the amplitude, and we determine the
growth rate of the primitive period as the amplitude tends to infinity. Finally,
we derive a relation between period and amplitude by means of the Jacobi el-
liptic function cn and the complete elliptic integral of the first kind K(k). For
their definition we consider the incomplete elliptic integral of the first kind

u =

∫ ϕ

0

dθ√
1− k2 sin2 θ

=: F (ϕ, k), (1.2)

where k is called the elliptic module (k2 < 1). The Jacobi elliptic functions
are defined as inverses of (1.2). Especially, the elliptic cosine cnu is defined by
cnu := cosϕ, where ϕ is called the amplitude. It follows from (1.2) that the
function cn depends also on k. In the literature, along the short notation cnu
also the full notation cn(u, k) is used. The function K is defined by

K(k) := F (π/2, k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

. (1.3)
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2 Global phase portrait of the trajectories of equation
(1.1) in the Poicaré disk

For the following we rewrite equation (1.1) as the system

dx

dt
= y,

dy

dt
= − x

(1 + x2)3/2
(2.1)

in the (x, y)-phase plane. The following properties of system (2.1) can be easily
verified.

Lemma 1. The origin is the unique equilibrium point E of system (2.1) in the
finite part of the phase plane.

Lemma 2. System (2.1) has the first integral

H(x, y) :=
y2

2
− 1√

1 + x2
= c, c ≥ −1. (2.2)

From Lemma 2 we get

Corollary 1. The phase portrait of system (2.1) is symmetric with respect to
the x-axis as well as with respect to the y-axis.

Corollary 2. System (2.1) can be rewritten in the form

dx

dt
=
∂H

∂y
,

dy

dt
= −∂H

∂x
(2.3)

that is, (2.1) is a Hamiltonian system.

Lemma 3. The family of orbits {Oc} of system (2.3) defined by

{Oc} := {(x, y) ∈ R2 : H(x, y) = c}

consists for −1 < c < 0 of closed orbits located in the finite part of the phase
plane. This family of closed orbits has two envelopes, the equilibrium point
E = O−1 and the curve O0 defined by

O0 :=

{
(x, y) ∈ R2 :

y2

2
− 1√

1 + x2
= 0

}
.

For c > 0, the family {Oc} consists of the curves

Oc :=

{
(x, y) ∈ R2 : y = ±

√
2c+

2√
1 + x2

}
,

where |y(x)| takes its maximum
√

2(1 + c) at x = 0 and satisfies

lim
x→±∞

|y(x)| =
√

2c,

(see Figure 1).
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Figure 1. Selected orbits of system (2.1) in a finite part of the phase plane

Lemma 3 implies

Corollary 3. The equilibrium point E of system (2.1) is a center.

If we consider the velocity vc(x, y) of a point moving along the closed orbit
Oc for −1 < c < 0 at the point (xc, 0), then we get from (2.1)

v2c (xc, 0) =
x2c

(1 + x2c)
3
. (2.4)

From (2.2) we obtain

x2c = (1− c2)/c2. (2.5)

By (2.4) and (2.5) we have

v2c (xc, 0) = c4(1− c2).

Therefore, it holds
v2c (xc, 0)→ 0 as c→ 0

and we expect that O0 is a heteroclinic cycle. To give an answer to this conjec-
ture we have to study the equilibria of system (2.1) at infinity. For this purpose
we apply transformations mapping the phase plane onto planes tangent to the
Poincaré sphere at the equator. By means of the transformation

z = 1/y, v = x/y

we can study the existence of equilibria on the equator located at the “ends”
of the y-axis. We obtain the system

dz

dt
=

z4v

(z2 + v2)3/2
,

dv

dt
= 1 +

v2z3

(z2 + v2)3/2
. (2.6)

From (2.6) we get immediately

Math. Model. Anal., 24(3):372–384, 2019.
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Lemma 4. There is no equilibrium point of system (2.1) at infinity located on
the equator of the Poincaré sphere at the ”ends” of the y-axis.

Using the transformation

z = 1/x, u = y/x

we are looking for equilibria located on the equator of the Poincaré sphere but
not located at the “ends” of the y-axis. We obtain the system

du

dt
= − z3

(z2 + 1)3/2
− u2, dz

dt
= −uz (2.7)

possessing the unique equilibrium point u = z = 0, denoted as E0. This equili-
brium point is degenerate, also called linearly zero according to [6], since the
Jacobi matrix of the right hand side of system (2.7) at E0 is the zero matrix.
The following properties of system (2.7) are used to determine the local phase
portrait of E0.

Lemma 5.

(i) System (2.7) is invariant under the transformation u→ −u, t→ −t, that
means that the phase portrait of system (2.7) exhibits a mirror symmetry
concerning the z-axis.

(ii) System (2.7) has the invariant straight line z = 0 which implies that
any trajectory starting in the upper (lower) half-plane remains in that
half-plane.

(iii) In the half plane z ≥ 0 we have du/dt < 0, except at the origin, where
du/dt = 0.

(iv) In the interior of the first (second) and of the third (fourth) quadrant of
the phase plane of system (2.7) it holds dz/dt < 0 (dz/dt > 0).

(v) The isocline U0 := {(u, z) ∈ R2 : du/dt = u2+z3/(z2+1)3/2 = 0} exhibits
a mirror symmetry concerning the z-axis. It consists of two branches
located in the lower half-plane forming a singularity at the equilibrium E0
(see the dashed curve in Figure 2).

Lemma 5 implies that any trajectory of system (2.7) starting in the fourth
quadrant of the phase plane has E0 as ω-limit point. According to the mirror
symmetry with respect to the z-axis, any trajectory of system (2.7) in the
third quadrant has E0 as α-limit point. Thus, the half-plane z < 0 is filled with
homoclinic orbits to the equilibrium point E0 (see Figure 2).

The phase portrait of system (2.7) in the upper half-plane is characterized by
the mirror symmetry with respect to the z-axis and by the properties du/dt < 0.
Additionally, in the first quadrant it holds dz/dt < 0. Thus, any trajectory of
system (2.7) in the first quadrant either crosses the z-axis or it possesses E0 as
ω-limit point. Hence, any trajectory crossing the z-axis has a minimum at the
z-axis (see Figure 3).



The Point Charge Oscillator: Qualitative and Analytical Investigations 377

u

00

ℰ0

z

Figure 2. Phase portrait of system (2.1) in the lower half-plane
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Figure 3. Phase portrait of system (2.1) in the upper half-plane

The interesting question concerns the existence of a trajectory T0 in the first
quadrant having E0 as ω-limit set and separating the regions G0 and G1 such
that all trajectories starting in G0 have E0 as ω-limit set, while all trajectories
starting in G1 cross the z-axis (see Figure 3). To answer this question we
apply the method of blowing up the equilibrium point E0 by means of the
transformation H:

w = z, v = u/z. (2.8)

We obtain from (2.7) and (2.8) the system

dv

dt
= − w2

(1 + w2)3/2
,

dw

dt
= −vw2. (2.9)

System (2.9) is invariant under the transformation v → −v, t→ −t, that means
its phase portrait possesses the mirror symmetry with respect to the w-axis.
Moreover, this system exhibits the peculiarity that the invariant straight line
w = 0 consists of equilibria. That means the degenerate equilibrium E0 of sys-
tem (2.7) has been blown up to a line of equilibria in system (2.9). Additionally,
system (2.9) has the first integral

v2

2
− w√

1 + w2
= c.
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The phase portrait of system (2.9) in the upper half-plane is represented in
Figure 4.

v
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Figure 4. Phase portrait of system (2.9) in the upper half-plane

There exists exactly one trajectory of system (2.9) starting in the first quad-
rant which has the origin as ω-limit point and which separates the regions G0
and G1 (see Figure 4) such that to each trajectory starting in the region G0 there
exists a unique point on the v-axis which is the ω-limit point of this trajectory.
Using the inverse of the transformation H we get that all these trajectories
corresponds to trajectories of system (2.7) having E0 as ω-limit point. Thus,
the local phase portrait belonging to the equilibrium point E0 of system (2.7)
looks as represented in Figure 5.
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Figure 5. Local phase portrait of system (2.9) near E0

Taking into account our qualitative results described above we get the fol-
lowing result:

Theorem 1. The orbits {Oc} of system (2.3) defined for c ≥ −1 represent in
the Poincaré disk

• for c = −1 the equilibrium point E at the origin,

• for −1 < c < 0 closed orbits with finite primitive period,

• for c ≥ 0 homoclinic orbits to the unique equilibrium point E0 at infinity.

The corresponding global phase portrait of system (2.1) in the Poincaré
disk is represented in Figure 6. We note that the points E−1 and E+1 coincide
and represent the equilibrium point E0.

In the following section we study the closed orbits of the family Oc which
are periodic solutions. Especially, we are interested in the dependence of the
primitive period on the amplitude.
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Figure 6. Global phase portrait of system (2.1) in the Poincaré disk

3 Periodic orbits and their period

We denote by ΓA the orbit of system (2.1) passing the point (x = A, y =
0). Without loss of generality we may assume A ≥ 0. By (2.2), ΓA has the
representation

ΓA :=

{
(x, y) ∈ R2 :

y2

2
− 1√

1 + x2
+

1√
1 +A2

= 0

}
. (3.1)

From (3.1) it follows that ΓA is a closed orbit for any A ≥ 0. Since the
parameter A can be interpreted as the amplitude of the closed orbit ΓA, we
can conclude that the point charge oscillator (2.1) has to any amplitude A a
unique periodic solution. But from the property that the function x/(1+x2)3/2

arising in equation (1.1) does not tend to +∞ as |x| tends to +∞, we cannot
conclude that the family of closed orbits {ΓA}A≥0 covers the full phase plane.

For the sequel we denote by T (A) the (positive) primitive period of ΓA for
A > 0. By the symmetry properties of the closed orbit ΓA, for the determina-
tion of T (A) it is sufficient to calculate the time for running along the part of
ΓA located in the first quadrant. Using the relation dt = dx/y in (2.1) and the
representation of ΓA in the first quadrant

ΓA :=

{
(x, y) ∈ R+ × R+ : y =

√
2

√
1√

1 + x2
− 1√

1 +A2

}
,

which follows from (3.1), we get

Lemma 6.

T (A)=
4√
2

A∫
0

dx(
1√

1+x2
− 1√

1+A2

)0.5 = 2
√

2A

1∫
0

ds(
1√

1+A2s2
− 1√

1+A2

)0.5 . (3.2)

We note that this relation corrects a corresponding expression due to A. Be-
léndez et al. in [2] (see [3]) which has been used in the recent papers [7,8,9,10].

In what follows we study the dependence of the period T (A) on the ampli-
tude A. First we ask the question whether T (A) increases monotone with A.

Math. Model. Anal., 24(3):372–384, 2019.
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To answer this question we introduce the functions

V (x) := 1− 1√
1 + x2

, H1(x, y) :=
y2

2
+ V (x) = H(x, y) + 1. (3.3)

V satisfies

V (0) = 0, V ′(0) = 0, V ′′(0) > 0, 0 < V (x) < 1 for x 6= 0.

Thus, H1(x, y) is a Hamiltonian for system (2.1) with a nondegenerate mini-
mum at the origin. The corresponding level energy curves with energy E are
defined for E ∈ (0, 1). Let K(E) := {x ∈ R : V (x) ≤ E}. Additionally we
introduce the function

W (x) := V (x)/(V ′(x))2. (3.4)

By a result due to C. Chicone [5], the function T (A) is monotone increasing if
W ′′(x) is positive on (0, 1).

According to (3.3) and (3.4) we have for x 6= 0

W ′′(x) =
−3

x
+

3

1 + x
+

3V (x)√
1 + x

− 9
√

1 + xV (x)

x
+

6
(√

1 + x
)3
V (x)

x

= 2xV (x) > 0.

Thus it holds:

Theorem 2. The period T (A) increases monotone with the amplitude A.

From Theorem 2 we get

Corollary 4. The origin is not an isochronous center of system (2.1).

Next we derive an asymptotic estimate of the growth rate of T (A) as A
tends to +∞. Taking into account the relations

1∫
0

ds(
1√

1+A2s2
− 1√

1+A2

)0.5 =
√
A

1∫
0

ds(
1√

1/A2+s2
− 1√

1/A2+1

)0.5
and

lim
A→+∞

1∫
0

ds(
1√

1/a2+s2
− 1√

1/A2+1

)0.5 =

∫ 1

0

√
s

1− s
ds = 2

we obtain from (3.2) the result:

Lemma 7. The primitive period T (A) satisfies the relation

T (A) = O(A
√
A) as A→ +∞.
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Another expression for the period T (A) can be obtained as follows. We de-
note by ΓB the trajectory of system (2.1) passing the point (0, B). Without
loss of generality we may assume B ≥ 0. From (2.2) we obtain for ΓB the
representation

ΓB :=

{
(x, y) ∈ R2 :

y2

2
− 1√

1 + x2
+ 1− B2

2
= 0

}
. (3.5)

The expression (3.5) implies that ΓB is a closed orbit as long as B satisfies
0 < B2 < 2. Since the parameter B can be interpreted as the maximum
velocity on the closed orbit ΓB , it holds:

Lemma 8.
√

2 is an upper bound for the maximum velocity on all periodic
solutions of (2.1).

Taking into account that the closed orbit ΓA intersects the positive y-axis at

the point

(
0,
√

2(1− 1/
√

1 +A2)

)
, we can conclude that the closed orbits ΓA

and ΓB coincide if it holds

B = B̃(A) :=

√
2
(

1− 1/
√

1 +A2
)

for A > 0, (3.6)

which is equivalent to

A = Ã(B) :=

√
4− (2−B2)2

2−B2
for 1 < B2 < 2.

For the determination of the (positive) primitive period τ(B) of ΓB we can
restrict ourselves to the part of ΓB located in the first quadrant. For its
representation we use the relation

x =

√
4− (y2 −B2 + 2)2

y2 −B2 + 2
=: f(y,B) (3.7)

which follows from (3.5). According to (2.1) and (3.7) we have

− (1 + f(y,B)2)3/2

f(y,B)
dy = dt. (3.8)

Taking into account the relation

(1 + f(y,B)2)3/2

f(y,B)
=

8

(y2 −B2 + 2)2
√

4− (y2 − b2 + 2)2

we get from (3.8)

τ(B) = 32B

∫ 1

0

ds

(y2 −B2 + 2)2
√

4− (B2s2 −B2 + 2)2
. (3.9)

The advantage of this representation of the period of the closed curves of system
(2.1) consists in the fact that the right hand side of (3.9) is an elliptic integral.
In the following section we derive an expression for τ(B) and T (A) by means
of the complete elliptic integral of the first kind K(k) and the Jacobi elliptic
function cn.

Math. Model. Anal., 24(3):372–384, 2019.



382 K.R. Schneider

4 Analytic relation between amplitude and period of the
point charge oscillations by using Jacobi’s elliptic
function cn

The expression (3.9) for τ(B) can be rewritten in the form

τ(B) = 32B

∫ 1

0

ds

(B2s2 −B2 + 2)2
√

4− (B2s2 −B2 + 2)2

=
32

B5

∫ 1

0

ds

(s2 + 2−B2

B2 )2
√

( 4−B2

B2 + s2)(1− s2)
.

(4.1)

In [4] we find on page 49 (see relation (213.13)) the formula∫ β

γ

R(s2)ds√
α2 + s2)(β2 − s2)

= g

∫ u1

0

R(β2cn2u)du, (4.2)

where R is any rational function, cn is one of the three Jacobi’s elliptic functions
sn, cn and dn, β and γ are constants satisfying β > γ ≥ 0, g and u1 are defined
by the relations

g =
1√

α2 + β2
, u1 = F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2sin2θ

, (4.3)

where

ϕ = arccos(γ/β), k2 =
β2

α2 + β2
< 1.

It is clear that the integral in (4.1) is a special case of the integral (4.2). From
(4.1)–(4.3) we get

γ = 0, β = 1, α2 =
4−B2

B2
, R(s2) =

1

(s2 + 2−B2

B2 )2
,

g =
B√

4−B2
, k2 =

B2

4
, ϕ = arccos 0 =

π

2
, u1 = F (

π

2
, k),

(4.4)

where F (π2 , k) coincides with the complete elliptic integral of the first kind K(k)
introduced in (1.3). From (4.1), (4.2) and (4.4) we obtain the representation

τ(B) =
32

B4
√

4−B2

∫ K(B
2 )

0

du

(cn2u+ 2−B2

B2 )2
.

As we noted in the introduction, the Jacobi elliptic functions depend on the
parameter k, k2 < 1. If we use the full notion cn(u, k), then in our case by (4.4)
and Lemma 8 it holds k2 = B2/4 < 1/2. Taking into account this remark and
using the relation (3.6), we arrive at the result:
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Theorem 3. To given A, 0 < A < +∞, the closed orbit ΓA with the amplitude
A has the primitive period

T (A) =
32

(B̃(A))4
√

4−(B̃(A))2

∫ K
(

B̃(A)
2

)
0

du(
cn2(u, B̃(A)/2)+ 2−(B̃(A))2

(B̃(A))2

)2 ,
(4.5)

where the functions B̃ and K are defined in (3.6) and (1.3), respectively.

Remark 1. If we plot the functions for T (A) defined in (3.2) and (4.5) respec-
tively, we get the same picture.

Remark 2. We emphasize that the relation (4.5) is valid for any amplitude A.
Under the condition A < 1, A. Beléndez et al. derived in [1] by means of the
method of first order harmonic balance an approximate relation for T (A) which
also depends on K(A).

5 Conclusions

The global phase portrait of system (2.1) implies that the closed orbits describ-
ing the point charge oscillations tend to a homoclinic orbit as the amplitude A
tends to infinity. Thus, the corresponding period T (A) tends also to infinity.
By means of analytical investigations we derive an expression for the depen-
dence of the period on the amplitude, prove that the period increases monotone
with the amplitude and determine the growth rate of T (A) as A tends to +∞.
Finally, we derive a relation between the period T (A) and the corresponding
amplitude A by means of the complete elliptic integral of the first kind K(k)
and the Jacobi elliptic function cn which holds for any A.
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[7] O. Gonzáles-Gaxiola, G. Chacón-Acosta and J.A. Santiago. Nonlinear oscilla-
tions of a point charge in the electric field of charged ring using a particular He’s
frequency-amplitude formulation. International Journal Applied Computational
Mathematics, 4:43, 2018. https://doi.org/10.1007/s40819-017-0479-1.

[8] S. Valipour, R. Fallahpour, M.M. Moridani and S. Chakouvari. Nonlinear dy-
namic analysis of a punctual charge in the electric field of a charged ring via
a modified frequency-amplitude formulation. Propulsion and Power Research,
5(1):81–86, 2016. https://doi.org/10.1016/j.jppr.2016.01.001.

[9] M.K. Yazdi. Corrigendum to “Analysis of nonlinear oscillations of a punctual
charge in the electrical field of a charged ring via a Hamiltonian approach and the
energy balance method” [Computers and mathematics with applications 62:486-
490 (2011)]. Computers and Mathematics with Applications, 62(6):2681–2682,
2011. https://doi.org/10.1016/j.camwa.2011.08.006.

[10] A. Yildirim, H. Ascari, Z. Saadatnia, M. Kalami Yazdi and Y. Khan. Anal-
ysis of nonlinear oscillations of a punctual charge in the electrical field
of a charged ring via a Hamiltonian approach and the energy balance
method. Computers and Mathematics with Applications, 62(1):486–490, 2011.
https://doi.org/10.1016/j.camwa.2011.05.029.

https://doi.org/10.1016/0022-0396(87)90122-7
https://doi.org/10.1007/s40819-017-0479-1
https://doi.org/10.1016/j.jppr.2016.01.001
https://doi.org/10.1016/j.camwa.2011.08.006
https://doi.org/10.1016/j.camwa.2011.05.029

	Introduction
	Global phase portrait of the trajectories of equation (1.1) in the Poicaré disk
	Periodic orbits and their period 
	Analytic relation between amplitude and period of the point charge oscillations by using Jacobi's elliptic function cn
	Conclusions
	References

