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Abstract. Boundary value problems of the form x′′ = −λf(x+) + µg(x−) (i),
x′(a) = 0 = x′(b) (ii) are considered, where λ, µ > 0. In our considerations func-
tions f and g are generally nonlinear. We give a description of a solution set of the
problem (i), (ii). It consist of all triples (λ, µ, α) such that (λ,µ, x(t)) nontrivially
solves the problem (i), (ii) and |x′(z)| = α at zero points z of the function x(t) (iii).
We show that this solution set is a union of solution surfaces which are centro-affine
equivalent. Each solution surface is associated with nontrivial solutions with definite
nodal type. Properties of solution surfaces are studied. It is shown, in particular,
that solution surface associated with solutions with exactly i zeroes in the interval
(a, b) is centro-affine equivalent to a solution surface of the Dirichlet problem (i),
x(a) = 0 = x(b), (iii) corresponding to solutions with odd number of zeros 2j − 1
(i 6= 2j) in the interval (a, b).

Keywords: Nonlinear oscillations, α-spectrum, α-branch, solution surfaces, solution curves,
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1 Introduction

Two-parameter nonlinear boundary value problems have been extensively stud-
ied in the literature, see for example [1, 2, 3, 5, 8, 11, 14, 16]. Some of
the mentioned references deal with the so called asymmetric oscillators. The
simplest asymmetric oscillator is described by the Fuč́ık differential equation
x′′ = −λx+ + µx−, where x+ = max{x, 0}, x− = max{−x, 0}. This equation
possesses the property of positive homogeneity and any function cx(t) solves it
for c ≥ 0 if x(t) is a solution. The sum of two solutions x1(t) and x2(t) need
not to be a solution.

A nonlinear asymmetric oscillator (in the meaning that restoring forces
on the left and right sides nonlinearly depend on replacements x(t)) may be
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associated with equation x′′ = −λf(x+)+µg(x−), where f and g are nonlinear
nonnegative functions. This equation with the Dirichlet boundary conditions
was considered in [4, 5, 7]. In [4] the Dirichlet boundary value problem was
investigated together with a normalization condition which is not needed in case
of the Fuč́ık equation since it fulfils automatically. The analytical description
of the spectrum was obtained. The spectrum is a set of all pairs (λ, µ) such that
the problem has a nontrivial solution. In [7] the Dirichlet problem was studied
provided that one of the functions f and g is linear. In [5] some properties of
the spectrum were analyzed. It was pointed out that branches of the spectrum
may have separate components connected at infinity and even bounded separate
components.

This article is continuation and expansion of [8], where the Neumann prob-
lem

x′′ = −λf(x+) + µg(x−), x′(a) = 0 = x′(b), (1.1)

a < b, was considered. The main result in [8] is an analytical description of
the spectrum provided in Theorem 1. In Definition 1 of the present article we
substantially expand notion of a spectrum (a solution set is introduced) for the
problem (1.1) and give full description of a spectrum in Theorem 4, thereby
generalizing the main result in [8].

We consider the Neumann problem (1.1), where λ and µ are positive pa-
rameters, and functions f and g satisfy the following conditions (we formulate
these conditions only for a function f , supposing that analogous conditions are
fulfilled for a function g also):

(A1) f is a [0,+∞) → [0,+∞) continuous function, f(x) > 0 for all x > 0
and f(0) = 0;

(A2) a first zero function (a time map) tf (α) to the Cauchy problem

x′′ + f(x) = 0, x(a) = 0, x′(a) = α > 0 (1.2)

is a (0,+∞) → (0,+∞) continuous function.

Sometimes we need the additional technical requirements on f function.
These conditions are:

(A3) for some k ∈ N:

f(0) = f ′(0+) = · · · = f (k−1)(0+) = 0, 0 < f (k)(0+) ≤ +∞; (1.3)

(A4) F (x)
xκ−1 → +∞ as x → +∞, where F (x) =

∫ x

0 f(s) ds, and f(x)
xκ is bounded

for x large for some κ ≥ 1.

Definition 1. A solution set of the problem (1.1) is a set F of all triples
(λ, µ, α) such that (λ, µ, x(t)) nontrivially solves the problem (1.1) and

∣∣x′(z)
∣∣ = α (1.4)

at zeros of a solution x(t).
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Remark 1. A solution of the equation x′′ = −λf(x+)+µg(x−) is a C2-function.
Therefore x′(t) is continuous. If z1 and z2 are two consecutive zeros of x(t)
then it is known that x′(z1) = −x′(z2) due to the fact that the graph of x(t)
between two consecutive zeros is symmetric with respect to the middle point
(the condition (A1) is only needed). Thus the relation |x′(z)| = α holds at
any zero of a solution x(t) for given α > 0.

Remark 2. The conditions (A1) and (A2) together are more general than those
imposed on f in [8]. The conditions (A3) and (A4) together ensure that the
relations (2.3) are valid. One could require that (2.3) holds instead of (A3)
and (A4) in statements below.

Theorem 4 (see Section 4) claims that the solution set is a union F =⋃∞
i=1 F

±
i of solution surfaces. The solution surface F+

i (resp.: F−
i ) describes

all C2-solutions of the problem (1.1) with exactly i zeros in the interval (a, b)
and positive (resp.: negative) x(a). Notion of a solution surface was introduced
in [14] for the case of the Dirichlet boundary value problem.

The problem (1.1) with a normalization condition
∣∣x′(z)

∣∣ = α at zero points z of x(t) (1.5)

will be referred to as α-normalized problem. We will call α-spectrum F (α)
of α-normalized problem a set of all pairs (λ, µ) such that the α-normalized
problem is nontrivially solvable. Description of α-spectrum is similar to that
given in [8], where a normalization condition |x′(z)| = 1 was used: the α-
spectrum is a union F (α) =

⋃∞
i=1 F

±
i (α) of α-branches. The α-branch F+

i (α)
(resp.: (F−

i (α)) is a set of all (λ, µ) such that there exists a C2-solution of the
α-normalized problem which 1) has exactly i zeros in the interval (a, b); 2) x(a)
is positive (resp.: negative); 3) the condition (1.5) fulfils for some fixed α > 0
(so x(t) is a nontrivial solution).

Remark 3. Actually α-branches are projections of α-level sets of solution sur-
faces to the (λ, µ)-plane, henceforth we will identify these subsets if it would
not lead to confusion.

The special cases of the problem (1.1) are:
1) one-parameter linear problem

x′′ = −λx
[
equivalently x′′ = −λx+ + λx−], x′(a) = 0 = x′(b), (1.6)

where f = g = x and λ = µ;
2) two-parameter piece-wise linear problem for the Fuč́ık equation

x′′ = −λx+ + µx−, x′(a) = 0 = x′(b), (1.7)

where f = g = x;
3) one-parameter nonlinear problem

x′′ = −λh(x)
[
equivalently x′′ = −λf(x+)+λg(x−)

]
, x′(a) = 0 = x′(b), (1.8)

where λ = µ and h(x) =

{
f(x), x ≥ 0,
−g(−x), x ≤ 0,

or f(x) = h+(x) and g(x) =

h−(−x) for all x ≥ 0.

Math. Model. Anal., 16(1):23–38, 2011.



26 A. Gritsans and F. Sadyrbaev

2 Time Maps

Let Tf (α, λ) be the first zero function (the time map) for the Cauchy problem

x′′ + λf(x) = 0, x(a) = 0, x′(a) = α > 0.

Theorem 1. If a function f satisfies the conditions (A1) and (A2) then:

1. The time map Tf(α, λ) is a continuous function and

Tf (α, λ) =
1√
λ
tf

(
α√
λ

)
, ∀α, λ > 0;

2. If additionally Tf(α, λ) is differentiable, then it is a solution of the first

order nonhomogeneous partial differential equation

α
∂Tf

∂α
(α, λ) + 2λ

∂Tf

∂λ
(α, λ) = −Tf(α, λ) (2.1)

for any α, λ > 0 and as a consequence the function Tf cannot have (pos-
itive) extrema;

3. For any α, β, λ > 0 the rescaling formula is valid

Tf(β, λ) =
α

β
Tf

(
α, λ

α2

β2

)
; (2.2)

4. If additionally (A3) and (A4) hold then for a fixed α > 0:

lim
λ→0+

Tf(α, λ) = +∞, lim
λ→+∞

Tf (α, λ) = 0. (2.3)

Proof. The assertions 1 and 2 can be proved as the respective assertions in [6].
3. For α, β, λ > 0 we have

Tf (β, λ) =
1√
λ
tf

(
β√
λ

)
=

1√
λ
tf

(
α√
λ

β

α

)
=

1√
λ
tf

(
α√

λα2/β2

)

=
1√

λα2/β2

α

β
tf

(
α√

λα2/β2

)
=

α

β
Tf

(
α, λ

α2

β2

)
.

4. The second relation (2.3) can be proved like in Proposition 3.8 in [6].
Now let us prove the first relation (2.3). Suppose the conditions (A1), (A2)

and(A4) hold. Consider the function h(x) = xκ, κ ≥ 1. Since f(x)
h(x) is

bounded for x large then lim sup
x→+∞

f(x)
h(x) ≤ Ω < +∞. Therefore by Opial’s

comparison theorem [12, Theorem 11] one has lim inf
u→+∞

τf (u)
τh(u)

≥ 1√
Ω
, where

τf (u) = tf (
√

2F (u) ) is a time map function (a first zero function), depending

on u = xmax = F−1(α
2

2 ) = max
[0;tf (α)]

|x(t)| and defined for all u > 0; τh(u) has
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analogous meaning and calculations show that τh(u) = cu−(κ−1)/2, c > 0 for
all u > 0.

From (A1) and (A2), it follows that the function F is strictly increasing
in the interval (0;+∞), besides F (x) → +∞ as x → +∞ since the time map
tf (α) exists and is finite for any α > 0. One has for a fixed α > 0 that λ → 0+

iff v = F−1(α
2

2λ ) → +∞ and

lim
λ→0+

Tf (α, λ) = lim
λ→0+

1√
λ
tf

(
α√
λ

)
= lim

v→+∞

√
2F (v)

α
tf

(√
2F (v)

)

= lim
v→+∞

√
2F (v)

α
τf (v) =

√
2

α
lim

v→+∞

√
F (v)τh(v)

τf (v)

τh(v)

=

√
2c

α
lim

v→+∞

√
F (v)

vκ−1

τf (v)

τh(v)
= +∞.

⊓⊔

Remark 4. If f = xr, r > 0, then Tf (α, λ) = cα− r−1

r+1 λ− 1
r+1 , c = 2

r
r+1 (r +

1)
1

r+1A 6= 0, A =
∫ 1

0
ds√

1−sr+1
, in linear case r = 1 one has Tf (α, λ) =

π√
λ
. For

the nonlinearity f both relations (2.3) are valid, so the conditions (A3) and
(A4) fix rather generic limit behavior of time maps.

3 α-Spectrum of a Two-Parameter Nonlinear Oscillator

The next theorem gives description of an α-spectrum with arbitrary normal-
ization α > 0.

Theorem 2. Let functions f and g satisfy the conditions (A1)–(A4). Then

α-spectrum F (α) of the α-normalized problem (1.1), (1.5) is a union of α-
branches

F±
i (α) = {(λ, µ) : Tf(α, λ) + Tg(α, µ) = 2(b− a)/i} (i ∈ N). (3.1)

Proof. The proof is similar to that of Theorem 1 in [8]. ⊓⊔

Now let us consider properties of an α-spectrum.

Theorem 3. Suppose functions f and g satisfy the conditions (A1)–(A4) and
let F (α) =

⋃∞
i=1 F

±
i (α) be the α-spectrum of the α-normalized problem (1.1),

(1.5).

1. α-branches F±
i (α) are nonempty sets for any α > 0 and i ∈ N.

2. α-branches F+
i (α) and F−

i (α) coincide for i ∈ N.

3. α-branches F±
i (α) and F±

j (α) do not intersect unless i = j.

4. Suppose Tf (α, λ∗) = 2(b−a)
i for some λ∗ > 0 and i ∈ N. Then the α-

branch F±
i (α) has a vertical asymptote at λ = λ∗.

Math. Model. Anal., 16(1):23–38, 2011.
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5. Suppose Tg(α, µ∗) = 2(b−a)
i for some µ∗ > 0 and i ∈ N. Then the α-

branch F±
i (α) has a horizontal asymptote at µ = µ∗.

6. Suppose the functions γtf (γ) and γtg(γ) are strictly increasing. For given

α > 0 and i ∈ N the α-branch F±
i (α) is a graph of strictly decreasing

function µ = T−1
g (α, 2(b−a)

i − Tf (α, λ)).

7. For given i 6= j and α > 0 the branches F±
i (α) and F±

j ( jiα) are centro-

affine [13] equivalent under the mapping Ωi,j : R
2 → R

2, (λ, µ)
Ωi,j7−→

(λ, µ), where λ = ( ji )
2λ, µ = ( ji )

2µ.

8. Suppose f = g and the function γtf (γ) has a point of strict maximum

(there is also a point of strict minimum, in view of (2.3)). Then there

exists a normalization βj (j ∈ N) such that the branch F±
j (βj) has a

separate bounded component.

Proof. Statements 1, 4 and 5 are valid due to the assertions 1 and 4 of Theo-
rem 1. Statements 2 and 3 follow from (3.1).

6. If functions γtf (γ) and γtg(γ) are strictly increasing then functions
Tf (α, λ) and Tg(α, µ) strictly decrease from +∞ to zero (recall (2.3)) as λ ∈
(0,+∞) and µ ∈ (0,+∞) respectively for a fixed normalization α > 0. For
given α > 0 and i ∈ N due to the assertions 1 and 4 of Theorem 1 we can find

unique λ∗ > 0 and µ∗ > 0 such that Tf(α, λ∗) =
2(b−a)

i and Tg(α, µ∗) =
2(b−a)

i .

Hence the branch F±
i (α) actually is the graph of the strictly increasing function

µ = T−1
g (α, 2(b−a)

i − Tf(α, λ)) with the domain of definition (λ∗,+∞) and the
range of values (µ∗,+∞). Besides it has the vertical asymptote at λ = λ∗ and
the horizontal asymptote at µ = µ∗, see points 4 and 5 of the theorem. Similar
approach was realized to prove Theorem 2 in [5].

7. For given i 6= j and α > 0 find α = jα/i. Suppose (λ, µ) ∈ F±
i (α), that

is,

iTf(α, λ) + iTg(α, µ) = 2(b− a).

Applying the rescaling formula (2.2) to the previous equation one gets

i
α

α
Tf

(
α, λ

α2

α2

)
+ i

α

α
Tg

(
α, µ

α2

α2

)
= 2(b− a),

jTf

(
α,

(
j

i

)2

λ
)
+ jTg

(
α,

(
j

i

)2

µ
)
= 2(b− a),

jTf

(
α, λ

)
+ jTg (α, µ) = 2(b− a),

therefore (λ, µ) ∈ F±
j (α). Since Ω−1

i,j = Ωj,i one has Ωi,j(F
±
i (α)) = F±

j (α)

and the branches F±
i (α) and F±

j (α) are centro-affine equivalent under the
mapping Ωi,j .

8. Let γ1 > 0 be a point of strict maximum of the function γtf(γ). Then
the function 1√

λ
tf (

1√
λ
) has strict maximum at λ1 = 1/γ2

1 . This corresponds

to the normalization α = 1. In other words, 1√
λ1
tf (

1√
λ1
) = Tf(1, λ1) and
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the function Tf (1, λ) has a strict maximum at λ = λ1. By virtue of (2.2),
Tf(β, λ) =

1
βTf(1,

λ
β2 ).

Choose β = β1 so that 1
β1
Tf(1, λ1) = b − a, this is possible due to the

assertions 1 and 4 of Theorem 1. Then Tf (β1, λ) has a strict maximum at λ =
λ1β

2
1 and the corresponding maximal value is b− a. Then the sum Tf (β1, λ) +

Tf(β1, µ) has a point of strict maximum at (λ1, λ1) and the corresponding
maximal value is (b− a)+ (b− a) = 2(b− a). In neighbouring points (λ, µ) one
has that Tf(β1, λ) + Tf (β1, µ) < 2(b − a). Evidently the branch F±

1 (β1) has a
bounded separate component (actually a point) at λ = µ = λ1. Changing β
further this component becomes larger.

The case when the function γtf (γ) has a point of strict minimum can be
considered analogously. We have proved that there exists a normalization β1 >
0 such that the branch F±

1 (β1) has a separate bounded component. Then
the branch F±

j (βj) with the normalization βj = jβ1 (j ∈ N) is centro-affine

equivalent to the branch F±
1 (β1), see assertion 7 of the theorem, and therefore

has a separate bounded component too. ⊓⊔

Remark 5. By the assertions 1 and 4 of Theorem 1:

lim
γ→0+

γtf (γ) = 0, lim
γ→+∞

γtf(γ) = +∞. (3.2)

If the function γtf(γ) is non constant in any interval (γ1, γ2) ⊂ (0,+∞) then
existence of the strict maximum implies existence of the strict minimum and
vice versa. The authors have no example of a nonlinearity f satisfying the con-
ditions (A1)–(A4) such that the function γtf(γ) is constant in some interval
(γ1, γ2) ⊂ (0,+∞).

Remark 6. 1) An i-th α-branch of the α-spectrum of the α-normalized one-para-
meter linear problem (1.6), (1.5) is the same set for all normalizations α > 0 and
actually can be identified with the i-th spectral value of the linear oscillator:

λi =
(

πi
b−a

)2
. 2) An i-th α-branch of the α-spectrum of the α-normalized

two-parameter piece-wised linear problem (1.7), (1.5) is the same set for all
normalizations α > 0 and coincide with the i-th branch of the classical Fuč́ık
spectrum [3, 8]: F±

i (α) =
{
(λ, µ) : π√

λ
+ π√

µ = 2(b−a)
i

}
. For continuation of

this remark see Remark 14.

Remark 7. The centro-affine mapping Ωi,j (i 6= j) preserves areas with the

coefficient J(Ωi,j) = (j/i)
4
and has the inverse mapping Ω−1

i,j = Ωj,i. If

(λ1, µ1) ∈ F±
1 (α1) then the point (j2λ1, j

2µ1) (j ∈ N, j 6= 1) is a cross point
of the branch F±

j (jα1) with the line µ = µ1

λ1
λ.

Example 1. In Fig. 1, branches F±
1 (1) and F±

2 (2) of the problem (1.1), (1.5)

are depicted, where f = g = x
1
3 + x32 and b− a = 2.5, and these branches are

centro-affine equivalent.

Proposition 1. For given i 6= j branches F±
i (α) and F±

j (β) of spectra with

different normalizations

Math. Model. Anal., 16(1):23–38, 2011.
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Figure 1. The case f = g = x
1
3 + x32, b− a = 2.5. Numerical calculations show that

the branches F±

1
(1) and F±

2
(2) of the problem (1.1), (1.5) with α = 1 (full line) and

α = 2 (dashed line) respectively do not coincide and have 4 points of intersection.

• may coincide (in this case at least one of the functions f and g must be

nonlinear), for example, if f = g = xr, r 6= 1 and α
β = ( ji )

− r+1

r−1 ,

• may do not intersect, for example, if 1) f = g = xr, r 6= 1 and α
β 6=

( ji )
− r+1

r−1 , 2) f = g = x,

• may have points of intersection being distinct ; see Fig. 1.

Proof. Suppose i 6= j and two different normalizations α, β > 0 are given. To
determine common points of the branches F±

i (α) and F±
j (β) we need to solve

the system {
Tf (α, λ) + Tg(α, µ) = 2(b− a)/i,

Tf (β, λ) + Tg(β, µ) = 2(b− a)/j
(3.3)

with respect to (λ, µ). If f = g = xr, r > 0, then using Remark 4 the system
(3.3) becomes 




α− r−1

r+1

(
λ− 1

r+1 + µ− 1
r+1

)
=

2(b− a)

ci
,

β− r−1

r+1

(
λ− 1

r+1 + µ− 1
r+1

)
=

2(b− a)

cj
.

(3.4)

If r 6= 1 and α
β = ( ji )

− r+1

r−1 the equations of the system (3.4) are equivalent,

hence the branches F±
i (α) and F±

j (β) coincide. If r 6= 1 and α
β 6= ( ji )

− r+1

r−1 or

r = 1 (linear case) the system (3.4) has no solutions and the branches F±
i (α)

and F±
j (β) do not intersect. Thereby, if the branches F±

i (α) and F±
j (β) with

α 6= β and i 6= j coincide then at least one of the functions f and g must be
nonlinear.

Branches F±
i (α) and F±

j (β) of spectra with i 6= j and different normaliza-
tions α, β > 0 may be different with some points of intersection, see Fig. 1.
⊓⊔
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4 Solution Set of a Two-Parameter Nonlinear Oscillator

The next theorem gives description of a solution set of the problem (1.1).

Theorem 4. Let functions f and g satisfy the conditions (A1)–(A4). Then

solution set F of the problem (1.1) is a union of solution surfaces

F±
i = {(λ, µ, α) : Tf (α, λ) + Tg(α, µ) = 2(b− a)/i} (i ∈ N).

The solution surfaces have the following properties.

1. Solution surfaces F±
i are nonempty sets for any i ∈ N.

2. Solution surfaces F+
i and F−

i coincide for i ∈ N.

3. Solution surfaces F±
i and F±

j do not intersect unless i = j.

4. For given i 6= j the solution surfaces F±
i and F±

j are centro-affine equiv-

alent under the mapping Φi,j : R3 → R
3, (λ, µ, α)

Φi,j7−→ (λ, µ, α), where

λ = (j/i)2λ, µ = (j/i)2µ, α = jα/i.

Proof. In view of Remark 3 one can regard an i-th solution surface as a union
of α-branches: F±

i =
⋃

α>0 F
±
i (α), hence the first statement follows from

Theorem 2. The proof of properties 1 to 4 follows from Theorem 3 taking
in mind Remark 3. ⊓⊔

Remark 8. The centro-affine mapping Φi,j (i 6= j) preserves volumes with the
coefficient J(Φi,j) = (j/i)5 and have the inverse mapping Φ−1

i,j = Φj,i. If

(λ1, µ1, α1) ∈ F±
1 then the point (j2λ1, j

2µ1, jα1) (j ∈ N, j 6= 1) is a cross
point of the following subsets: 1) the solution surface F±

j and the parabolic

cylinders λ = λ1

α2
1

α2 and µ = µ1

α2
1

α2, or equivalently 2) the solution surface F±
j ,

the parabolic cylinder λ = λ1

α2
1

α2 and the plane µ = µ1

λ1
λ.

Example 2. If f = g = xr , r > 0, r 6= 1 then the solution surface F±
i is the

graph of a two argument function α = (2(b − a)/ic(λ− 1
r+1 + µ− 1

r+1 ))−
r+1

r−1 , see
Remark 4.

Example 3. In Figs. 2 and 3 the visual examples of solution surfaces are pre-
sented.

Theorem 5. Let functions f and g satisfy the conditions (A1)–(A4). For

given i 6= 2j the solution surface F±
i of the Neumann problem (1.1) is centro-

affine equivalent to the solution surface

F±
2j−1 =

{
(λ, µ, α) : Tf(α, λ) + Tg(α, µ) = (b− a)/j

}

of the Dirichlet problem

x′′ = −λf(x+) + µg(x−), x(a) = 0 = x(b)

under the mapping Φi,2j : R3 → R
3, (λ, µ, α)

Φi,2j7−→ (λ̂, µ̂, α̂), where λ̂ = (2ji )
2λ,

µ̂ = (2ji )
2µ, α̂ = 2j

i α. If i = 2j then F±
i = F±

2j−1 (F±
2 = F±

1 , F±
4 = F±

3 , . . .).
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Figure 2. Centro-affine equivalent solution surfaces F±

i (i = 1, 2, 3 from the left) of
the problem (1.1), where f = g = x2 + x32 and b− a = 2.5.

Figure 3. Two views of the solution surface F±

1
of the problem (1.1), where

f = g = x
1
3 + x41 and b− a = 1.

Proof. Consider i 6= 2j. Suppose (λ, µ, α) ∈ F±
i (α):

iTf(α, λ) + iTg(α, µ) = 2(b− a).

If α̂ = 2j
i α then applying the rescaling formula (2.2) to the previous equation

one has

i
α̂

α
Tf

(
α̂, λ

α̂2

α2

)
+ i

α̂

α
Tg

(
α̂, µ

α̂2

α2

)
= 2(b− a),

2jTf

(
α̂,

(
2j

i

)2

λ

)
+ 2jTg

(
α̂,

(
2j

i

)2

µ

)
= 2(b− a),

jTf(α̂, λ̂) + jTg(α̂, µ̂) = b− a,
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hence (λ̂, µ̂, α̂) ∈ F±
2j−1. Since Φ−1

i,2j = Φ2j,i one obtains that Φi,2j

(
F±
i

)
=

F±
2j−1 and the solution surfaces F±

i and F±
2j−1 are centro-affine equivalent

under the mapping Φi,2j . ⊓⊔

Corollary 1. If i 6= j the solution surface F±
2i−1 is centro-affine equivalent to

the solution surface F±
2j−1 under the mapping Φi,j .

Remark 9. The centro-affine mapping Φi,2j (i 6= 2j) preserves volumes with the

coefficient J(Φi,2j) = 32 (j/i)
5
and has the inverse mapping Φ−1

i,2j = Φ2j,i. If

(λ1, µ1, α1) ∈ F±
1 then the point (4j2λ1, 4j

2µ1, 2jα1) (j ∈ N) is a cross point of
the following subsets: 1) the solution surface F±

2j−1 and the parabolic cylinders

λ = λ1

α2
1

α2 and µ = µ1

α2
1

α2, or equivalently 2) the solution surface F±
2j−1, the

parabolic cylinder λ = λ1

α2
1

α2 and the plane µ = µ1

λ1
λ.

One can prove the following Theorem in a similar manner having in mind
assertion 7 of Theorem 3 and Theorem 5.

Theorem 6. Let functions f and g satisfy the conditions (A1)–(A4). For

given i 6= 2j and α > 0 the branch F±
i (α) of the α-normalized Neumann

problem (1.1), (1.5) is centro-affine equivalent to the branch

F±
2j−1 (2jα/i) = {(λ, µ, α) : Tf(α, λ) + Tg(α, µ) = (b− a)/j}

of the (2ji α)-normalized Dirichlet problem

x′′ = −λf(x+) + µg(x−), x(a) = 0 = x(b)

under the mapping Ωi,2j : R
2 → R

2, (λ, µ)
Ωi,2j7−→ (λ̂, µ̂), where λ̂ = (2ji )

2λ,

µ̂ = (2ji )
2µ. If i = 2j then F±

i (α) = F±
2j−1(α) (F±

2 (α) = F±
1 (α), F±

4 (α) =

F±
3 (α), . . .).

Corollary 2. If i 6= j the α-branch F±
2i−1(α) is centro-affine equivalent to the

( jiα)-branch F±
2j−1(

j
iα) under the mapping Ωi,j .

Remark 10. The centro-affine mapping Ωi,2j (i 6= 2j) preserves areas with the
coefficient J(Ωi,2j) = 16(j/i)4 and has the inverse mapping Ω−1

i,2j = Ω2j,i. If

(λ1, µ1) ∈ F±
1 (α) then the point (4j2λ1, 4j

2µ1) (j ∈ N) is a cross point of the
(2ji α)-branch F±

2j−1(
2j
i α) and the line µ = µ1

λ1
λ.

5 Solution Set of a One-Parameter Nonlinear Oscillator

Let us consider the problem (1.8), where the functions f(x) = h+(x), and
g(x) = h−(−x) (x ≥ 0) satisfy conditions (A1)–(A4). The problem (1.8)
has been extensively studied in literature, overview of the theory can be found
in [10].

A solution set of the problem (1.8) is a set G of all pairs (λ, α) such that
there exists a nontrivial solution x(t) of the problem (1.8) and the condition
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(1.4) fulfils. It follows from Theorem 4 that 1) the solution set G of the problem
(1.8) is a union of solution curves

G±
i =

{
(λ, α) : Tf(α, λ) + Tg(α, λ) =

2(b− a)

i

}
(i ∈ N);

the solution curve G+
i (G−

i ) describes all C2-solutions of the problem (1.8)
which have exactly i zeros in the interval (a, b) and negative (positive) derivative
at the first after t = a zero, −α and α respectively; 2) solution curves G+

i and
G−

i coincide for any i, but solution curves G±
i and G±

j do not intersect if i 6= j.

Figure 4. The solution curves G±

j (j = 1, 2, 3) of the problem (1.8), where

f(x) = h+(x) = x
1
2 + x32, g(x) = h−(−x) = x

1
2 + x32, x ≥ 0 and b− a = 2.5. The

points Aj(j
2λ1, jα1) ∈ G±

j and A′
j(j

2λ1, jα
′
1
) ∈ G±

j lie on the parabolas λ = λ1

α2
1

α2

and λ = λ1

α′2
1

α2 respectively.

Using results on centro-affine mappings described in Theorems 4, 5 and
Remarks 8, 9 we can supplement the theory of similarity of solution branches
(solution curves) outlined in [9, 10, 15].

Theorem 7. Consider the problem (1.8), where the functions f(x) = h+(x)
and g(x) = h−(−x) (x ≥ 0) satisfy the conditions (A1)–(A4).

1. For given i 6= j the solution curves G±
i and G±

j are centro-affine equiv-

alent under the mapping Γi,j : R2 → R
2, (λ, α)

Γi,j7−→ (λ, α), where λ =
( ji )

2λ, α = j
iα.

2. For given i 6= 2j the solution curve G±
i of the Neumann problem (1.8) is

centro-affine equivalent to the solution curve

G±
2j−1 =

{
(λ, α) : Tf (α, λ) + Tg(α, λ) =

b− a

j

}

of the Dirichlet problem x′′ = −λh(x), x(a) = 0 = x(b) under the map-

ping Γi,2j : R2 → R
2, (λ, α)

Γi,2j7−→ (λ̂, α̂), where λ̂ = (2ji )
2λ, α̂ = 2j

i α. If

i = 2j then G±
i = G±

2j−1 (G±
2 = G±

1 , G±
4 = G±

3 , . . .).
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Corollary 3. If i 6= j the solution curve G±
2i−1 is centro-affine equivalent to the

solution curve G±
2j−1 under the mapping Γi,j .

Remark 11. The analogue of the condition (1.4) in the Dirichlet problem is
|x′(a)| = α. Solutions associated with the positive branch satisfy the condition
x′(a) = α > 0. Respectively, solutions associated with the negative branch
satisfy the condition x′(a) = −α < 0.

Remark 12. The centro-affine mapping Γi,j (i 6= j) preserves areas with the
coefficient J(Γi,j) = (j/i)3 and has the inverse mapping Γ−1

i,j = Γj,i. If

(λ1, α1) ∈ G±
1 then the point (j2λ1, jα1) ∈ G±

j (j ∈ N, j 6= 1) is a cross

point of the solution curve G±
j and the parabola λ = λ1

α2
1

α2.

Remark 13. The centro-affine mapping Γi,2j (i 6= 2j) preserves areas with the
coefficient J(Γi,2j) = 8(j/i)3 and has the inverse mapping Γ−1

i,2j = Γ2j,i. If

(λ1, α1) ∈ G±
1 then the point (4j2λ1, 2jα1) (j ∈ N) is a cross point of the

solution curve G±
2j−1 and the parabola λ = λ1

α2
1

α2.

Example 4. The solution curves G±
j (j = 1, 2, 3) of the problem (1.8), where

f = g = x1/3 + x32 and b − a = 2.5, are centro-affine equivalent, as shown in
Figure 4.

Remark 14. Continuing Remark 6 notice that i-th α0-branch of the α0-spect-
rum of the α0-normalized one-parameter nonlinear problem (1.8), (1.5) actually
can be identified with the cross section G±

i (α0) of the solution curve G±
i and

the level line α = α0. The α0-branch G±
i (α0) is a non empty set since due

to the assertions 1 and 4 of Theorem 1 the function Tf(α0, λ) + Tg(α0, λ) is
continuous in λ with the same limits as in (2.3), hence there exists λ0 > 0 such
that Tf(α0, λ0) + Tg(α0, λ0) = 2(b− a)/i.

If f = g then due to the rescaling formula (2.2) the solution curve

G±
i =

{
(λ, α) : Tf (α, λ) = (b− a)/i

}

can be parameterized without self intersections as follows: α = pi(γ), λ = qi(γ)

(γ > 0), where pi(γ) =
iγtf (γ)
b−a and qi(γ) = (

itf (γ)
b−a )2.

Theorem 8. Consider the problem (1.8), where the functions f(x) = h+(x)
and g(x) = h−(−x) (x ≥ 0) satisfy the conditions (A1)–(A4). Suppose

f = g and the function γtf (γ) has only two points of local extrema in the

interval (0,+∞): a point of strict maximum γmax and strict minimum γmin ,

0 < γmax < γmin . For given α0 > 0 and i ∈ N the α0-branch G±
i (α0) of the

α0-normalized problem (1.8), (1.5) is

• a one-point set if 0 < α0 < pi(γmin) or α0 > pi(γmax ),

• a two-point set if α0 = pi(γmin) or α0 = pi(γmax ),

• a three-point set if pi(γmin) < α0 < pi(γmax ).
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Proof. Taking into account (3.2) one has that the function pi(γ) =
iγtf (γ)
b−a

is strictly increasing in the intervals I1 = (0, γmax ], I3 = [γmin ,+∞) and
strictly decreasing in the interval I2 = [γmax , γmin ], pi(Ik) = Jik (k = 1, 2, 3),
Ji1 = (0, pi(γmax )], Ji2 = [pi(γmin), pi(γmax )] and Ji3 = [pi(γmin),+∞). In the
interval Jik (k = 1, 2, 3) the formula λ = (α/p−1

i (α))2 well defines a continuous
function with the graph ℓi,k and the solution curve G±

i can be represented as
the union of the graphs ℓi,k (k = 1, 2, 3) which are continuously “glued” at the
points (qi(γmin), pi(γmin)) and (qi(γmax ), pi(γmax )). Since the parametrization
α = pi(γ), λ = qi(γ) of the solution curve G±

i is without self intersections any
two graphs ℓi,k (k = 1, 2, 3) do not intersect except at may be “gluing” points.
The theorem is proved. ⊓⊔

Example 5. Depicted in Fig. 4 solution curves G±
j (j = 1, 2, 3) illustrate Theo-

rem 8.

Table 1. Centro-affine equivalence formulae for the Neumann and Dirichlet BVP.

x′(a) = 0 = x′(b) (∗) x(a) = 0 = x(b) (∗∗) (∗) → (∗∗)

Centro-affine equivalence of solution surfaces of
the two-parameter nonlinear oscillator x′′ = −λf(x+) + µg(x−),∣∣x′(z)

∣∣ = α at zeroes of a solution x(t)

(λ, µ, α)
Φi,j
7−→ (λ, µ, α), i 6= j (λ, µ, α)

Φi,2j
7−→ (λ̂, µ̂, α̂), i 6= 2j

λ = ( j
i
)2λ, µ = ( j

i
)2µ, α = j

i
α λ̂ = ( 2j

i
)2λ, µ̂ = ( 2j

i
)2µ, α̂ = 2j

i
α

J(Φi,j) = ( j
i
)5, Φ−1

i,j = Φj,i J(Φi,2j) = 32( j
i
)5, Φ−1

i,2j = Φ2j,i

Φi,j(F
±

i ) = F±

j Φi,j(F
±

2i−1
) = F±

2j−1
Φi,2j (F

±

i ) = F±

2j−1

Centro-affine equivalence of branches of the α-normalized
problem x′′ = −λf(x+) + µg(x−),∣∣x′(z)

∣∣ = α at zeroes of a solution x(t), α - fixed

(λ, µ)
Ωi,j
7−→ (λ, µ), i 6= j (λ, µ)

Ωi,2j
7−→ (λ̂, µ̂), i 6= 2j

λ = ( j
i
)2λ, µ = ( j

i
)2µ λ̂ = ( 2j

i
)2λ, µ̂ = ( 2j

i
)2µ

J(Ωi,j) = ( j
i
)4, Ω−1

i,j
= Ωj,i J(Ωi,2j ) = 16( j

i
)4, Ω−1

i,2j
= Ω2j,i

Ωi,j(F
±

i (α)) = Ωi,j(F
±

2i−1
(α)) = Ωi,2j (F

±

i (α)) =

= F±

j ( j
i
α) = F±

2j−1
( j
i
α) = F±

2j−1
( 2j

i
α)

Centro-affine equivalence of solution curves of
the one-parameter nonlinear oscillator x′′ = −λf(x+) + λg(x−),∣∣x′(z)

∣∣ = α at zeroes of a solution x(t)

(λ, α)
Γi,j
7−→ (λ, α), i 6= j (λ, α)

Γi,2j
7−→ (λ̂, α̂), i 6= 2j

λ = ( j
i
)2λ, α = j

i
α λ̂ = ( 2j

i
)2λ, α̂ = 2j

i
α

J(Γi,j) = ( j
i
)3, Γ−1

i,j = Γj,i J(Γi,2j) = 8( j
i
)3, Γ−1

i,2j = Γ2j,i

Γi,j(G
±

i ) = G±

j Γi,j(G
±

2i−1
) = G±

2j−1
Γi,2j(G

±

i ) = G±

2j−1
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6 Conclusions

A two-parameter nonlinear oscillator with the Neumann boundary conditions
exhibits the following features.

• α-spectrum is similar to the classical Fuč́ık spectrum if the functions
Tf (α, λ) and Tg(α, µ) are monotone in λ and µ respectively.

• Otherwise it is possible that α-branches of an α-spectrum have separate
bounded components.

• Different branches F±
i (α) and F±

j (β) of spectra with different normal-
izations may intersect (even coincide). This means that oscillations near
cross-points (λ, µ) may switch instantly from one nodal type to another
one. This behavior was recognized for large asymmetrical oscillators such
as suspension bridges [11, p. 540]. The branches may not intersect as
well.

• A solution set is a union of solution surfaces F±
i , besides any two solution

surfaces F±
i and F±

j (i 6= j) are centro-affine equivalent. For given i 6= 2j

the solution surface F±
i is centro-affine equivalent to the solution surface

F±
2j−1 for the Dirichlet problem. In other words these solution surfaces

have the same shape.

• The technique of affine mappings can be applied to the special cases of a
two-parameter nonlinear oscillator also - α-normalized problem and one-
parameter nonlinear problem. In Table 1, the respective centro-affine
equivalence formulae are collected.
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type spectra. Math. Model. Anal., 13(2):203–210, 2008.
Doi:10.3846/1392-6292.2008.13.203-210.

[6] A. Gritsans and F. Sadyrbaev. Time map formulae and their applications. In
Proceedings LU MII “Mathematics. Differential Equations”, Vol. 8, pp. 72–93,
Riga, 2008.

[7] A. Gritsans and F. Sadyrbaev. Two-parametric nonlinear eigenvalue problems. In
L. Hatvani and T. Krisztin(Eds.), Proc. of the 8’th Colloquium on the Qualitative

Theory of Differential Equations, Szeged, Hungary, 2007, pp. 1–14, 2008.

Math. Model. Anal., 16(1):23–38, 2011.

http://dx.doi.org/10.1016/S0362-546X(01)00613-7
http://dx.doi.org/10.3846/1392-6292.2008.13.203-210


38 A. Gritsans and F. Sadyrbaev

[8] A. Gritsans and F. Sadyrbaev. Nonlinear spectra: the Neumann problem.
Math. Model. Anal., 14(1):33–42, 2009. Doi:10.3846/1392-6292.2009.14.33-42.

[9] P. Korman. Similarity of solution branches for two-point semilinear problems.
In Electron. J. Differ. Equ., Conf. 10, pp. 187–191, 2003.

[10] P. Korman. Global solution branches and exact multiplicity of solutions for two
point boundary value problems. In A. Canada, P. Drabek and A. Fonda(Eds.),
Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3, pp.
547–606. Elsevier Science, North-Holland, Amsterdam, 2006.

[11] A.C. Lazer and P.J. McKenna. Large-amplitude periodic oscillations in sus-
pension bridges: Some new connections with nonlinear analysis. SIAM Rev.,
32(4):537–578, 1990. Doi:10.1137/1032120.

[12] Z. Opial. Sur les périodes des solutions de l’équation différentielle x′′+ g(x) = 0.
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