
Mathematical Modelling and Analysis www.tandf.co.uk/journals/TMMA

Volume 16 Number 1, March 2011, 62–71 Publisher: Taylor&Francis and VGTU

Doi:10.3846/13926292.2011.560195 Online ISSN: 1648-3510

c©Vilnius Gediminas Technical University, 2011 Print ISSN: 1392-6292

ADI Approach to the Particle Diffusion

Problem in Magnetic Fluids∗

V. Polevikova and L. Tobiskab

aChair of Computational Mathematics, Belarusian State University

Independence Ave. 4, 220030 Minsk, Belarus
bInstitute for Analysis and Computational Mathematics,

Otto von Guericke University Magdeburg

PF4120, D-39016 Magdeburg, Germany

E-mail(corresp.): polevikov@bsu.by

E-mail: tobiska@ovgu.de

Received October 13, 2010; revised January 6, 2011; published online March 1, 2011

Abstract. The present study is devoted to the development of an ADI approach to
simulate two-dimensional time-dependent diffusion process of ferromagnetic particles
in magnetic fluids. Specific features of the problem are the Neumann boundary condi-
tions. We construct an ADI scheme of formally second order accuracy approximation
in time and space. It is proved that the scheme is absolutely stable and it has the
accuracy in the energy norm of the second order in time and the order 3

2
in space.

The numerical results of a test problem indicate that the convergence rate in space
is of the second order as well.
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1 Introduction

In recent years, papers related to a study of the diffusion process of ferromag-
netic particles take a considerable place in the hydromechanics of magnetic
fluids. As known, a magnetic fluid is a stable colloidal suspension of Brownian
suspended particles of ferromagnetic in a non-magnetic carrier liquid. Under
the action of a nonuniform magnetic field, the process of particle diffusion with
respect to the carrier liquid takes place, resulting in a redistribution of the
fluid magnetization and exerting thereby a significant influence on the hydro-
statics of magnetic fluids. In [8], the exact solution of the steady-state particle
concentration problem has been given for any closed computational domain in
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any space dimension. Using this solution, two ferrohydrostatic problems on
the influence of the particle diffusion have been solved numerically: on axisym-
metric equilibrium shapes of a free magnetic-fluid surface in the magnetic field
of a cylindrical conductor with direct current [3] and on the instability of a
horizontal magnetic-fluid layer in a uniform magnetic field [7]. In [1, 2] two-
dimensional time-dependent problems on steadying the particle concentration
distribution with time in a rectangular magnetic-fluid domain are solved by
means of a finite-difference scheme of alternating direction (ADI) type.

The present study is devoted to the development of an ADI approach to
time-dependent particle diffusion problems, specific features of which are the
boundary conditions of the Neumann type. It should be noted that the problem
of constructing appropriate boundary conditions for splitting difference schemes
is not easy even in the case of Dirichlet conditions, and requires a very special
analysis [4, 6]. Before, efforts have been undertaken to build ADI schemes for
parabolic-type PDE with Neumann conditions, e.g. in [5] for the heat equation,
in [14] for the convection-diffusion equations, in [13] for the phase field model
equations. Increase of the approximation error order at boundary nodes has
been achieved by means of the usage of the given differential equation. We
consider a Neumann problem for the two-dimensional particle concentration
equation modified by a special change of variables. The ADI technique is
applied to solve the problem for the first time. Notice that in the case of
Dirichlet boundary conditions, the ADI scheme for the modified concentration
equation is studied in [12].

2 Mathematical Model

The magnetic particle mass transfer in a magnetic fluid (the mass conservation
law for Brownian magnetic particles) can be described in dimensionless form
(see [1, 2, 8]) by

∂C

∂t
= ∇ · (∇C − CL(Aξ)∇(Aξ)) , A =

µ0mHc

kT
, (2.1)

where C is the relative volume concentration of the particles, t the dimen-
sionless time, ξ = ξ(x) the dimensionless intensity of magnetic field, x the
space coordinates, µ0 = 4π × 10−7 H/m the magnetic constant, m the mag-
netic moment of a particle, Hc a characteristic magnetic-field intensity in the
fluid volume (e.g. a maximal intensity value), k = 1.3806568× 10−23 J/K the
Boltzmann constant, T the temperature of a particle, L(α) = cothα− 1/α the
Langevin function, A a dimensionless magnetic parameter.

Equation (2.1) is supplemented by the condition describing the imperme-
ability of boundaries by particles, i.e. the particle flux through boundaries is
equal to zero:

∂C

∂n
− L(Aξ)

∂(Aξ)

∂n
C = 0, (2.2)

which is a boundary condition of the Robin type.
As the initial condition, we consider a uniform concentration of particles

C = 1, t = 0. (2.3)
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Equation (2.1) together with the conditions (2.2) and (2.3) represent the
mathematical model of the diffusion process of ferromagnetic particles in mag-
netic fluids. In a steady-state at t→ ∞, problem (2.1)–(2.3) admits the exact
solution [8]

C(x) =
b(x) |V |

∫

V b(x) dV
, b =

sinh(Aξ)

Aξ
≥ 1, (2.4)

where V denotes the fluid domain, |V | its volume, and the coefficient b is a
positive function of spatial variables.

From the numerical modelling point of view, it is not acceptable that the
normal derivative of magnetic intensity in condition (2.2) is a sign-changing
function, because it can lead to computational instability. In order to improve
the mathematical model, we introduce a change of variables

C(x, t) = b(x)u(x, t).

In this paper we are interested in the 2D particle concentration problem
posed in a rectangular domain Ω = [0, `1] × [0, `2]. Then, the problem with
respect to the function u(x, t) is given in the following form

b
∂u

∂t
= L1u+ L2u, x = (x1, x2) ∈ Ω, t > 0;

∂u

∂n
= 0, x ∈ Γ ; u(·, 0) =

1

b
, Lαu =

∂

∂xα

(

b
∂u

∂xα

)

, α = 1, 2, (2.5)

where the Neumann boundary condition is given at the boundary Γ of the
rectangle Ω.

3 ADI Scheme

We consider a more general problem

b
∂u

∂t
= L1u+ L2u+ f, x ∈ Ω, t > 0,

b
∂u

∂xα
= µα, xα = 0; b

∂u

∂xα
= να, xα = `α; α = 1, 2,

u(·, 0) = 1/b, x ∈ Ω, (3.1)

where f = f(x, t), µ1 = µ1(x2, t), µ2 = µ2(x1, t), ν1 = ν1(x2, t), ν2 = ν2(x1, t).
For f = µ1 = µ2 = ν1 = ν2 = 0 problems (2.5) and (3.1) coincide.

On the rectangle Ω we introduce the uniform mesh

ω = {(x1,i1 , x2,i2 ) | xα,iα = iαhα; iα = 0, 1, . . . , Nα; hα = `α/Nα; α = 1, 2}

with the step sizes h1 and h2 in x1 and x2 directions, respectively.
For the approximation of derivatives by finite differences and for mesh func-

tion values, we shall use the notation introduced in [11]. For example, uxα
and

ux̄α
define the forward and backward difference quotient of u with respect

to the variable xα, b
(±0.51) = b(x1 ± 0.5h1, x2), b

(±0.52) = b(x1, x2 ± 0.5h2),
ϕj+1/2 = ϕ(x, t+ 0.5τ) where τ is the mesh step by time.
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Thus, problem (3.1) is approximated on the uniform space-time mesh by us-
ing standard symmetrical finite differences in x1 and x2 directions.The bound-
ary conditions are approximated with a local truncation error O(τ2 + |h|2),
|h| = max(h1, h2), assuming that the differential equation (3.1) is valid at the
boundary nodes. For example, the boundary condition at x1 = 0 is approxi-
mated as

b(+0.51)ux1
= b

∂u

∂x1
+
h1
2
L1u+O(h21) = µ1 +

h1
2

(

b
∂u

∂t
− L2u− f

)

+O(h21).

Then, we represent the approximated boundary condition as follows

b
∂u

∂t
=

2

h1
b(+0.51)ux1

+ L2u+ f −
2

h1
µ1 +O(h1), i1 = 0,

extracting the time derivative in explicit form, similarly to the representation
of the differential equation at inner nodes. The other boundaries and angular
points are handled in the same way. For example, at the lower left angular
point we get for i1 = 0, i2 = 0:

b
∂u

∂t
=

2

h1
b(+0.51)ux1

+
2

h2
b(+0.52)ux2

+ f −
2

h1
µ1 −

2

h2
µ2 +O(h1 + h2).

The main objective of this paper is the construction of an ADI scheme for
problem (3.1). We consider the following ADI scheme

b(x)
yj+1/2 − yj

τ/2
= Λ1y

j+1/2 + Λ2y
j + ϕj+1/2,

b(x)
yj+1 − yj+1/2

τ/2
= Λ1y

j+1/2 + Λ2y
j+1 + ϕj+1/2, ∀x ∈ ω (3.2)

where for α = 1, 2,

Λαy =











(2/hα)b
(+0.5α)yxα

, iα = 0,
(

b(−0.5α)yx̄α

)

xα

, iα = 1, Nα − 1,

−(2/hα)b
(−0.5α)yx̄α

, iα = Nα,

(3.3)

ϕ =



































f, i1 = 1, N1 − 1, i2 = 1, N2 − 1,

f − (2/h1)µ1, i1 = 0, i2 = 1, N2 − 1,

f − (2/h2)µ2, i1 = 1, N1 − 1, i2 = 0,

f + (2/h1)ν1, i1 = N1, i2 = 1, N2 − 1,

f + (2/h2)ν2, i1 = 1, N1 − 1, i2 = N2,

ϕ =



















f − (2/h1)µ1 − (2/h2)µ2, i1 = 0, i2 = 0,

f − (2/h1)µ1 + (2/h2)ν2, i1 = 0, i2 = N2,

f + (2/h1)ν1 − (2/h2)µ2, i1 = N1, i2 = 0,

f + (2/h1)ν1 + (2/h2)ν2, i1 = N1, i2 = N2.

(3.4)
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It is easy to check that scheme (3.2)–(3.4) has a local truncation error of
order O

(

τ2 + |h|2
)

on the mesh ω including all boundary nodes. Since it is of
the form (3.2) not only at internal mesh nodes but also at boundary nodes, the
three-point Thomas algorithm is applied not only along internal lines of the
mesh as in the case of ADI scheme for Dirichlet boundary conditions [12], but
also at the boundaries of the mesh domain. Note that the Thomas algorithm
for scheme (3.2)–(3.4) is absolutely stable.

4 Stability of the ADI Scheme

In order to prove stability of the scheme (3.2)–(3.4), we use the following lemma
given in [12]:

Lemma 1. Let B = B∗ > 0, A ≥ 0 be difference operators on a mesh-function

space H. Then, for all y ∈ Hthe inequality

‖(B − 0.5τA)y‖D ≤ ‖(B + 0.5τA)y‖D (4.1)

is valid, where D = B−1, ‖y‖D = [Dy, y]1/2.

Scheme (3.2) can be written in the form

(B + 0.5τA1) y
j+1/2 = (B − 0.5τA2) y

j + 0.5τϕj+1/2,

(B + 0.5τA2) y
j+1 = (B − 0.5τA1) y

j+1/2 + 0.5τϕj+1/2,

where Aα = −Λα, B = diag{bi1i2}. It follows that

‖(B + 0.5τA1)y
j+1/2‖D ≤ ‖(B − 0.5τA2)y

j‖D + 0.5τ‖ϕj+1/2‖D,

‖(B + 0.5τA2)y
j+1‖D ≤ ‖(B − 0.5τA1)y

j+1/2‖D + 0.5τ‖ϕj+1/2‖D. (4.2)

It is not difficult to verify directly that Aα = A∗
α ≥ 0, B = B∗ > 0, i.e. the

difference operators A1 and A2 are self-adjoint and nonnegative definite, and
the operatorB is self-adjoint and positive definite in the space of mesh functions
H defined on the mesh ω. For example, let us prove the non-negativity of the
operator A1. We define an inner product in H as a discrete analog of the inner
product in the Hilbert space L2(Ω):

[y, z] =
h1h2
4

N1
∑

i1=1

N2
∑

i2=1

((yz)i1−1,i2−1 + (yz)i1,i2−1 + (yz)i1−1,i2 + (yz)i1,i2)

= (y, z) +
h1
2

([y, z]i1=0 + [y, z]i1=N1
) +

h2
2

((y, z)i2=0 + (y, z)i2=N2
)

=
h2
2

N2
∑

i2=1

([y, z]i2−1 + [y, z]i2) , ∀y, z ∈ H
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where

(y, z) = h1h2

N1−1
∑

i1=1

N2−1
∑

i2=1

(yz)i1,i2 , [y, z]i1 =
h2
2

N2
∑

i2=1

((yz)i1,i2−1 + (yz)i1,i2) ,

[y, z]i2 =
h1
2

N1
∑

i1=1

((yz)i1−1,i2 + (yz)i1,i2) , (y, z)i2 = h1

N1−1
∑

i1=1

(yz)i1,i2

= (y, z]i2 − h1(yz)N1,i2 , (y, z]i2 = h1

N1
∑

i1=1

(yz)i1,i2 .

In order to prove that [A1y, y] ≥ 0 for all y ∈ H , it is sufficient to show that
[A1y, y]i2 ≥ 0 for any 0 ≤ i2 ≤ N2. Indeed, using the first Green difference
formula [11] we obtain

[A1y, y]i2 = −[Λ1y, y]i2 = −
(

(b(−0.51)yx̄1
)x1
, y
)

i2

+
h1
2

(

−
2

h1
(b(+0.51)yx1

y)0,i2 +
2

h1
(b(−0.51)yx̄1

y)N1,i2

)

= (b(−0.51)yx̄1
, yx̄1

]i2 ≥ 0, i2 = 0, N2.

As a norm we choose ‖y‖(1) := ‖(B + 0.5τA2)y‖D which is used in [11, 12].
Applying estimates (4.1) and (4.2), we get the chain of inequalities

‖yj+1‖(1) ≤ ‖(B − 0.5τA1)y
j+1/2‖D + 0.5τ‖ϕj+1/2‖D

≤ ‖(B + 0.5τA1)y
j+1/2‖D + 0.5τ‖ϕj+1/2‖D

≤ ‖(B − 0.5τA2)y
j‖D + τ‖ϕj+1/2‖D ≤ ‖yj‖(1) + τ‖ϕj+1/2‖D.

The established estimate

‖yj‖(1) ≤ ‖y0‖(1) +

j−1
∑

k=0

τ‖ϕk+1/2‖D, j = 1, 2, . . . (4.3)

implies that scheme (3.2)–(3.4) is absolutely stable in the energy norm ‖ · ‖(1).

5 Convergence

In order to simplify the notation, we set y := yj, ŷ := yj+1, ȳ =: yj+1/2.
Eliminating yj+1/2 from (3.2), we obtain a two-level formulation of the ADI
scheme

b
ŷ − y

τ
= Λ1

(

y + ŷ

2

)

+ Λ2

(

y + ŷ

2

)

−
τ2

4
Λ1

(

1

b
Λ2yt

)

+ ϕ̄, ∀x ∈ ω. (5.1)

Problems (3.2) and (5.1) are equivalent, therefore estimate (4.3) is valid for the
solution of problem (5.1).

Math. Model. Anal., 16(1):62–71, 2011.
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We investigate the convergence of the scheme (3.2)–(3.4) for ϕ = 0 which
corresponds to the diffusion problem (2.5). Let z = y − u be the error of the
difference solution. It is obvious that for ϕ = 0 the mesh function z satisfies
the problem

b
ẑ − z

τ
= Λ1

(

z + ẑ

2

)

+ Λ2

(

z + ẑ

2

)

−
τ2

4
Λ1

(

1

b
Λ2zt

)

+ ψ, ∀x ∈ ω, (5.2)

where

ψ = −b
û− u

τ
+ Λ1

(

û+ u

2

)

+ Λ2

(

û+ u

2

)

−
τ2

4
Λ1

(

1

b
Λ2ut

)

.

The problem (5.2) is of the form (5.1). In view of inequality (4.3) and using
the assumption z0 = 0, we get the following estimate

‖zj‖(1) ≤

j−1
∑

k=0

τ‖ψk+1/2‖D, j = 1, 2, . . . . (5.3)

At internal nodes, the mesh function ψ represents the approximation error
of the schemes (3.2) and (5.1) for ϕ = 0, i.e. ψ = O

(

τ2 + |h|2
)

. At the left
boundary, it holds

ψ = −b
û− u

τ
+

2

h1

1

2

(

b(+0.51)ux1
+ b(+0.51)ûx1

)

+ Λ2

(u+ û

2

)

−
τ2

4
Λ1

(1

b
Λ2ut

)

= −L1ū+O
(

τ2 + |h|2
)

+
2

h1

1

2

(

b(+0.51)ux1
+ b(+0.51)ûx1

)

= −L1ū+O
(

τ2 + |h|2
)

+
1

h1

(

b
∂u

∂x1
+
h1
2
L1u+ b

∂û

∂x1
+
h1
2
L1û+O

(

h21
)

)

= O
(

τ2 + h1 + h22
)

, i1 = 0.

Similar relations can be shown on the other parts of the boundary. At the
vertices of the domain, we have ψ = O

(

τ2 + |h|
)

. Then, we conclude

‖ψ‖D = [Dψ,ψ]1/2 =

{

(Dψ,ψ) +
h1
2

(

[Dψ,ψ]i1=0 + [Dψ,ψ]i1=N1

)

+
h2
2

(

(Dψ,ψ)i2=0 + (Dψ,ψ)i2=N2

)

}1/2

= O
(

τ2 + |h|2
)

+ |h|1/2O
(

τ2 + |h|
)

= O
(

τ2 + |h|3/2
)

.

From (5.3) it follows that

‖zj‖(1) = O
(

τ2 + |h|3/2
)

, j = 1, 2, . . . (5.4)

and scheme (3.2)–(3.4) for ϕ = 0 converges at the rate O(τ2 + |h|3/2).
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6 Test

The convergence order obtained theoretically does not coincide with the ap-
proximation order of the constructed ADI scheme, thus it is reasonable to check
this fact by numerical experiments. As a test problem, the particle diffusion
problem in a square cavity under the action of a magnetic field of a permanent
magnet with a hyperbola-shaped polar head is chosen (see Fig. 1).

0 1
-0,5

0

0,5

x
2

x
1

magnetmagnetic fluid

Figure 1. Illustration of the problem statement.

The diffusion process is simulated using the solution u(x, t) of the problem
(2.5), where C(x, t) = b(x)u(x, t), b = sinh(Aξ)�(Aξ). The magnetic field
intensity is described by the formula [9, 10]

ξ = ξ(x) =
[

(

x21 + x22 + 2
)2

− 8x21

]−1/4

.

To solve this problem, the ADI scheme (3.2)–(3.4) is applied with step sizes
h = h1 = h2 = 1/N . Computations are performed for the magnetic parameter
A = 10 and mesh partition numbers N = 10, 20, 50, 100, 150, 200, 300, 400,
500, 600, 800, 1000 up to the steady state at t→ ∞. The particle concentration
is considered as steady when the condition

∥

∥Cj+1 − Cj
∥

∥

∞
< 10−8τ is fulfilled,

where ‖·‖
∞

denotes the maximum norm.

In the steady-state, the error z(x) of the numerical solution C(x) is com-
puted as z = C −Cexact , where Cexact is the exact solution of the steady-state
problem which, according to formula (2.4), can be written as

Cexact = b

(
∫ 1

0

∫ 0.5

−0.5

b dx1 dx2

)−1

.

In order to determine the order of convergence of the difference solution to the
exact solution as N → ∞, the dependence

‖z‖ = ahp =
a

Np

Math. Model. Anal., 16(1):62–71, 2011.
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Table 1. Convergence rate in the energy norm.

N 10 20 50 100 150 200

‖z‖(1) 9.5 · 10−1 1.7 · 10−1 2.4 · 10−2 5.7 · 10−3 2.5 · 10−3 1.4 · 10−3

a − 264.86 116.16 74.14 64.88 61.84
p − 2.447 2.172 2.057 2.028 2.019

N 300 400 500 600 800 1000

‖z‖(1) 6.2 · 10−4 3.5 · 10−4 2.2 · 10−4 1.5 · 10−4 8.6 · 10−5 5.5 · 10−5

a 59.90 58.52 57.79 57.33 56.91 56.53
p 2.013 2.009 2.007 2.005 2.004 2.003

Table 2. Convergence rate in the maximum norm.

N 10 20 50 100 150 200

‖z‖
∞

1.3 · 10−1 3.3 · 10−2 5.3 · 10−3 1.3 · 10−3 5.9 · 10−4 3.3 · 10−4

a − 11.32 12.70 13.15 13.23 13.26
p − 1.951 1.989 1.998 1.999 2.000

N 300 400 500 600 800 1000

‖z‖
∞

1.5 · 10−4 8.3 · 10−5 5.3 · 10−5 3.7 · 10−5 2.1 · 10−5 1.3 · 10−5

a 13.27 13.27 13.28 13.28 13.28 13.28
p 2.000 2.000 2.000 2.000 2.000 2.000

has been considered for different meshes, and the unknowns a and p are deter-
mined for each pair of neighbouring values of N .

The results of the test are presented in Tables 1 and 2. They show that
for the given test problem scheme (3.2)–(3.4) demonstrates the second order
accuracy in space.

We also have tested the constructed ADI scheme on two model problems
of generalized form (3.1) with known exact solutions, which are not solutions
of the concentration problems. Our computations confirmed that the scheme
demonstrates the second order accuracy in space and time.

Conclusions

In this paper, an ADI scheme for the 2-D time-dependent magnetic particle dif-
fusion problem defined in a rectangular magnetic-fluid domain with Neumann
boundary conditions, is constructed, analyzed and tested. The theoretical anal-
ysis shows that the scheme is absolutely stable and converges with the second
order in time and 3

2 order in space. For test problems, we found numerically
that the scheme demonstrates the second order in space as well. We hope to
prove this fact analytically in near future.
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[14] D. You. A high order Padé ADI method for unsteady convection-diffusion equa-
tions. In Center for Turbulence Research. Annular Research Briefs 2005, pp.
85–96, Stanford University, USA, 2005.

Math. Model. Anal., 16(1):62–71, 2011.

http://dx.doi.org/10.1016/j.cnsns.2008.04.005
http://dx.doi.org/10.1016/S0377-0427(00)00452-0
http://dx.doi.org/10.3846/1392-6292.2010.15.223-233
http://dx.doi.org/10.3846/1392-6292.2008.13.233-240
http://dx.doi.org/10.1023/A:1017906408433
http://dx.doi.org/10.1201/9780203908518

	Introduction
	Mathematical Model
	ADI Scheme
	Stability of the ADI Scheme
	Convergence
	Test
	References

