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Abstract. We consider coupled nonlinear equations modelling a family of travelling
wave solutions. The goal of our work is to show that the method of internal aver-
aging along characteristics can be used for wide classes of coupled non-linear wave
equations such as Korteweg-de Vries, Klein – Gordon, Hirota – Satsuma, etc. The
asymptotical analysis reduces a system of coupled non-linear equations to a system of
integro – differential averaged equations. The averaged system with the periodical ini-
tial conditions disintegrates into independent equations in non-resonance case. These
equations describe simple weakly non-linear travelling waves in the non-resonance
case. In the resonance case the integro – differential averaged systems describe in-
teraction of waves and give a good asymptotical approximation for exact solutions.

Keywords: Non-linear waves, resonances, averaging, asymptotical integration.
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1 Introduction

It is well-known that (see e. g., [5, 27]) Burgers, Korteweg – de Vries, Klein –
Gordon and other nonlinear evolution and wave equations are obtained from
mathematical models of real physical phenomena in gas and fluid dynamics,
acoustics, nonlinear optics, plasma physics, etc. For example, the method of
construction of asymptotic expansions has been presented in [25, 26] (see also
[6]). The basic idea of this method is to reduce a class of nonlinear partial
differential equations to independent nonlinear equations such as Burgers and
Korteweg – de Vries. Applications of this method in the hydrodynamics and
the plasma physics were discussed in [25, 26]. A rigorous mathematical analy-
sis of the deriving the nonlinear equations from systems of partial differential

http://www.tandf.co.uk/journals/TMMA
http://dx.doi.org/10.3846/13926292.2011.560618
mailto:krylovas@mruni.eu; akr@fm.vgtu.lt
mailto:kriauziene@gmail.com


98 A. Krylovas and R. Kriauzienė

equations has been presented in [11]. Since 80’s the coupled systems of non-
linear evolution and wave equations are considered as important mathematical
models. They are used to describe various physical phenomena. For example,
in [8] it is shown how such coupled Korteweg – de Vries type system as Ito,
Kaup – Boussinesq, Broer – Kaup system, Hirota – Satsuma system, Nutku –
Oguz and others can be derived from the models describing flows in geodesic.
In [19], the system of two coupled nonlinear Klein – Gordon equations describes
the dynamics of a twisted elastic rod.

There are various aspects of investigation of the nonlinear coupled systems.
In this paper we consider coupled nonlinear equations, which can be trans-
formed into the following form:

u′
it + λiu

′
ix = εfi

(

u1, . . . , un, . . . , u
′
jx, . . . , u

′′
kxx, . . .

)

, (1.1)

where ε is a small parameter. On the one hand, we can give an objective context
to the small parameter ε, for example, such as Mach, Reynolds, Rossby and
other known in wave theory numbers (for more reasonings see [16]) and on the
other hand the ε can be an abstract mathematical parameter (for example, a
measure of weakness of dispersion and nonlinearity for equations in [3, 4]).

Let us first consider the Korteweg–de Vries equation

ut − uux + uxxx = 0. (1.2)

We use the transformation:

u(t, x) = u0 + ε̃u1

(

t, x; ε̃
)

, t = ε̃αt, x = ε̃αx (1.3)

and obtain the equation

ε̃α+1u′
1t − ε̃α+1u0u

′
1x + ε̃1+3αu′′′

1x x x = 0. (1.4)

Therefore with λ = −u0, α = 1
2 , f = −u′

1x x x and ε = ε̃2 we have equation
given in form (1.1).

The other class of problems, which can be transformed to (1.1) form, is
analyzed in Section 3. Let us say that we have equation

utt − uxx = εf (ut, ux) . (1.5)

Let take ut = r1, ux = r2, then

{

r2t − r1x = 0,

r1t − r2x = εf (r1, r2) .
(1.6)

Equation (1.6) can be rewritten in the form (1.1).

Let us notice that function f in equation (1.5) can depend not only on ut,
ux, but also on function u:

utt − uxx = εf (u, ut, ux) . (1.7)
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We denote ut + ux = ε̃U, where ε̃ =
√
ε, then equation (1.7) has the following

form:
{

ut + ux = ε̃U,
Ut − Ux = ε̃f (u) .

(1.8)

It is easy to see that nonperturbed (with ε = 0) system (1.1) describes
independent travelling waves ui = ϕi (t− λit). Perturbed system (1.1) usually
has differentiable solution ui (t, x; ε) ∈ Cp (Ωε), where Ωε is a large domain as
ε → 0: Ωε = {(t, x) : t+ |x| = O

(

ε−1
)

}. The construction of uniformly valid
asymptotic solutions of system (1.1) in the domain Ωε is a nontrivial problem
of asymptotic integration. It is particularly complicated in the periodical case
[17].

The periodical problems with quadratic non-linearity are reduced to ana-
logical averaged integro – differential systems [2, 20, 21, 24]. A general form
of non-linearity requires special analysis. In this case the relation of dispersion
and additional requirements for solutions should be studied (for example, in
[19] a coupled Klein – Gordon system is investigated, in [12], non-linear waves
in typical mechanical systems are analyzed; in [22], an analysis of the four-wave
resonant interactions in shallow water is presented).

Our method doesn’t require special limitations for non-linearity type and
allows to construct the averaged systems using general averaging scheme. In
general case, the analysis of asymptotic methods is complicated. Usually the
theorems of existence and uniqueness can not be proved. Therefore the con-
struction of asymptotic expansions without secular terms are the main result
for many problems. It is important to note that the obtained averaged systems
do not have problems of asymptotic integration for a long time interval. The
theorems of existence and uniqueness of exact and asymptotic solution and
their accuracy estimates in a long time interval are proved [11, 15].

In this paper some quite non-trivial nonlinear problems are analyzed, there-
fore a full asymptotic proof is not done there. However, the constructed asymp-
totic expansions do not have secular terms and they are uniformly valid in a
long time interval in both, resonance and non-resonance cases. Also our method
allows to construct higher order expansions.

2 Multicomponent Korteweg – de Vries equation

We consider weakly nonlinear coupled Korteweg – de Vries equation with dis-
persion [28], which was introduced in [18]:















∂u

∂t
− 6u0

∂u

∂x
− 2

n
∑

j=1

v0j
∂vj
∂x

= εfu [u, v] , 0 < ε � 1,

∂vj
∂t

− 2u0

∂vj
∂x

− 2v0j
∂u

∂x
= εfj [u, v] , j = 1, 2, . . . , n,

(2.1)
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where the right–hand side of (2.1) is given by

fu [u, v] = auu
∂u

∂x
− ∂3u

∂x3
+ bu

n
∑

j=1

vj
∂vj
∂x

+

n
∑

j=1

cj
∂2vj
∂x2

,

fj [u, v] = aju
∂vj
∂x

+ bjvj
∂u

∂x
+ dj

∂2u

∂x2
.

System (2.1) is hyperbolic and can be rewritten in Riemann invariants

∂rj
∂t

− λj

∂rj
∂x

= εFj [r, rx, rxx, rxxx] , j = 1, 2, . . . , n, n+ 1, (2.2)

where

u(t, x; ε) = u0 + εu1(t, x; ε), vj(t, x; ε) = v0j + εv1j(t, x; ε), j = 1, 2, . . . , n.

When n=2, then we have

u1 = r3 −
v02
v01

r2, v11 =

(

u0

v02
+

q

2v02

)

r1 +
v01
2v02

r2 +
1

2
r3, (2.3)

v12 =

(

u0

v02
− q

2v02

)

r1 +
v01
2v02

r2 +
1

2
r3,

λ1,2 = 4u0 ± q, q = 2
(

u2
0 +

n
∑

j=1

v20j

)1/2

, λ3,4,...,n,n+1 = 2u0,

Fj [r, rx, rxx, rxxx] =
n+1
∑

i=1

n+1
∑

k=1

ajikri
∂rk
∂x

+
n+1
∑

k=1

bjk
∂2rk
∂x2

+
n+1
∑

k=1

cjk
∂3rk
∂x3

.
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Coefficients ajik, bjk, cjk can be written by using the coefficients of system (2.1).
When n = 2, then we get:

a111 =
bu
v202

(

2u2
0 +

q2

2

)

, a121 =
2buu0v01

v202
, a131 =

2buu0v02
v202

,

a112 =
2buu0v01

v202
, a122 =

2buv
4
01 + auv

4
02

v202v
2
01

, a132 =
2buv

2
01 − auv

2
02

v01v02
,

a123 =
2buv

2
01 − auv

2
02

v02v02
, a212 = −b1 (2u0 + q)

2v01
, a213 =

b1 (2u0 + q)

2v02
,

a222 =
a1v

2
02 − v201b1
v201

, a133 = 2bu + au, a223 =
b1v

2
01 − a1v

2
02

v01v02
,

a233 = a1 + b1, a312 = −b2 (2u0 + q)

2v01
, a322 =

a2v
2
02 − v201b2
v201

,

a332 = −v02 (a2 + b2)

v01
, a313 =

b2 (2u0 − q)

2v02
, a323 =

b2v
2
01 − a2v

2
02

v01v02
,

a333 = a2 + b2, a232 = −v02 (a1 + b1)

v01
, a113 =

2buu0

v02
,

b11 =
u2
0 (c1 + c2)

v202
, b12 =

v201 (c1 + c2)

v202
, b13 = c1 + c2, b22 =

d1v
2
02

v201
,

b23 = d1, b32 =
d2v

2
02

v201
, b33 = d2, c12 = −v302

v301
, c13 = −1.

Let τ = εt, y = x+ λ1t, z = x + λ2t, w = x+ 2u0t. We construct asymptotic
solution of system (2.2) as the following expansions

r1 (t, x; ε) = h01 (τ, y) +

m
∑

k=1

εk (hk1 (τ, y) + sk1 (τ, y, z, w)) + O
(

εm+1
)

, (2.4)

r2 (t, x; ε) = h02 (τ, z) +

m
∑

k=1

εk (hk2 (τ, z) + sk2 (τ, y, z, w)) +O
(

εm+1
)

,

r3,4,...,n+1 (t, x; ε) = h0;3,4,...,n+1 (τ, w) +
m
∑

k=1

εk
(

hk;3,4,...,n+1 (τ, w)

+ sk;3,4,...,n+1 (τ, y, z, w)
)

+O
(

εm+1
)

.

For finding functions hij in (2.4) we solve the averaged systems

∂hij

∂τ
= Mj

[

Fij

[

hi1, . . . , hi,n+1, τ, y, z, w
]]

, (2.5)
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where Mj are the following operators of averaging along characteristics:

M1 [g(τ, y, z, w)] = lim
T→+∞

1

T

∫ T

0

g(τ, y, y − αt, y + βt) dt,

M2 [g(τ, y, z, w)] = lim
T→+∞

1

T

∫ T

0

g(τ, z, z + αt, z + γt) dt,

M3,4,...,n+1 [g(τ, y, z, w)] = lim
T→+∞

1

T

∫ T

0

g(τ, w + δt, w + κt, w) dt,

and

α = λ1 + λ2 = 8u0, β = λ1 − 2u0 = 2u0 + q, γ = λ2 − 2u0 = 2u0 − q,

δ = λ1 + 2u0 = 6u0 + q, κ = λ2 + 2u0 = 6u0 − q.

2.1 Periodical waves

Let h0j (τ, x+ 2π) ≡ h0j (τ, x+ 2π) and
∫ 2π

0
h0j (0, x+ 2π) dx = 0. Then [15]

(∀i 6= j) Mj

[

Dkh0i

]

≡ 0, D ≡ ∂k

∂xk
, k = 0, 1, 2, 3.

Note also, that Mj

[

Dkh0j

]

≡ Dkh0j . Now we can write an averaged system
for functions h01, h02,. . ., h0,n+1:

∂hj0

∂τ
− ajjjhj0

∂hj0

∂xj
− bjj

∂2hj0

∂x2
j

− cjj
∂3hj0

∂x3
j

=
∑

i6=j

∑

k 6=j

ajikMj

[

h0i

∂h0k

∂x

]

,

j = 1, 2, . . . , n+ 1, x1 = y, x2 = z, xj = w, j > 2. (2.6)

For finding functions hk1, hk2,. . ., hk,n+1 for k > 0 we construct analogous
averaged systems. Functions sij in (2.4) can be express directly as Fourier
series:

sij (τ, y, z, w) =
∑

~l=(ly,lz,lw)∈Z3

sij~l (τ) e
i(lyy+lzz+lww) .

2.1.1 Case n = 1

In this case in (2.6) i = j or k = j and the right hand side of (2.6) is equal to
zero. Thus we have two independent Burgers – Korteweg-de Vries equations.

2.1.2 Case n > 1

In this case the right hand side of (2.6) can be equal to zero in non-resonance
case. In resonance case, the averaging operators are described by the following
integrals

Mj

[

h0i

∂h0k

∂x

]

=
1

Λ

∫ Λ

0

h0i (τ, x+ µs)
∂h0k (τ, x+ νs)

∂x
ds,
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where Λ, µ, ν depend on α, β, γ, δ, κ and j. Such systems can be solved
numerically (see, [17]).

Let u0 6= 0. Then system (2.6) is non-resonance (its right hand side is equal
to zero) if coefficients α, β, γ δ and κ satisfy restrictions

α

β
/∈ Q,

α

γ
/∈ Q,

δ

κ
/∈ Q, (2.7)

where Q is a set of rational numbers.

3 System of n weakly nonlinear wave equations

We consider the following system of weakly nonlinear wave equations

ujtt − a2jujxx = εfj (u1t, u1x, . . . , unt, unx) , j = 1, 2, . . . , n. (3.1)

System (3.1) can be rewritten as

r±jt ∓ ajr
±
jx = εf j

(

r+, r−
)

, (3.2)

where r±j = ujt ± ujx, f j (r
+, r−) = fj

(

. . . , 1
2

(

r+i + r−i
)

, 1
2ai

(

r+i − r−i
)

, . . .
)

.

There are various aspects of asymptotic analysis for system (3.1) (see, for
example, [1, 9]). In order to construct asymptotic solution of system (3.2) we
use the following ansatz

r±j (t, x; ε) = r±0j
(

τ, y±j
)

+
m
∑

k=1

εk
(

r±kj
(

τ, y±j
)

+ s±kj
(

τ, y+1 , y
−
1 , . . . , y

+
n , y

−
n

)

)

+O
(

εm+1
)

, (3.3)

where τ = εt, y± = x± ajt. Let all functions in (3.3) be 2π-periodical and aj
are integer numbers. Then the averaged system for functions r±kj is given by

∂r±kj
∂τ

=
1

2π

∫ 2π

0

fkj
(

r+k1
(

τ, y+1
)

, r−k1
(

τ, y−1
)

, . . . , r+kn
(

τ, y+n
)

, r−kn
(

τ, y−n
)

,

τ, y+1 , y
−
1 , . . . , y

+
n , y

−
n )

∣

∣

y+i = y±j + (ai ∓ aj) t

y−i = y±j − (ai ± aj) t

dt. (3.4)

Functions sij can be computed directly by using Fourier series.

3.1 Example

Let be n = 2 and fj = αju1xu2x in (3.1). Then we get in (3.2):

f j =
αj

4a1a2

(

r+1 r
+
2 − (r+1 r

−
2 + r+2 r

−
1 ) + r−1 r

−
2

)

.

Math. Model. Anal., 16(1):97–108, 2011.
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The averaging system is defined by















































∂r+01
∂τ

=
α1

4a1a2

(

r+01
[

r+02
]+

1
− r+01

[

r−02
]+

1
−
[

r−01r
+
02

]+

1
+
[

r−01r
−
02

]+

1

)

,

∂r−01
∂τ

=
α1

4a1a2

(

[

r+01r
+
02

]−

1
−
[

r+01r
−
02

]−

1
− r−01

[

r+02
]−

1
+ r−01

[

r−02
]−

1

)

,

∂r+02
∂τ

=
α2

4a1a2

(

r+02
[

r+01
]+

2
−
[

r+01r
−
02

]+

2
− r+02

[

r−01
]+

2
+
[

r−01r
−
02

]+

2

)

,

∂r−02
∂τ

=
α2

4a1a2

(

[

r+01r
+
02

]−

2
− r−02

[

r+01
]−

2
−
[

r−01r
+
02

]−

2
+ r−02

[

r−01
]−

2

)

,

where [ ]
±
1,2 are the following averaging operators:

[

f
(

τ, y+1 , y
−
1 , y

+
2 , y

−
2

)]+

1
= lim

T→+∞

1

T

∫ T

0

f
(

τ, y+1 , y
+
1 − 2a1t,

y+1 + (a2 − a1)t, y
+
1 − (a2 + a1)t

)

dt,

[

f
(

τ, y+1 , y
−
1 , y

+
2 , y

−
2

)]−

1
= lim

T→+∞

1

T

∫ T

0

f
(

τ, y−1 + 2a1t, y
−
1 ,

y−1 + (a2 − a1)t, y
−
1 − (a2 + a1)t

)

dt,

[

f
(

τ, y+1 , y
−
1 , y

+
2 , y

−
2

)]+

2
= lim

T→+∞

1

T

∫ T

0

f
(

τ, y+2 − (a2 − a1)t,

y+2 − (a2 + a1)t, y
+
2 , y

+
2 − 2a2t

)

dt,

[

f
(

τ, y+1 , y
−
1 , y

+
2 , y

−
2

)]−

2
= lim

T→+∞

1

T

∫ T

0

f
(

τ, y−2 + (a2 + a1)t,

y−2 + (a2 − a1)t, y
−
2 + 2a2t, y

−
2

)

dt.

The condition of the resonance in this case is a1/a2 ∈ Q.

4 Asymptotical analysis of Hirota – Satsuma type system

We consider Hirota – Satsuma type system, which was introduced in [10] (see
also [7, 23]):







ut + uux = δ (vw)x + auxxx, δ 6= 0,
vt − uvx = bvxxx,
wt − uwx = cwxxx.

(4.1)

We are interested in finding a small-amplitude wave solution of (4.1)











u (t, x; ε) = u0 + εu1 (
√
εt,

√
εx; ε) ,

v (t, x; ε) = v0 + εv1 (
√
εt,

√
εx; ε) ,

w (t, x; ε) = w0 + εw1 (
√
εt,

√
εx; ε) .

(4.2)
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Let us denote
√
εt = t,

√
εx = x and insert (4.2) in (4.1), then we get a system

with a small positive parameter ε:










u1t+u0u1x−δw0v1x−δv0w1x = ε (−u1u1x + δ (v1w1)x + au1xx x),

v1t − u0v1x = ε (u1v1x + bv1x x x) ,

w1t − u0w1x = ε (u1w1x + cw1x x x) .

(4.3)

We define several new functions (δ 6= 0, v0 6= 0, w0 6= 0)

u1 = r1 + r2 + r3, v1 =
2u0

δw0
r2, w1 =

2u0

δv0
r3.

Then system (4.3) can be rewritten in Riemann invariants r1,r2,r3 (the line
above variables t and x will be not written):











r1t + r2t + r3t + u0 (r1x + r2x + r3x)− 2u0r2x − 2u0r3x = εFu,

r2t − u0r2x = εFv,

r3t − u0r3x = εFw,

(4.4)

where

Fu = − (r1 + r2 + r3) (r1x + r2x + r3x) +
4u2

0

δw0v0
(r2r3)x

+ a (r1xxx + r2xxx + r3xxx) ,

Fv = (r1 + r2 + r3) r2x + br2xxx, Fw = (r1 + r2 + r3) r3x + cr3xxx.

So we can simplify the first equation of system (4.4)










r1t + u0r1x = εF1,

r2t − u0r2x = εF2,

r3t − u0r3x = εF3,

(4.5)

where F1 = Fu −Fv −Fw , F2 = Fv, F3 = Fw. We find the asymptotic solution
in a long time interval t ∈

[

0, O
(

ε−1
)]

r1 (t, x; ε) = r1 (τ, y) +O (ε) ,

r2,3 (t, x; ε) = r2,3 (τ, z) +O (ε) ,

where τ = εt, y = x− u0t, z = x+ u0t. We construct the averaged system:

∂rj
∂τ

= 〈Fj〉j , j = 1, 2, 3. (4.6)

It can be written in the form (the line above variables rj will be not written)

r1τ + r1r1y − ar1yyy = −〈(r2 + r3) (r2z + r3z)〉1 − 〈r2 + r3〉1 r1y

+

(

4u2
0

δw0v0
− 1

)

(〈r3r2z〉1 + 〈r2r3z〉1) , (4.7)

r2τ − r2r2z − 3 〈r1 + r3〉2 r2z − br2zzz = 0, (4.8)

r3τ − r3r3z − 3 〈r1 + r2〉3 r3z − cr3zzz = 0. (4.9)

Math. Model. Anal., 16(1):97–108, 2011.
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We solve Cauchy problem, when r1 (τ, y) and r2,3 (τ, z) are 2π-periodic func-
tions with respect to variables y and z. Then we get that

r1 (τ, y) = r10 (τ) +
∑

l 6=0

r1l (τ) e
ily,

rj (τ, z) = rj0 (τ) +
∑

m 6=0

rjm (τ) eimz, j = 2, 3.

Averaging operators are the following:

〈r1〉z = lim
T→∞

1

T

∫ T

0

r1 (τ, z − 2u0s) ds,

〈r2,3〉y = lim
T→∞

1

T

∫ T

0

r2,3 (τ, y + 2u0s) ds.

Let’s assume, that λ is an integer number. Then

〈r1〉y =
1

2π

∫ 2π

0

r1 (τ, x− u0s) ds =
1

2π

∫ 2π

0

r1 (τ, y) dy = r10 (τ) ,

〈rj〉z =
1

2π

∫ 2π

0

rj (τ, x+ u0s) ds =
1

2π

∫ 2π

0

rj (τ, z)dz = rj0 (τ) , j = 2, 3.

It is assumed that the initial conditions [rj (0)] ≡ 0 are valid, i. e.

r10 (0) = r20 (0) = r30 (0) = 0. (4.10)

We get

[

〈rkrmz〉y
]

≡ 1

2π

∫ 2π

0

〈rkrmz〉 (τ, y)dy ≡ 0, k,m = 2, 3.

When rj are periodic functions, then we have:

∫ 2π

0

∂rr1 (τ, y)

∂yr
dy ≡ 0,

∫ 2π

0

∂rr2,3 (τ, z)

∂zr
dz ≡ 0, r = 1, 2, . . . (4.11)

Integrating (4.8) and (4.9) from 0 to 2π along z we get that [r2] = [r3] =
const. The averaged system reduces to three independent Korteweg – de Vries
equations:

r1τ + r1r1y − ar1yyy = 0,

r2τ − r2r2z − br2zzz = 0, (4.12)

r3τ − r3r3z − cr3zzz = 0.

This case is non-resonance and the solution is expressed as a sum of three
simple waves

u (t, x; ε) = r1 (εt, x− u0t) + r2 (εt, x+ u0t) + r3 (εt, x+ u0t) +O (ε) ,

where waves rj satisfy the independent Korteweg – de Vries equations (4.12).
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5 Conclusion

In this paper it is presented that the method of internal averaging along char-
acteristics [13, 14] can be used for wide classes of coupled non-linear wave
equations. Also it is shown how to construct the asymptotic expansions which
are uniformly valid in the region t ∼ O

(

ε−1
)

. The averaged system disinte-
grates into independent wave equations such as Burger’s and Korteweg – de
Vries in the non-resonance case. In the resonance case the averaged systems
describe interaction of waves. Moreover the averaged systems does not have
problems of asymptotic integration and can be solved numerically, similar to
[17]. In the literature these systems usually are not solved numerically and
they are treated only as a particular theoretical result of asymptotical analysis
[2, 11, 20, 21, 24, 26].
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