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1 Introduction and Main Results

Qiao [4] presented a completely integrable water wave equation:

ut − uxxt + 3u2ux − u3
x = (4u− 2uxx)uxuxx + (u2 − u2

x)uxxx, (1.1)

where u is the fluid velocity and subscripts denote the partial derivatives. This
equation can be derived from the two-dimensional Euler equation by using the
approximation procedure. He has proved that Eq. (1.1) has Lax pair and bi-
Hamiltonian structures, which implies the integrability of the equation. Qiao
[4, 5] obtained the new cuspons, one-peak solitons, W-shape-peaks and M-
shape-peaks solutions. Apparently, if u(x, t) is a solution of Eq. (1.1), then
−u(x, t) is a solution also. So, when u(x, t) is a W-shape-peak solution of
Eq. (1.1), then −u(x, t) is an M-shape-peak solution. Taking special wave
speed and using integral method, Qiao [4] showed a W-shape-peak explicit
solution as follows:

u(χ) = 2− 3 cosh2 χ+ (coshχ+ 1/3)
√

3(3 coshχ+ 1)(coshχ− 1), (1.2)

where χ = |x− 11
3 t|/2− ln 2.
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Li and Zhang [3] called Eq. (1.1) a singular travelling wave equation. Fol-
lowing them, we call Eq. (1.1) a singular integrable equation. Using bifurcation
method of dynamical systems, Li and Zhang [3] showed that there exist smooth
solitary solutions and periodic waves of Eq. (1.1) when some parameter con-
ditions are satisfied. They explained why the so-called W-shape-peaks and
M-shape-peaks solutions can be created, gave the determined parameter con-
ditions and got exact parametric expressions for all solitary wave solutions of
Eq. (1.1). But they did not obtain exact parametric expressions of the smooth
periodic waves.

In this paper, we employ the method of dynamical systems [3, 6, 7, 8] to
investigate the periodic waves of the Eq. (1.1). Firstly, we derive travelling
wave equation and system. Then we draw bifurcation curves and bifurcation
phase portraits of the travelling wave system. By using these closed orbits,
the exact periodic wave solutions of Eq. (1.1) are obtained. Corresponding
to the special closed orbits the periodic waves have special loop cusp shape.
We call them periodic cusp loop waves. The limit of the periodic cusp loop
waves are cusp loop solitary waves. Our method is similar to the one used in
[3]. Comparing our results with Qiao [4, 5] and Li et al. [3], we note that the
periodic cusp loop waves and cusp loop solitary waves are new.

In order to state our main results in a compact form, for a given constant
c > 0 and g 6= 0, let the ϕ1, ϕ2 and ϕ3 are three simple real zeros of f(ϕ) = ϕ3−
cϕ+g, ϕ√

c (−
√
c < ϕ√

c <
√
c) is a simple real root of (c−ϕ2)2+4gϕ = 4g

√
c,

ϕ−
√
c (−

√
c < ϕ−

√
c <

√
c) is a simple real root of (c − ϕ2)2 + 4gϕ = −4g

√
c,

and the ϕ0 is original value.

Proposition 1. (1) If 8c
√
c

27 < g < 2c
3

√

c
3 and ϕ2 < ϕ0 < ϕ3, then the Eq. (1.1)

has a smooth periodic wave, and the smooth periodic wave becomes a smooth
solitary wave when ϕ0 tends to ϕ2.

(2) If g = 8c
√
c

27 and ϕ2 < ϕ0 < ϕ3, then the Eq. (1.1) has a smooth periodic
wave, and the smooth periodic wave becomes a peakon wave when ϕ0 tends to
ϕ2.

(3) If 0 < g < 8c
√
c

27 and ϕ√
c < ϕ0 < ϕ3, then the Eq. (1.1) has a smooth

periodic wave.

(4) If 0 < g < 8c
√
c

27 and ϕ0 = ϕ√
c, then the Eq. (1.1) has a periodic cusp

wave.
(5) If 0 < g < 8c

√
c

27 and ϕ2 < ϕ0 < ϕ√
c, then the Eq. (1.1) has a periodic

cusp loop wave, and it becomes a cusp loop solitary wave when ϕ0 tends to ϕ2.
Under one of the above conditions, the periodic solution u(x, t) = ϕ(ξ) of

the Eq. (1.1) has parametric type as follows :



















ϕ =
1

4g

(

h0 −

(

z2 − z1n
2
1sn

2(w, k1)

1− n2
1sn

2(w, k1)

)2
)

,

ξ=
4

√

(z4−z2)(z3−z1)

(

z1w+(z2−z1)Π(arcsin(sn(w, k1)), n
2
1, k1)

)

,

(1.3)

where h0 = (c−ϕ2
0)

2+4gϕ0, the z1, z2, z3 and z4 are four real simple real zeros

of G(z) = 1
16g2 (z

4 − 2h0z
2 + 16g2z + h2

0 − 16g2c), w =

√
(z4−z2)(z3−z1)

4 υ is a
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parameter variable, k1 =
√

(z3−z2)(z4−z1)
(z4−z2)(z3−z1)

is the modulus of Jacobian elliptic

function and n1 =
√

z3−z2
z3−z1

.

Proposition 2. (6) If − 2c
3

√

c
3 < g < − 8c

√
c

27 and ϕ1 < ϕ0 < ϕ2, then the
Eq. (1.1) has a smooth periodic wave, and the smooth periodic wave becomes a
smooth solitary wave when ϕ0 tends to ϕ2.

(7) If g = − 8c
√
c

27 and ϕ1 < ϕ0 < ϕ2, then the Eq. (1.1) has a smooth
periodic wave, and the smooth periodic wave becomes a peakon wave when ϕ0

tends to ϕ2.

(8) If − 8c
√
c

27 < g < 0 and ϕ1 < ϕ0 < ϕ−
√
c, then the Eq. (1.1) has a smooth

periodic wave.

(9) If − 8c
√
c

27 < g < 0 and ϕ0 = ϕ−
√
c, then the Eq. (1.1) has a periodic

cusp wave.

(10) If − 8c
√
c

27 < g < 0 and ϕ−
√
c < ϕ0 < ϕ2, then the Eq. (1.1) has

a periodic cusp loop wave, and it becomes a cusp loop solitary wave when ϕ0

tends to ϕ2.
Under one of the above conditions, the periodic solution u(x, t) = ϕ(ξ) of

the Eq. (1.1) has parametric type as follows :



















ϕ = 1
4g

(

h0 −

(

z3 − z4n
2
2sn

2(w, k2)

1− n2
2sn

2(w, k2)

)2
)

,

ξ=
4

√

(z4−z2)(z3−z1)

(

z4w+(z3−z4)Π(arcsin(sn(w, k2)), n
2
2, k2)

)

,

(1.4)

where h0 = (c−ϕ2
0)

2+4gϕ0, the z1, z2, z3 and z4 are four real simple real zeros

of G(z) = 1
16g2 (z

4 − 2h0z
2 − 16g2z + h2

0 − 16g2c), w =

√
(z4−z2)(z3−z1)

4 υ is a

parameter variable, k2 =
√

(z3−z2)(z4−z1)
(z4−z2)(z3−z1)

is the modulus of Jacobian elliptic

function and n2 =
√

z3−z2
z4−z2

.

Example 1. Letting c = 20 and g = 20, then ϕ1
.
= −4.906733293, ϕ2

.
=

1.059459801 ϕ3
.
= 3.847273492 and ϕ√

c

.
= 3.063233706. Taking ϕ0 = 3.5, we

have h0 = 340.0625, z1
.
= −30.10556009, z2

.
= 2.693759228, z3

.
= 7.749999997

and z4
.
= 19.66180086. Substituting these data into (1.3), on ξ − u plane we

draw smooth periodic wave graph as Fig. 1 (a).
Taking ϕ0 = ϕ√

c, we have h0
.
= 357.7708764, z1

.
= −30.42816464, z2 = 0,

z3
.
= 10.61659926 and z4

.
= 19.81156537. Substituting these data into (1.3), on

ξ − u plane we draw periodic cusp wave graph as Fig. 1 (b).
Taking ϕ0 = 1.5, we have h0 = 435.0625, z1

.
= −31.79311168, z2

.
=

−5.543893946, z3 = 17.75 and z4
.
= 19.58700563. Substituting these data

into (1.3), on ξ − u plane we draw periodic cusp loop wave graph as Fig. 1 (c).
Taking ϕ0 = ϕ2, we have h0

.
= 441.1184867, z1

.
= −31.89728257, z2

.
=

−5.857807291 and z3 = z4
.
= 18.87749737. Substituting these data into (1.3),

on ξ − u plane we draw cusp loop solitary wave graph as Fig. 1 (d).

Math. Model. Anal., 16(2):315–325, 2011.
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Figure 1. The smooth periodic wave, periodic cusp wave, periodic cusp loop wave and
cusp loop solitary wave of Eq. (1.1) with c = 20 and g = 20: (a) ϕ0 = 3.5, (b) ϕ0 = ϕ√

c
,

(c) ϕ0 = 1.5, (d) ϕ0 = ϕ2.

Example 2. Letting c = 20 and g = −20, then ϕ1
.
= −3.847273492, ϕ2

.
=

−1.059459801 ϕ3
.
= 4.906733293 and ϕ−

√
c

.
= −3.063233706. Taking ϕ0 =

−3.5, we have h0 = 340.0625, z1
.
= −19.66180086, z2

.
= −7.749999997, z3

.
=

−2.693759228 and z4
.
= 30.10556009. Substituting these data into (1.4), on

ξ − u plane we draw smooth periodic wave graph as Fig. 2 (a).
Taking ϕ0 = ϕ−

√
c, we have h0 = 357.7708764, z1

.
= −19.81156537, z2

.
=

−10.61659926, z3 = 0 and z4
.
= 30.42816464. Substituting these data into

(1.4), on ξ − u plane we draw periodic cusp wave graph as Fig. 2 (b).
Taking ϕ0 = −1.5, we have h0 = 435.0625, z1

.
= −19.58700563, z2 =

−17.75, z3
.
= 5.543893946 and z4

.
= 31.79311168. Substituting these data into

(1.4), on ξ − u plane we draw periodic cusp loop wave graph as Fig. 2 (c).
Taking ϕ0 = ϕ2, we have h0

.
= 441.1184867, z1 = z2

.
= −18.87759249,

z3
.
= 5.857807291 and z4

.
= 31.89728257. Substituting these data into (1.4), on

ξ − u plane we draw cusp loop solitary wave graph as Fig. 2 (d).

2 Preliminary

In order to derive the expressions of the above solutions , we establish a planar
system corresponding to Eq. (1.1). For a given constant c, substituting ξ =
x− ct and u(x, t) = ϕ(ξ) in Eq. (1.1), it follows that

(ϕ2 − (ϕ′)2 − c)(ϕ− ϕ′′)′ + 2ϕ′(ϕ− ϕ′′)2 = 0. (2.1)

Integrating (2.1) once with respect to ξ, we have the following travelling wave
equation.

(ϕ− ϕ′′)(ϕ2 − (ϕ′)2 − c) + g = 0, (2.2)



Exact Periodic Wave Solutions 319

-8. -6. -4. -2. 0. 2. 4. 6. 8.
-6

-4

-2

Ξ

u

(a)

-8. -6. -4. -2. 0. 2. 4. 6. 8.
-6

-4

-2

Ξ

u

(b)

-8. -6. -4. -2. 0. 2. 4. 6. 8.
-6

-4

-2

Ξ

u

(c)

-8. -6. -4. -2. 0. 2. 4. 6. 8.
-6

-4

-2

Ξ

u

(d)

Figure 2. The smooth periodic wave, periodic cusp wave, periodic cusp loop wave and
cusp loop solitary wave of Eq. (1.1) with c = 20 and g = −20: (a) ϕ0 = −3.5, (b)
ϕ0 = ϕ

−

√

c
, (c) ϕ0 = −1.5, (d) ϕ0 = ϕ2.

where g is integral constant. We suppose that g 6= 0, and letting ϕ′ = y, the
Eq. (2.2) becomes a planar system















dϕ

dξ
= y,

dy

dξ
=

ϕ(c− ϕ2 + y2)− g

c− ϕ2 + y2
.

(2.3)

Clearly, on the hyperbola ϕ2 − y2 = c, the system (2.3) is discontinuous. Such
system is called singular travelling wave system [3].

In what follows, without loss of generality we can assume c > 0 and make
the transformation

dξ = (c− ϕ2 + y2)dτ,

where τ is parametric variable. Thus system (2.3) becomes











dϕ

dτ
= (c− ϕ2 + y2)y,

dy

dτ
= ϕ(c− ϕ2 + y2)− g.

(2.4)

Obviously, systems (2.3) and (2.4) have the same first integral

H(ϕ, y) = (c− ϕ2 + y2)2 + 4gϕ = h. (2.5)

Therefore, both systems (2.3) and (2.4) have the same topological phase por-
traits except the hyperbola ϕ2 − y2 = c.

Let f0(ϕ) = ϕ3 − cϕ, then for a fixed c > 0, the ϕ = ±
√

c
3 are extreme

points of f0(ϕ), f0(−
√

c
3 ) = 2c

3

√

c
3 is maximum, and f0(

√

c
3 ) = − 2c

3

√

c
3 is

minimum.
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Let f(ϕ) = ϕ3 − cϕ+ g, then the following facts hold.

(1) f(ϕ) only has a zero ϕ1 < −
√
c when g > 2c

3

√

c
3 . (ϕ1, 0) is a saddle

point of system (2.4).

(2) f(ϕ) has one simple zero ϕ1, a double zero ϕ2 =
√

c
3 , and ϕ1 < −

√
c <

ϕ2 when g = 2c
3

√

c
3 . (ϕ1, 0) is a saddle point, and (ϕ2, 0) is a cusp point of

system (2.4).

(3) f(ϕ) has three simple zeros ϕ1, ϕ2 and ϕ3, and ϕ1 < −
√
c < 0 < ϕ2 <

√

c
3 < ϕ3 <

√
c when 0 < g < 2c

3

√

c
3 . (ϕ1, 0) and (ϕ2, 0) are two saddle points,

and (ϕ3, 0) is a center point of system (2.4).

(4) f(ϕ) has three simple zeros ϕ1, ϕ2 and ϕ3, and −
√
c < ϕ1 < −

√

c
3 <

ϕ2 < 0 <
√
c < ϕ3 when − 2c

3

√

c
3 < g < 0. (ϕ2, 0) and (ϕ3, 0) are two saddle

points, and (ϕ1, 0) is a center point of system (2.4).

(5) f(ϕ) has one simple zero ϕ2, a double zero ϕ1 = −
√

c
3 , and ϕ1 <

√
c <

ϕ2 when g = − 2c
3

√

c
3 . (ϕ1, 0) is a cusp point, and (ϕ2, 0) is a saddle point of

system (2.4).

(6) f(ϕ) only has a zero ϕ1 >
√
c when g < − 2c

3

√

c
3 . (ϕ1, 0) is a saddle

point of system (2.4).

When |g| < 2c
3

√

c
3 and g 6= 0, the homoclinic orbit is defined by H(ϕ, y) =

H(ϕ2, 0) = h2. The homoclinic orbit that passes the point (
√
c, 0) (or (−

√
c, 0))

is defined by g = 8c
√
c

27 (or g = − 8c
√
c

27 ).

According to the above analysis, we obtain the bifurcation phase portraits
of systems (2.3) and (2.4) as given in Fig. 3.

3 The Proof of Main Results

It is well known that the closed orbit of the travelling system gives a periodic
wave solution of the corresponding nonlinear wave equation. To find the exact
parametric expressions of periodic wave solutions, we assume that (ϕ0, 0) is the
initial point of a closed orbit, and it has expression from (2.5) that

y2 = ϕ2 + δ
√

h0 − 4gϕ− c, (3.1)

where δ = ±1 and h0 = H(ϕ0, 0). Let z
2 = h0 − 4gϕ, we have

ϕ =
h0 − z2

4g
, y2 = G(z), (3.2)

where G(z) = 1
16g2 (z

4 − 2h0z
2 + δ16g2z + h2

0 − 16g2c). From first equation of

(2.3), we obtain
dz

dξ
= −

2g

z
y. Let

dξ = zdυ, (3.3)

then
dz

dυ
= −2gy. (3.4)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3. The bifurcation phase portraits of systems (2.3) and (2.4) with c > 0 and

g 6= 0: (a) g < − 2c

3

√

c

3
; (b) g = − 2c

3

√

c

3
; (c) − 2c

3

√

c

3
< g < −

8c
√

c

27
; (d) g = −

8c
√

c

27
; (e)

−
8c

√

c

27
< g < 0; (f) 0 < g <

8c
√

c

27
; (g) g = 8c

√

c

27
; (h) 8c

√

c

27
< g < 2c

3

√

c

3
; (i) g = 2c

3

√

c

3
;

(j) g > 2c

3

√

c

3
.

3.1 The proof of Proposition 1

(1) 8c
√
c

27 < g < 2c
3

√

c
3 and ϕ2 < ϕ0 < ϕ3. In this case, the closed orbit

L1 which passes through the point (ϕ0, 0) and the homoclinic orbit Γ1 which
passes through the point (ϕ2, 0) have no intersection point with the hyperbola
ϕ2 − y2 = c (see Fig. 3 (h)). Thus, corresponding to L1, the Eq. (1.1) has a
smooth periodic wave, and corresponding to Γ1, the Eq. (1.1) has a smooth
solitary wave. The smooth periodic wave becomes a smooth solitary wave when
ϕ0 tends to ϕ2.

(2) g = 8c
√
c

27 and ϕ2 < ϕ0 < ϕ3. In this case, the closed orbit L1 which
passes through the point (ϕ0, 0) has no intersection point with the hyperbola
ϕ2−y2 = c, and The homoclinic orbit Γ1 which passes through the point (ϕ2, 0)
has only one intersection point (

√
c, 0) with the hyperbola ϕ2−y2 = c (see Fig. 3

(g)). Thus, corresponding to L1, the Eq. (1.1) has a smooth periodic wave,
and corresponding to Γ1, the Eq. (1.1) has a peakon. The smooth periodic
wave becomes a peakon when ϕ0 tends to ϕ2.

(3) 0 < g < 8c
√
c

27 and ϕ√
c < ϕ0 < ϕ3, where H(ϕ√

c, 0) = H(
√
c, 0).

In this case, the closed orbit L1 which passes through the point (ϕ0, 0) has
no intersection point with the hyperbola ϕ2 − y2 = c (see Fig. 3 (f)). Thus,

Math. Model. Anal., 16(2):315–325, 2011.
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corresponding to L1, the Eq. (1.1) has a smooth periodic wave.

(4) 0 < g < 8c
√
c

27 and ϕ0 = ϕ√
c. In this case, the closed orbit L1 which

passes through the point (ϕ0, 0) has only a intersection point (
√
c, 0) with the

hyperbola ϕ2 − y2 = c (see Fig. 3 (f)). Thus, corresponding to L1, the Eq.
(1.1) has a periodic cusp wave.

(5) 0 < g < 8c
√
c

27 and ϕ2 < ϕ0 < ϕ√
c.

In this case, the closed orbit L1 which passes through the point (ϕ0, 0)
and the homoclinic orbit Γ1 which passes through the point (ϕ2, 0) have two
intersection points with the hyperbola ϕ2−y2 = c (see Fig. 3 (f)). Thus, corre-
sponding to L1, the Eq. (1.1) has a periodic cusp loop wave, and corresponding
to Γ1, the Eq. (1.1) has a cusp loop solitary wave. The periodic cusp loop wave
becomes cusp loop solitary wave when ϕ0 tends to ϕ2.

Under the one of conditions (1), (2), (3), (4) and (5), the closed orbit L1

has expression as (3.1), where δ = 1, and G(z) = 1
16g2 (z

4 − 2hz2 + 16g2z +

h2− 16g2c) = 1
16g2 (z− z1)(z− z2)(z− z3)(z− z4), z1, z2, z3 and z4 are four real

roots of the G(z) = 0. Thus, the second equation of (3.2) becomes

y = ±
1

4g

√

(z4 − z)(z3 − z)(z − z2)(z − z1), (3.5)

where z1 < z2 ≤ z ≤ z3 < z4.
Substituting (3.5) into (3.4) and integrating it along L1, we have

∫ z

z2

1
√

(z4 − s)(z3 − s)(s− z2)(s− z1)
ds = ∓

1

2

∫ υ

0

ds. (3.6)

By using formula 254.00 in [1], from (3.6), we obtain

z =
z2 − z1n

2
1sn

2(w, k1)

1− n2
1sn

2(w, k1)
, (3.7)

where w =

√
(z4−z2)(z3−z1)

4 υ is a parameter variable, k1 =
√

(z3−z2)(z4−z1)
(z4−z2)(z3−z1)

is

the modulus of Jacobian elliptic function and n1 =
√

z3−z2
z3−z1

.

Substituting (3.7) into (3.3) and integrating it, we have
∫ ξ

0

ds =
4

√

(z4 − z2)(z3 − z1)

∫ w

0

z2 − z1n
2
1sn

2(s, k1)

1− n2
1sn

2(s, k1)
ds. (3.8)

By using formula 400.01 in [1], from (3.8), we obtain

ξ =
4

√

(z4 − z2)(z3 − z1)

(

z1w + (z2 − z1)Π(arcsin(sn(w, k1)), n
2
1, k1)

)

. (3.9)

Thus, from (3.2) we obtain the periodic wave solution u(x, t) = ϕ(ξ) of
parametric type as follows:










ϕ =
1

4g
(h0 − z2),

ξ=
4

√

(z4−z2)(z3−z1)

(

z1w+(z2−z1)Π(arcsin(sn(w, k1)), n
2
1, k1)

)

,
(3.10)

Here we complete the proof of Proposition 1.



Exact Periodic Wave Solutions 323

3.2 The proof of Proposition 2

(6) − 2c
3

√

c
3 < g < − 8c

√
c

27 and ϕ1 < ϕ0 < ϕ2. In this case, the closed orbit
L2 which passes through the point (ϕ0, 0) and the homoclinic orbit Γ2 which
passes through the point (ϕ2, 0) have no intersection point with the hyperbola
ϕ2 − y2 = c (see Fig. 3 (c)). Thus, corresponding to L2, the Eq. (1.1) has a
smooth periodic wave, and corresponding to Γ2, the Eq. (1.1) has a smooth
solitary wave. The smooth periodic wave becomes a smooth solitary wave when
ϕ0 tends to ϕ2.

(7) g = − 8c
√
c

27 and ϕ1 < ϕ0 < ϕ2. In this case, the closed orbit L2 which
passes through the point (ϕ0, 0) has no intersection point with the hyperbola
ϕ2−y2 = c, and the homoclinic orbit Γ2 which passes through the point (ϕ2, 0)
has only one intersection point (−

√
c, 0) with the hyperbola ϕ2 − y2 = c (see

Fig. 3 (d)). Thus, corresponding to L2, the Eq. (1.1) has a smooth periodic
wave, and corresponding to Γ2, the Eq. (1.1) has a peakon. The smooth
periodic wave becomes a peakon when ϕ0 tends to ϕ2.

(8) − 8c
√
c

27 < g < 0 and ϕ1 < ϕ0 < ϕ−
√
c, where H(ϕ−

√
c, 0) = H(−

√
c, 0).

In this case, the closed orbit L2 which passes through the point (ϕ0, 0) has
no intersection point with the hyperbola ϕ2 − y2 = c (see Fig. 3 (e)). Thus,
corresponding to L2, the Eq. (1.1) has a smooth periodic wave.

(9) − 8c
√
c

27 < g < 0 and ϕ0 = ϕ−
√
c.

In this case, the closed orbit L2 which passes through the point (ϕ0, 0) has
only a intersection point (−

√
c, 0) with the hyperbola ϕ2 − y2 = c (see Fig. 3

(e)). Thus, corresponding to L2, the Eq. (1.1) has a periodic cusp wave.

(10) − 8c
√
c

27 < g < 0 and ϕ−
√
c < ϕ0 < ϕ2.

In this case, the closed orbit L2 which passes through the point (ϕ0, 0)
and the homoclinic orbit Γ2 which passes through the point (ϕ2, 0) have two
intersection points with the hyperbola ϕ2−y2 = c (see Fig. 3 (e)). Thus, corre-
sponding to L2, the Eq. (1.1) has a periodic cusp loop wave, and corresponding
to Γ2, the Eq. (1.1) has a cusp loop solitary wave. The periodic cusp loop wave
becomes cusp loop solitary wave when ϕ0 tends to ϕ2.

Under the one of conditions (6), (7), (8), (9) and (10), the closed orbit L2

has expression as (3.1), where δ = −1, and G(z) = 1
16g2 (z

4 − 2hz2 − 16g2z +

h2− 16g2c) = 1
16g2 (z− z1)(z− z2)(z− z3)(z− z4), z1, z2, z3 and z4 are four real

roots of the G(z) = 0. Thus, the second equation of (3.2) becomes

y = ±
1

4|g|

√

(z4 − z)(z3 − z)(z − z2)(z − z1), (3.11)

where z1 < z2 ≤ z ≤ z3 < z4.
Substituting (3.11) into (3.4) and integrating it along L2, we have

∫ z3

z

1
√

(z4 − s)(z3 − s)(s− z2)(s− z1)
ds = ±

1

2

∫ 0

υ

ds. (3.12)

By using formula 255.00 in [1], from (3.12), we obtain

z =
z3 − z4n

2
2sn

2(w, k2)

1− n2
2sn

2(w, k2)
, (3.13)
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where w =

√
(z4−z2)(z3−z1)

4 υ is a parameter variable, k2 =
√

(z3−z2)(z4−z1)
(z4−z2)(z3−z1)

is

the modulus of Jacobian elliptic function and n2 =
√

z3−z2
z4−z2

.

Substituting (3.13) into (3.3) and integrating it, we have

∫ ξ

0

ds =
4

√

(z4 − z2)(z3 − z1)

∫ w

0

z3 − z4n
2
2sn

2(s, k2)

1− n2
2sn

2(s, k2)
ds. (3.14)

By using formula 400.01 in [1], from (3.14), we obtain

ξ=
4

√

(z4−z2)(z3−z1)

(

z4w+(z3−z4)Π(arcsin(sn(w, k2)), n
2
2, k2)

)

. (3.15)

Thus, from (3.2) we obtain the periodic wave solution u(x, t) = ϕ(ξ) of
parametric type as follows:











ϕ =
1

4g
(h0 − z2),

ξ=
4

√

(z4−z2)(z3−z1)

(

z4w+(z3−z4)Π(arcsin(sn(w, k2)), n
2
2, k2)

)

,
(3.16)

Here we complete the proof of Proposition 2.

4 Conclusions

In this paper, we obtained exact periodic wave solutions of Eq. (1.1) by using
the theory of dynamical systems. We draw the bifurcation phase portraits of
the singular travelling wave system (2.3). Through studying shape of periodic
waves, we have shown that the periodic waves of Eq. (1.1) contain smooth
periodic waves, periodic cusp waves and periodic cusp loop waves. The limit
of periodic cusp loop waves are cusp loop solitary waves (see Figs. 1 and 2).
Compare the results with Qiao [4, 5] and Li et al. [3], the periodic cusp loop
waves and cusp loop solitary waves are new. The Eq. (1.1) naturally has a
physical meaning since it is derived from the two dimensional Euler equation
(see [4]). In this paper, we successfully solve the Eq. (1.1) with smooth periodic
waves, periodic cusp waves, periodic cusp loop waves and cusp loop solitary
waves. The solutions of Eq. (1.1) may be applied to neuroscience for providing
a mathematical model and explaining electrophysiological responses of visceral
nociceptive neurons and sensitization of dorsal root reflexes [2].
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