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Abstract. In this paper we prove the existence of two intervals of positive real
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1 Introduction

The purpose of this paper is to establish the existence of two intervals of positive
real parameters λ for which the problem{

Δpu+ λf(x, u) = 0 in Ω,
u = 0 on ∂Ω

(1.1)

where Δpu = div(|∇u|p−2∇u) is the p-Laplacian operator, Ω ⊂ RN (N � 1)
is a non-empty bounded open set with smooth boundary ∂Ω, p > N , λ is
a positive parameter and f : Ω × R → R is an L1- Carathéodory function,

∗ This research was in part supported by grant from IPM (No. 89350020).
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admits three weak solutions, whose norms are uniformly bounded in respect to
λ belonging to one of the two intervals.

We recall that a function f : Ω ×R→ R is said to be L1-Carathéodory if

(δ1) x→ f(x, t) is measurable for every t ∈ R;

(δ2) t→ f(x, t) is continuous for almost every x ∈ Ω;

(δ3) for every � > 0 there exists a function l� ∈ L1(Ω) such that

sup
|t|��

|f(x, t)| � l�(x)

for almost every x ∈ Ω.

We say that u is a weak solution to the problem (1.1) if u ∈W 1,p
0 (Ω) and∫

Ω

|∇u(x)|p−2∇u(x)∇v(x) dx − λ

∫
Ω

f(x, u(x))v(x) dx = 0

for every v ∈ W 1,p
0 (Ω).

In recent years, many publications [1, 7, 8, 9, 10, 11, 12, 14] have appeared
about elliptic problems with Dirichlet boundary conditions which have been
used in a great variety of application. For example, Ramaswamy and Shivaji
in [14] established the existence of three positive solutions for classes of non-
decreasing, p-sublinear functions f belonging to C1([0,∞)) for a p-Laplacian
version of [3], i.e., the problem{−Δpu = λf(u) in Ω,

u = 0 on ∂Ω,
(1.2)

where p > 1, λ > 0 is a parameter and Ω is a bounded domain in RN ; N ≥ 2
with ∂Ω of class C2 and connected. Uniqueness of positive solutions to the
problem (1.2) when p > 1 and f(u)/up−1 is decreasing on (0,+∞) was obtained
in Guo and Webb [11] and Drabek and Hernandez [9]. A natural question is
that, whether uniqueness holds under the weaker condition than f(u)/up−1 is
decreasing for large u. When Ω is a ball, Hai and Shivaji [12] showed that the
answer is affirmative. However, the approach used in [12] depends on ordinary
differential equations techniques and cannot be applied to the case of a general
domain. In [7], Ricceri’s three critical points theorem [15] has been successfully
used to obtain existence of at least three weak solutions to the problem (1.1)
in W 1,p

0 (Ω). In [1], based on Ricceri’s three critical points theorem [15] we
obtained the existence of an interval Λ ⊆ [0,+∞[ and a positive real number q
such that for each λ ∈ Λ problem{

Δpu+ λf(x, u) = a(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

where Ω ⊂ RN (N � 2) is non-empty bounded open set with smooth boundary
∂Ω, p > N, λ > 0, f : Ω×R→ R is a continuous function and positive weight
function a(x) ∈ C(Ω), admits at least three weak solutions whose norms in
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W 1,p
0 (Ω) are less than q that we extended the main result of [4] by using of the

results of [7] to the general case. In [8], the authors employing Ricceri’s three
critical points theorem [16] obtained multiple weak solutions for the following
BVP {−Δpu = λf(x, u) + μg(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a non-empty bounded open set with smooth boundary ∂Ω,
p > N , f, g : Ω × R → R are two Carathéodory functions and λ, μ are two
positive parameters.

Bonanno in [6] established the existence of two intervals of positive real
parameters λ for which the functional Φ+ λΨ has three critical points, whose
norms are uniformly bounded with respect to λ belonging to one of the two
intervals. He illustrated the result for a two point boundary value problem,
and here we are interested to illustrate this result to the problem (1.1). Our
main result is Theorem 1 that ensures the existence of two intervals Λ′1 and Λ′2
such that, for each λ ∈ Λ′1 ∪ Λ′2, the problem (1.1) admits at least three weak
solutions whose norms are uniformly bounded with respect to λ ∈ Λ′2. The
technique used in our proof has been introduced in [7].

As an immediate consequences of Theorem 1, we obtain Corollary 1, in
which the function f has separated variables. The applicability of the result is
illustrated by Example 1. Finally, we present the application of Theorem 1 in
the ordinary case with p = 2, that Example 2 illustrates the result.

2 Main Results

First we recall for the reader’s convenience Theorem 3.1 of [6] (see also [2, 5,
13, 15, 16] for related results) to transfer the existence of three solutions of the
problem (1.1) into the existence of critical points of the Euler functional:

Theorem A ([6, Theorem 3.1]) Let X be a separable and reflexive real Ba-
nach space; Φ : X −→ R a nonnegative continuously Gâteaux differentiable and
sequentially weakly lower semicontinuous functional whose Gâteaux derivative
admits a continuous inverse on X∗; J : X −→ R a continuously Gâteaux dif-
ferentiable functional whose Gâteaux derivative is compact. Assume that there
exists x0 ∈ X such that Φ(x0) = J(x0) = 0 and that

(i) lim‖x‖→+∞(Φ(x) − λJ(x)) = +∞ for all λ ∈ [0,+∞[.

Further, assume that there are r > 0, x1 ∈ X such that :

(ii) r < Φ(x1),

(iii) supx∈Φ−1(]−∞,r[)
w J(x) < r

r+Φ(x1)
J(x1).

Then, for each

λ ∈ Λ1 =

]
Φ(x1)

J(x1)− supx∈Φ−1(]−∞,r[)
w J(x)

,
r

supx∈Φ−1(]−∞,r[)
w J(x)

[
,
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the equation Φ′(u)−λJ ′(u) = 0 has at least three solutions in X and, moreover,
for each h > 1, there exist an open interval

Λ2 ⊆
[
0, hr/

(
rJ(x1)/Φ(x1)− sup

x∈Φ−1(−∞,r[)
w

J(x)
)]

and a positive real number σ such that, for each λ ∈ Λ2, the equation given
above has at least three solutions in X whose norms are less than σ.

Here and in the sequel, X will denote the Sobolev space W 1,p
0 (Ω) with the

norm

‖u‖ =
(∫

Ω

|∇u(x)|p dx
)1/p

.

Put F (x, t) =
∫ t

0
f(x, ξ) dξ for each (x, t) ∈ Ω ×R, and

c = sup
u∈X\{0}

maxx∈Ω |u(x)|
‖u‖ .

Since p > N, X is compactly embedded in C0(Ω), one has c < +∞. In
addition, it is known [18, formula (6b)] that

c �
N−1/p

√
π

[
Γ

(
1 +

N

2

)]1/N(
p− 1

p−N

)1−1/p

[m(Ω)]1/N−1/p,

where Γ denotes the Gamma function and m(Ω) is the Lebesgue measure of
the set Ω, and equality occurs when Ω is a ball.

Now, fix x0 ∈ Ω and pick r1, r2 with 0 < r1 < r2 such that

S(x0, r1) ⊂ S(x0, r2) ⊆ Ω

where S(x0, ri) denotes the ball with center at x0 and radius of ri for i = 1, 2.
Put

k1 = k1(N, p, r1, r2) =
c

r2 − r1

(
(rN2 − rN1 )

πN/2

Γ (1 +N/2)

)1/p

. (2.1)

We formulate our main result as follows:

Theorem 1. Let f : Ω ×R → R be an L1-Carathéodory function, and denote
F (x, t) =

∫ t

0 f(x, ξ) dξ for each (x, t) ∈ Ω × R. Assume that there exist three
positive constants θ, τ and γ with k1τ > θ, γ < p and a function μ ∈ L1(Ω)+
such that

(α1) F (x, t) � 0 for each (x, t) ∈ (Ω \ S(x0, r1))× [0, τ ],

(α2)
∫
Ω supt∈[−θ,θ] F (x, t) dx < 1

2 (
θ

k1τ
)p
∫
S(x0,r1)

F (x, τ) dx,

(α3) F (x, t) � μ(x)(1 + |t|γ) for almost every x ∈ Ω and for all t ∈ R,

Math. Model. Anal., 16(3):390–400, 2011.
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where k1 is given in (2.1). Then, for each

λ ∈ Λ′1 =

] 1
p (

k1τ
c )p∫

S(x0,r1)
F (x, τ) dx − ∫

Ω
supt∈[−θ,θ] F (x, t) dx

,

1
p (

θ
c )

p∫
Ω
supt∈[−θ,θ] F (x, t) dx

[
,

the problem (1.1) admits at least three weak solutions in X and, moreover, for
each h > 1, there exist an open interval

Λ′2 ⊆
[
0,

h
p (

θ
c )

p

( θ
k1τ

)p
∫
S(x0,r1)

F (x, τ) dx − ∫
Ω
supt∈[−θ,θ] F (x, t) dx

]
and a positive real number σ such that, for each λ ∈ Λ′2, the problem (1.1)
admits at least three weak solutions in X whose norms are less than σ.

Proof. In order to apply Theorem A, we begin by setting

Φ(u) =
‖u‖p
p

, J(u) =

∫
Ω

F (x, u(x)) dx

for each u ∈ X. It is well known that J is a continuously Gâteaux differentiable
functional whose Gâteaux derivative at the point u ∈ X is the functional
J ′(u) ∈ X∗, given by

J ′(u)(v) =

∫
Ω

f(x, u(x))v(x) dx

for every v ∈ X . We claim that J ′ : X → X∗ is a compact operator. To
this end, it is enough to show that J ′ is strongly continuous on X . For this,
for fixed u ∈ X let un → u weakly in X as n → +∞, then we have un
converges uniformly to u on Ω as n → +∞ (see [17]). Since F (x, ·) is C1

in R for every x ∈ Ω, so it is continuous in R for every x ∈ Ω, and we get
that F (x, un) → F (x, u) strongly as n → +∞ which follows J ′(un) → J ′(u)
strongly as n → +∞. Thus we proved that J ′ is strongly continuous on X ,
which implies that J ′ is a compact operator by Proposition 26.2 of [19]. Hence
the claim is true.

Moreover, the functional Φ is a continuously Gâteaux differentiable whose
Gâteaux derivative at the point u ∈ X is the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =

∫
Ω

|∇u(x)|p−2∇u(x)∇v(x) dx.

Φ′ admits a continuous inverse on X∗. Indeed, owing to (2.2) of [17], for every
u, v ∈ X there exists a positive constant cp such that

〈|∇u(x)|p−2∇u(x) − |∇v(x)|p−2∇v(x),∇u(x) −∇v(x)〉 � cp|∇u(x)−∇v(x)|p

where 〈·,·〉 denotes the usual inner product in R. So, we have

(Φ′(u)− Φ′(v))(u − v) � cp‖u− v‖p
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for every u, v ∈ X , namely Φ′ is an uniformly monotone operator in X , and
since Φ is coercive and hemicontinuous in X , by applying Theorem 26.A. [19],
we have that Φ′ admits a continuous inverse on X∗. Using again that Φ′ is
monotone, we obtain that Φ is sequentially weakly lower semi continuous (see
[19, Proposition 25.20]).

Thanks to (α3), for each λ > 0 one has that

lim
‖u‖→+∞

(Φ(u)− λJ(u)) = +∞.

Now, set

u∗(x) =

⎧⎪⎨⎪⎩
0, x ∈ Ω \ S(x0, r2)

τ
r2−r1

[r2 −
√∑N

i=1(xi − x0i )
2], x ∈ S(x0, r2) \ S(x0, r1)

τ, x ∈ S(x0, r1)

and r = 1
p (

θ
c )

p. It is easy to see that u∗ ∈ X and, in particular, one has

Φ(u∗) =
1

p
(rN2 − rN1 )

πN/2

Γ (1 +N/2)

(
τ

r2 − r1

)p

.

So, since k1τ > θ, we have Φ(u∗) > r. Moreover, since

sup
x∈Ω

|u(x)| � c‖u‖

for each u ∈ X, one has

sup
u∈Φ−1(]−∞,r[)

w

J(u) = sup
u∈Φ−1(]−∞,r])

J(u) �

∫
Ω

sup
t∈[−θ,θ]

F (x, t) dx,

and since 0 � u∗(x) � τ for each x ∈ Ω, the condition (α1) ensures that∫
Ω\S(x0,r2)

F (x, u∗(x)) dx +

∫
S(x0,r2)\S(x0,r1)

F (x, u∗(x)) dx � 0.

Therefore, owing to our assumptions, we have

sup
u∈Φ−1(]−∞,r[)

w

J(u) = sup
‖u‖p�pr

∫
Ω

F (x, u(x)) dx

�

∫
Ω

sup
|t|�θ

F (x, t) dx <
1

2

(
θ

k1τ

)p ∫
S(x0,r1)

F (x, τ) dx

�

1
p (

θ
c )

p

1
p (

θ
c )

p + 1
p (

k1τ
c )p

∫
S(x0,r1)

F (x, τ) dx �
r

r + Φ(u∗)
J(u∗).

Now, we can apply Theorem A. Taking into account that

Φ(u∗)/
(
J(u∗)− sup

x∈Φ−1(]−∞,r[)
w

J(u∗)
)

�

1
p (

k1τ
c )p∫

S(x0,r1)
F (x, τ) dx − ∫

Ω
supt∈[−θ,θ] F (x, t) dx

;
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r

sup
u∈Φ−1(]−∞,r[)

w J(u)
�

1
p (

θ
c )

p∫
Ω supt∈[−θ,θ] F (x, t) dx

;

hr

r J(u∗)
Φ(u∗) − sup

u∈Φ−1(−∞,r[)
w J(u)

�

h
p (

θ
c )

p

( θ
k1τ

)p
∫
S(x0,r1)

F (x, τ) dx − ∫Ω supt∈[−θ,θ]F (x, t) dx
= ρ;

and with x0 = 0, x1 = u∗, and see Λ′1 ⊆ Λ1, Λ2 ⊆ Λ′2, and also taking into
account that the weak solutions of the problem (1.1) are exactly the solutions
of the equation

Φ′(u)− λJ ′(u) = 0,

from Theorem A it follows that, for each λ ∈ Λ′1, the problem (1.1) admits at
least three weak solutions, and there exist an open interval Λ′2 ⊆ [0, ρ] and a
real positive number σ such that, for each λ ∈ Λ′2, the problem (1.1) admits at
least three weak solutions that whose norms in X are less than σ. Hence, we
have the conclusion. ��

Remark 1. In Theorem 1,

1
p (

k1τ
c )p∫

S(x0,r1)
F (x, τ) dx − ∫

Ω
supt∈[−θ,θ] F (x, t) dx

<

1
p (

θ
c )

p∫
Ω
supt∈[−θ,θ] F (x, t) dx

.

Because, from (α2) we have

2(k1τ)
p

∫
Ω

sup
t∈[−θ,θ]

F (x, t) dx < θp
∫

S(x0,r1)

F (x, τ) dx,

and since k1τ > θ, we get

(θp + (k1τ)
p)

∫
Ω

sup
t∈[−θ,θ]

F (x, t) dx < θp
∫

S(x0,r1)

F (x, τ) dx,

and so

(k1τ)
p

∫
Ω

sup
t∈[−θ,θ]

F (x, t) dx < θp
( ∫
S(x0,r1)

F (x, τ) dx −
∫
Ω

sup
t∈[−θ,θ]

F (x, t) dx

)
.

Hence, multiplying by 1
pcp we obtain

1

p

(
k1τ

c

)p ∫
Ω

sup
t∈[−θ,θ]

F (x, t) dx

<
1

p
(
θ

c
)p
( ∫
S(x0,r1)

F (x, τ) dx −
∫
Ω

sup
t∈[−θ,θ]

F (x, t) dx

)
,
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which follows
1
p (

k1τ
c )p∫

S(x0,r1)
F (x, τ) dx − ∫Ω supt∈[−θ,θ] F (x, t) dx

<

1
p (

θ
c )

p∫
Ω supt∈[−θ,θ] F (x, t) dx

.

Remark 2. In applying Theorem 1, it is enough to know as explicit upper bound
of the constant c. To be precise, we can use formula (2.1) as constant c the right-
hand term of the formula in page 393, so that the constant k1 in Theorem 1 is
numerically well determined.

We now present a particular case of Theorem 1, in which the function f has
separated variables.

Corollary 1. Let f1 ∈ L1(Ω) and f2 ∈ C(R) be two functions. Put F̃ (t) =∫ t

0
f2(ξ) dξ for all t ∈ R, and assume that there exist four positive constants θ,

τ , η and γ with k1τ > θ, γ < p such that

(α′1) f1(x) � 0 for each x ∈ Ω \ S(x0, r1) and f2(t) � 0 for each t ∈ [0, τ ],

(α′2) maxt∈[−θ,θ] F̃ (t)(
∫
Ω
f1(x) dx) <

F̃ (τ)
2 ( θ

k1τ
)p
∫
S(x0,r1)

f1(x) dx,

(α′3) |F̃ (t)| � η(1 + |t|γ) for all t ∈ R,

where k1 is given in (2.1). Then, for each

λ ∈ Λ′1 =

] 1
p (

k1τ
c )p

F̃ (τ)
∫
S(x0,r1)

f1(x) dx −max|t|�θ F̃ (t)(
∫
Ω
f1(x) dx)

,

1
p (

θ
c )

p

max|t|�θ F̃ (t)(
∫
Ω f1(x) dx)

[
,

the problem {
Δpu+ λf1(x)f2(u) = 0 in Ω,
u = 0 on ∂Ω,

(2.2)

admits at least three weak solutions in X and, moreover, for each h > 1, there
exists an open interval

Λ′2 ⊆
[
0,

h
p (

θ
c )

p

( θ
k1τ

)pF̃ (τ)
∫
S(x0,r1)

f1(x) dx −max|t|�θ F̃ (t)(
∫
Ω f1(x) dx)

]
and a positive real number σ such that, for each λ ∈ Λ′2, the problem (2.2)
admits at least three weak solutions in X whose norms are less than σ.

Proof. Set f(x, u) = f1(x)f2(u) for each (x, u) ∈ Ω ×R. Since

F (x, t) = f1(x)F̃ (t), (2.3)

from (α′1) and (α′2) we obtain (α1) and (α2), respectively. From (2.3) and (α′3)
we have

F (x, t) � |f1(x)F̃ (t)| � η|f1(x)|(1 + |t|γ)
for each (x, t) ∈ Ω × R, so condition (α3) follows with μ(x) = η|f1(x)|. Then,
Theorem 1 yields the conclusion. ��

Math. Model. Anal., 16(3):390–400, 2011.
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Example 1. Consider the problem{
div(|∇u|∇u) + λ(e−uu10(11− u)) = 0 in Ω,
u = 0 on ∂Ω,

(2.4)

where Ω = {(x, y) ∈ R2; x2 + y2 < 9}. Taking into account c = 6
√
36/π2,

choosing x0 = (0, 0), r1 = 1, r2 = 2, f1(x) = 1 for all x ∈ Ω and

f2(u) = e−uu10(11− u)

for each u ∈ R, so that k1 = 6
√
324, all the assumptions of Corollary 1, with

p = 3, are satisfied by choosing, for instance θ = 1, τ = 3, γ = 2 and η
sufficiently large. So for each λ ∈ ] 3e

39e−2−1 ,
e

162 [, the problem (2.4) admits

at least three non-trivial weak solutions in W 1,3
0 (Ω) and, moreover, for each

h > 1, there exist an open interval Λ ⊆]0, he
9(729e−2−18) [ and a positive real

number σ such that, for each λ ∈ Λ, the problem (2.4) admits at least three
weak solutions in W 1,3

0 (Ω) whose norms are less than σ.

Finally, we want to point out a simple consequence of Theorem 1 in the
ordinary case with p = 2, and then we present an example of application.

For simplicity, we fix Ω = (a, b) for a, b ∈ R and x0 ∈ Ω. Taking into ac-

count that, in this situation, c = (b−a)
1
2

2 , k1 = ( b−a
2(r2−r1)

)
1
2 and k2 =

1
2 (

b−a
r1(r2−r1)

)
1
2 , we have the following result:

Corollary 2. Let f : [a, b]×R→ R be a continuous function and put F (x, t) =∫ t

0 f(x, ξ) dξ for each (x, t) ∈ [a, b]× R. Assume that there exist three positive

constants θ, τ and γ with ( b−a
2(r2−r1)

)
1
2 τ > θ, γ < 2 and a function μ ∈ L1([a, b])+

such that

(α′′1 ) F (x, t) � 0 for each (x, t) ∈ ((a, b) \ (x0 − r1, x
0 + r1))× [0, τ ],

(α′′2 )
∫ b

a supt∈[−θ,θ] F (x, t) dx < r2−r1
b−a ( θτ )

2
∫ x0+r1
x0−r1

F (x, τ) dx,

(α′′3 ) F (x, t) � μ(x)(1 + |t|γ) for almost every x ∈ (a, b) and for all t ∈ R.

Then, for each

λ ∈ Λ′1 =

]
τ2/(r2 − r1)∫ x0+r1

x0−r1
F (x, τ) dx − ∫ b

a
supt∈[−θ,θ] F (x, t) dx

,

2θ2

(b− a)
∫ b

a
supt∈[−θ,θ]F (x, t) dx

[
,

the problem {
u′′ + λf(x, u) = 0 in (a, b),
u(a) = u(b) = 0,

(2.5)

admits at least three weak solutions in X and, moreover, for each h > 1, there
exists an open interval

Λ′2 ⊆
[
0,

2hθ2

2(r2 − r1)(
θ
τ )

2
∫ x0+r1
x0−r1

F (x, τ) dx − (b − a)
∫ b

a
supt∈[−θ,θ] F (x, t) dx

]
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and a positive real number σ such that, for each λ ∈ Λ′2, the problem (2.5)
admits at least three classical solutions in X whose norms are less than σ.

Example 2. Put

f(x, u) = e−(x+u)u6(7− u)

for each (x, u) ∈ (−3, 3) × R, and choose x0 = 0, r1 = 1, r2 = 2. It is
easy to verify that with θ = 1, τ = 3, γ = 1 and μ(x) for each x ∈ (−3, 3)
sufficiently large, all the assumptions of Corollary 2, are satisfied. So for each
λ ∈ ] 9

2187(e−2−e−4)+e−4−e2 ,
1

3(e2−e−4) [, the problem{
u′′ + λ(e−(x+u)u6(7− u)) = 0 in (−3, 3),
u(−3) = u(3) = 0.

(2.6)

admits at least three non-trivial classical solutions in W 1,2
0 ([−3, 3]) and, more-

over, for each h > 1, there exist an open interval Λ ⊆ ]0, h
32(e−2−e−4)−3(e2−e−4) [

and a positive real number σ such that, for each λ ∈ Λ, the problem (2.6)
admits at least three classical solutions in W 1,2

0 ([−3, 3]) whose norms are less
than σ.

Remark 3. The weak solutions of the problem (1.1) where f is a continuous
function, in the ordinary case with Ω = (a, b), a, b ∈ R and p = 2, by using
standard methods, belong to C2([a, b]) and are classical solutions for the prob-
lem (1.1). Namely, in this case, the classical and the weak solutions of the
problem (1.1) coincide.
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