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Abstract. A simplicial statistical model of multimodal functions is used to con-
struct a global optimization algorithm. The search for the global minimum in the
multidimensional space is reduced to the search over the edges of simplices covering
the feasible region combined with the refinement of the cover. The refinement is per-
formed by subdivision of selected simplices taking into account the point where the
objective function value has been computed at the current iteration. For the search
over the edges the one-dimensional P-algorithm based on the statistical smooth func-
tion model is adapted. Differently from the recently proposed algorithm here the
statistical model is used for modelling the behaviour of the objective function not
over the whole simplex but only over its edges. Testing results of the proposed algo-
rithm are included.
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1 Introduction

Although the majority of global optimization methods are constructed using
various heuristics the approaches based on theoretical models of multimodal
objective functions remain in the focus of theoretically oriented researchers.
To maintain some average optimality of global search statistical models of mul-
timodal objective functions are needed. For the basic theoretical ideas and
their implementations we refer to the monographs [5, 6, 9, 10]. A disadvantage
of global optimization algorithms aimed at some optimality is time-consuming
auxiliary computations which are needed to plan the current iteration. The
computational burden depends on the complexity of computing the optimality
criterion with respect to a model of objective functions, e.g. the probability
to improve the estimate of the global minimum at the current iteration. For
the stochastic models and radial basis functions models, those computations
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include the inversion of a matrix of the order equal to the number of objective
function values computed during the previous iterations [13]. The compu-
tational difficulty, caused by the inversion of large matrices, can be avoided
using the simplified multidimensional statistical models [14, 15], however aux-
iliary computations also in this case remain rather intensive. The reduction
of auxiliary computations is an urgent and challenging problem of statistical-
models-based global optimization.

A sub-class of one-dimensional models, namely the Markovian stochastic
functions, has computationally favourable properties that enable (avoiding the
inversion of large matrices) the development of efficient one-dimensional global
optimization algorithms. An example of that sub-class is the Wiener process
which was the first model used for those purposes [10]. However, for smooth
functions the P-algorithm based on the smooth function model has better con-
vergence properties as shown in [1]. Our idea is to apply the efficient one-
dimensional P-algorithm based on the smooth function model as a subroutine
of a multidimensional search algorithm. The search is performed over the edges
of an iteratively refined simplicial covering of the feasible region. To justify the
use of the P-algorithm for the one-dimensional minimization a reduced statis-
tical model is used modelling the behaviour of the objective function not over
whole feasible region but only over the edges of the current simplicial covering.

Some other advantages of simplicial covering of the feasible region are out-
lined in [17]. Since a simplex is a polyhedron in n-dimensional space with the
minimal number of vertices, simplicial partitions are preferable when the values
of an objective function at all vertices of partitions are used during optimiza-
tion. Simplicial partitions may be used to vertex triangulate feasible regions
of non rectangular shape defined by linear inequality constraints, that may be
used to avoid symmetries in optimization problems [16]. Simplicial statistical
models may be used to select a candidate simplex [8] in simplicial branch and
bound algorithm with Lipschitz bounds [7] that reduces memory requirements
and makes optimization faster compared with the common best-first selection
strategy.

2 The Reduced Simplicial Statistical Model

Let us consider the global minimization (GM) problem minx∈A f(x), A ⊂ R
n,

where f(·) is a continuous function, and A is a compact set. As shown in [12] the
typical for ‘black box’ optimization uncertainty about an objective function can
be represented by a statistical model of f(x). However, the implementation of
multidimensional GM algorithms based on the classical statistical models (ran-
dom fields) is challenging because of time consuming auxiliary computations.
The simplicial statistical model proposed in [15] is computationally simpler
than a Gaussian random field however it can be further simplified as it is
shown below.

Let us briefly introduce the P-algorithm based on simplicial statistical
model [15]. At the (k + 1)-th minimization iteration A is covered by sim-
plices Sj , j = 1, . . . ,m, and k values of the objective function are computed at
the vertices xi of the simplices. A family of Gaussian variables ξx is chosen for
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the statistical model of the objective function where the mean of ξx, x ∈ Sj is
piecewise linear over Sj and the variance of ξx, x ∈ Sj is piecewise quadratic
over Sj. The next value of f(x) is computed at the point of the simplex
selected by maximization of the probability Pk(x) = P{ξx ≤ yok} where
yok = mini=1,...,k f(xi) − ε, and ε denotes an improvement threshold. For a
discussion about the choice of value of ε we refer to [2, 10]. The maximization
of Pk(x) over a particular simplex is facilitated by the properties of Pk(x) con-
sidered as the objective function of the auxiliary maximization problem. The
selected simplex is partitioned by one of several partitioning methods. The
experience in testing a version of the P-algorithm, which is proposed in [15],
has shown that the maximum point of Pk(x) is frequently attained at an edge
of the considered simplex. In such a case the selected simplex is partitioned
into two simplices using the maximum point of Pk(x) as a new vertex of both
descendant simplices. Even in the case when the maximum point is an interior
point of the considered simplex a method of partition using the maximum point
as a pivot point of partition is not necessarily superior to the bisection using
e.g. the middle point of the longest edge for the new vertex of the descendant
simplices.

Let us construct the GM algorithm based on simplicial covering of the
feasible region and the bisection of the selected simplex using a point on an
edge for a new vertex of both descendant simplices. Then for the construction
of the algorithm only the statistical model defined over edges of simplices is
needed. Based on the comparison of various statistical models in [11] and on our
past experience, we chose the statistical smooth function model defined in [1] to
model the behaviour of the objective function over the edges of the simplicial
partition. That model is a stationary Gaussian stochastic process with the
correlation function r(·) satisfying the following regularity assumptions

r(t) = 1− 1

2
λ2t

2 +
1

4!
λ4t

4 + o(t4),∣∣∣d4r(t)
dt4

− λ4

∣∣∣ = O(|t|), −d
2r(t)

dt2
= λ2 +O(

∣∣log−a |t|∣∣),
for finite λ2, λ4, and a > 1, as t→ 0, and r(t) log(t)→ 0, as t→∞.

3 The P-algorithm Based on a Reduced Simplicial Sta-

tistical Model

The search for the global minimum at the (k + 1)-th minimization iteration is
considered. The feasible region is covered by m simplices, and k function values
are computed at the vertices of the simplices. Assume that the next point for
computation of f(x) can be chosen on an edge only, and that the behaviour of
f(x) over an edge is modeled by the smooth function model. The latter assump-
tion implies that the maximum point of maxx P

ij
k (x) = P{ξ(x) ≤ yok} where x

belongs to the segment of line connecting vertices xi and xj can be computed
by a simple formula [1]. An appropriate monotonically increasing function of
maxx P

ij
k (x) can be used to compute the criterion for the selection of simplices.

Let γij is used, which is monotonically related to maxx P
ij
k (x). Therefore, at
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the current search iteration the vertices xi and xj are selected according to the
maximum criterion γij , and the point xk+1 for the next computation of the
objective function value is defined by the following formulas:

xk+1 = xj + τ ij(xi − xj), (3.1)

τ ij =
1

1 +
√

yj−yok+ε
yi−yok+ε

, yi = f(xi), yj = f(xj). (3.2)

The point xk+1 is not only the site of the current computation of the objective
function value but also the pivot of the refinement of the simplicial covering.
The refinement means the bisection of all simplices sharing the selected edge:
the point xk+1 is the common vertex of all new simplices.

The termination condition of a search method is defined according to the
general concept of the method. For example, termination conditions of local
descent methods normally require fulfilment of necessary minimum conditions
with great precision. However such a termination condition would not nec-
essarily be rational to apply for a GM method. Many GM methods are not
very efficient for local refinement of the identified local minimizers. Therefore,
hybrid methods seem favourable where a GM method is used to find rough
approximations of the main minimizers, and the latter are refined by a local
minimization method. Although in the present paper we do not consider the
hybridization, the termination condition will be defined supposing the refine-
ment of the best or several best candidate solutions by a local method.

During the search the edges incident to the best function values found be-
come shortest because of (3.2). The current point for computation of the
objective function value by the P-algorithm is selected on the edge where the
improvement is most probable. Therefore, the selection of the shortest edge
indicates likelihood that it is located close to the true minimizer. Theoretical
investigation of the relation between the length of the shortest edge and the
distance between the best point found and the true minimizer is extremely
difficult. Nevertheless such a relation can be guessed, and it seems reasonable
to stop GM when the length of the selected edge becomes shorter than a pre-
defined Δ guessing that the current best point belongs to the Δ vicinity of a
true minimizer not including other local minimizers.

The choice of the parameter ε is motivated by its influence to the strategy
of search of the original one-dimensional P-algorithm where the increase of ε
makes the search more global, and, contrary, the vanishing of ε implies stronger
concentration of trial points in the vicinity of the best found point ensuring
better asymptotic convergence of the candidate solution to the minimizer [2,
10]. The proposed multidimensional algorithm consists from single steps of one-
dimensional P-algorithm repeated with different input data, and it is supposed
for a rough finding of a global minimizer but not for its precise computation.
Therefore, ε should be chosen sufficiently large. An acceptable empirical rule
of thumb is to choose the value equal to a half of difference between average of
computed objective function values and the current minimum.

The search by the constructed algorithm is illustrated by the results of min-
imization of two well known test functions. The first considered test function
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by Rastrigin is defined by the following formula

f(x) = x21 + x22 − cos(18x1)− cos(18x2), −1.5 ≤ x1 ≤ 0.5, −0.5 ≤ x2 ≤ 1.5,

it has more than 30 local minima in the feasible region. Contour lines of this
function are presented in Figure 1a. The global minimum is equal to −2, and
it is attained at the point (0, 0).
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Figure 1. The Rastrigin function presented by contour lines and the simplicial
covering of the feasible region after termination with Δ = 0.1d

With the parameter defining the very rough termination condition Δ =
0.1d, where d is the length of the diagonal of the feasible region, the algorithm
has stopped after 71 computations of the objective function values. The best
found value was −1.9986 and the distance between the best found point and the
true solution point was 0.001d. The simplicial covering of the feasible region
after termination is shown in Figure 1b. Such a fast location of the global
minimizer with a high precision can be considered as occasional. However, the
continuation of search (by decreasing Δ) shows rational concentration of points
in the attraction regions of the main local minima. In the case of Δ = 0.05d
the algorithm stopped after 182 computations of the objective function values,
and the simplicial covering is shown in Figure 2a; the previous approximation
was not improved. The distribution of 361 point where the objective function
values were computed before stopping with Δ = 0.03d are shown in Figure 2b.
The further concentration of points in the regions of attraction of main local
minima seems not to be rational and can be explained by inadequacy of the
statistical model to describe the local behaviour of the objective function. For
this test function the rational termination condition is defined by Δ = 0.05d.

A similar experiment has been performed with another well known test
function by Branin. The function is defined by the formula

f(x) =

(
x2 − 5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10,

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15,
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Figure 2. The illustration of minimization results of the Rastrigin function:
simplicial covering of the feasible region after termination with Δ = 0.05d and
points where function values were computed after termination with Δ = 0.03d

and its contour lines are presented in Figures 3a. The global minimum of the
Branin function equal to 0.399 is attained at three points (−3.142, 12.275),
(3.142, 2.275), and (9.425, 2.475).
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Figure 3. The Branin function presented by contour lines and the simplicial
covering of the feasible region after termination with Δ = 0.1d

The minimization was performed similarly as in the previous case. The
algorithm with Δ = 0.1d, Δ = 0.05d, and Δ = 0.03d has stopped after 65, 151,
and 293 computations correspondingly. The best function values found were
0.5343, 0.4620 and 0.4056. The distances between the best point found and
the global minimizer were 0.0279d, 0.0096d, and 0.0117d. The search results
are illustrated by Figures 3b and 4. The results of this experiment support the
suggestion of the previous experiment about rationality of choice Δ = 0.05d.
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Figure 4. The illustration of minimization results of the Branin function:
simplicial covering of the feasible region after termination with Δ = 0.05d and
points where function values were computed after termination with Δ = 0.03d

4 Testing Results

Various test problems (n ≥ 2) for global optimization from [3, 4] have been
used in our experiments. Test problems with (n = 2 and n = 3) are numbered
according to [3]. For (n ≥ 4) function names from [4] are used. The results
are shown in Table 1. The known global minimum is denoted by f∗, the
approximation found using the proposed algorithm is indicated as fmin, the
relative distance between the known minimizer and the best point found is
denoted by ΔX/d, the last column shows the number of function evaluations
(NFE).

Let us comment on the testing results for n = 2 and n = 3 first. The
tolerance in the termination condition was set equal to Δ = 0.05d based on
the discussion in the previous section. In all cases except 13 and 23 the global
minimum point has been found with precision exceeding Δ. The number of
function calls is considerably smaller than in the case of a Lipschitz model-based
algorithm with rougher precision [3]; this advantage is gained at the price of
withdrawal of the guaranteed solution with prescribed accuracy (of any problem
with known Lipschitz constant). The failure could occur in specific cases which,
we believe, are not very common in practical applications. For example, the
best found point for test problem 13 was (0.0762, 0.1829) with function value
0.0599. The true minimum point is (0.0115, 0.0144) with the function value
0.0001. Let us mention that the function value at the point (0.01, 0.01) equal to
1.1304 was computed by the algorithm. Such sharp changes of function values
(similar to discontinuity with respect to changes of arguments of size 0.001)
are not supposed by the used statistical model. Similar considerations apply
to test problem 23. For other test problems both approximation of the global
minimum and global minimizer are close to the known ones.

Math. Model. Anal., 16(3):451–460, 2011.
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Table 1. Results of experimental investigation

Test problem n Δ f∗ fmin ΔX/d NFE

1 [3] 2 0.05d −2.5200 −2.5196 0.0009 111
2 [3] 2 0.05d −2.8186 −2.8184 0.0068 156
3 [3] 2 0.05d 0.3979 0.4630 0.0089 202
4 [3] 2 0.05d 0.0000 0.0000 0.0000 157
5 [3] 2 0.05d −0.3967 −0.3658 0.0137 136
6 [3] 2 0.05d −239.6966 −239.6411 0.0119 171
7 [3] 2 0.05d 0.0000 0.2066 0.0052 349
8 [3] 2 0.05d 0.4500 0.8500 0.0168 128
9 [3] 2 0.05d 3.0001 3.0004 0.0003 407
10 [3] 2 0.05d −1.9132 −1.9114 0.0051 175
11 [3] 2 0.05d 0.1690 0.1694 0.0111 243
12 [3] 2 0.05d 1.7442 1.7442 0.0056 299
13 [3] 2 0.05d 0.0001 0.0599 0.1289 192
20 [3] 3 0.05d 0.0000 0.0000 0.0021 4031
21 [3] 3 0.05d −3.8628 −3.8590 0.0416 1002
23 [3] 3 0.05d 0.0155 0.1525 0.1923 1326
24 [3] 3 0.05d −1.0000 −0.9974 0.0103 127
25 [3] 3 0.05d −0.5164 −0.5158 0.0047 391
26 [3] 3 0.05d −36.0000 −35.9919 0.0033 1168

Levy No. 15 [4] 4 0.05d 0.0000 0.8489 0.0129 12834
Schwefel No. 1.2 [4] 4 0.05d 0.0000 0.0000 0.0000 59016
Levy No. 9 [4] 4 0.05d 0.0000 0.0348 0.0168 28178
Levy No. 16 [4] 5 0.05d 0.0000 0.1607 0.0164 > 93573
Levy No. 10 [4] 5 0.05d 0.0000 0.0983 0.0088 > 96551
Schwefel No. 3.7 [4] 5 0.05d 0.0000 0.0000 0.0278 > 78237

Levy No. 15 [4] 4 0.1d 0.0000 2.4479 0.0236 1371
Schwefel No. 1.2 [4] 4 0.1d 0.0000 0.0000 0.0000 4914
Levy No. 9 [4] 4 0.1d 0.0000 0.3474 0.0584 2323
Levy No. 16 [4] 5 0.1d 0.0000 0.9478 0.0319 6328
Levy No. 10 [4] 5 0.1d 0.0000 0.3410 0.0522 13137
Schwefel No. 3.7 [4] 5 0.1d 0.0000 0.0000 0.0278 58278

The number of function calls increases with the dimensionality of problems.
It is natural since also the number of simplices (say regular simplices with edge
length ε) needed to cover a unit cube increases exponentially with n. Assuming
that the number of local minimizers of the targeted objective functions remains
of the same order as in the case of considered two and three dimensional test
functions the tolerance in the termination condition can be increased. The
results in Table 1 show that with Δ = 0.1d the four and five dimensional test
problems were solved successfully when the algorithm stopped after a relatively
modest number of function evaluations.

5 Conclusions

A simplicial covering of the feasible region is suitable for adapting one-
dimensional statistical models of multimodal functions to multidimensional
global optimization. The proposed algorithm outperforms the Lipschitz model
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based algorithm with respect to the number of function calls; this advantage is
gained at the price of possible failures for atypical problems.
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[10] A. Törn and A. Žilinskas. Global optimization. Lecture Notes in Comput. Sci.,
350:1–252, 1989. Doi:10.1007/3-540-50871-6.
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