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Abstract. An elliptic system subject to the homogeneous Dirichlet boundary con-
dition denoting the steady-state system of a two-species predator-prey reaction–
diffusion system with the modified Leslie–Gower and Holling-type II schemes is con-
sidered. By using the Lyapunov–Schmidt reduction method, the bifurcation of the
positive solution from the trivial solution is demonstrated and the approximated ex-
pressions of the positive solutions around the bifurcation point are also given accord-
ing to the implicit function theorem. Finally, by applying the linearized method, the
stability of the bifurcating positive solution is also investigated. The results obtained
in the present paper improved the existing ones.
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1 Introduction

This paper is concerned with the following elliptic system
−∆u = u

(
a− u− mv

k1 + u

)
, x ∈ Ω,

−∆v = v

(
b− v

k2 + u

)
, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(1.1)

where ∆ is the Laplacian operator and Ω is a bounded domain in Rn with
smooth boundary ∂Ω. As a predator-prey model with the modified Leslie–
Gower and Holling-type II schemes, the ODE model corresponding to sys-
tem (1.1) was proposed and studied by Aziz-Alaoui and Okiye [1]. In model
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(1.1), the variables u and v define the population densities of prey and preda-
tor species in the habitat Ω; a, m, k1, b and k2 are positive constants and
the corresponding biological meaning can be referred to [1]. In addition, the
homogeneous Dirichlet boundary condition in (1.1) implies that the exterior
environment is hostile. Note that u and v are population densities, there-
fore the nonnegative solutions of system (1.1) are of importance and interest
[7, 11, 12, 13].

Suppose that q(x) ∈ C(Ω̄) and λ1(q) < λ2(q) ≤ λ3(q) ≤ · · · are the eigen-
values of the eigenvalue problem{

−∆w + q(x)w = λw, x ∈ Ω,
w = 0, x ∈ ∂Ω.

Then λ1(q) is simple and λi(q1) < λi(q2) when q1(x) ≤ q2(x), q1(x) 6≡ q2(x).
In addition, we denote λi(0) by λi. Let f(x) be a positive continuous function
defined on Ω̄ and consider the following boundary value problem{

−∆w + q(x)w = aw − f(x)w2, x ∈ Ω,
w = 0, x ∈ ∂Ω.

(1.2)

Then w = 0 is the unique nonnegative solution of (1.2) if a ≤ λ1(q) and (1.2)
has a unique positive solution when a > λ1(q), see [2, 15]. In addition, we
denote the positive solution of (1.2) when q = 0, f = 1 and a > λ1 by θa.

Recently, Peng and Wang [11] investigated the positive solutions of system
(1.1) in the case that the parameter m is large, and obtained a complete un-
derstanding of the existence, multiplicity and stability of positive solutions. In
addition, Wang and Wang [14] studied the existence and stability of positive so-
lutions of system (1.1) and they found that (1.1) has at least a positive solution
when b > λ1 and a > λ1(mθb/k1) by the fixed point index theory in a positive
cone. Meanwhile, by regarding a as the bifurcation parameter, they obtained
the connected component connecting the semitrivial solution (0, θb) with the
unique positive solution of the limit equation of (1.1) as a → ∞ and the sta-
bility of positive solution of (1.1) close to (0, θb) was also investigated by the
linearized stability theory [4, 9]. In addition, when a, b > λ1 and 0 < m� 1 or
k is big enough, they also gave the existence and stability of positive solutions
bifurcating from the unique positive solution of (1.1) in the case when m = 0.
However, the existence and stability of positive solutions of (1.1) bifurcating
from the zero solution were not discussed in [14]. In this paper, we consider
mainly the existence and stability of positive solutions of (1.1) bifurcating from
the zero solution.

This paper is organized as follows. In Section 2, by applying Lyapunov–
Schmidt reduction process, we demonstrate the existence of positive solutions
of (1.1) bifurcating from the zero solution. In Section 3, according to the
implicit function theorem, the asymptotic expression of positive solutions of
(1.1) bifurcating from the zero solution is given. By analyzing the spectrum of
the linearized operator of (1.1) at the positive solutions obtained in Section 3,
we analyze the stability of the bifurcating positive solutions of (1.1) in Section
4.
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2 Existence of Positive Solutions Bifurcating from the
Zero Solution

In this section, we discuss the existence of positive solutions of system (1.1)
bifurcating from zero solution according to the Lyapunov–Schmidt reduction
method [6, 8]. For system (1.1), we have the following result.

Lemma 1. If (1.1) has positive solutions, then a, b > λ1.

Proof. Suppose that φ1 is the eigenfunction corresponding to the eigenvalue
λ1, that is, φ1 satisfies the following boundary value problem

−∆φ1 = λ1φ1, x ∈ Ω, φ1 = 0, x ∈ ∂Ω. (2.1)

Then from [5] we know that φ1 > 0, x ∈ Ω. Let (u, v) be a positive solution
of (1.1). It follows from the first equation of (1.1) that−φ1∆u = φ1u

(
a− u− mv

k1 + u

)
< aφ1u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2.2)

Thus the Green’s identity, (2.1) and (2.2) imply that

0 =

∫
Ω

(φ1∆u− u∆φ1) dx > (λ1 − a)

∫
Ω

φ1u dx.

The positivity of u and φ1 in Ω gives a > λ1.
Similarly, one can obtain that b > λ1 and thus the proof is complete. ut

Assume that p > n and the Banach spaces X and Y are defined by

X = [W 2,p(Ω) ∩W 1,p
0 (Ω)]× [W 2,p(Ω) ∩W 1,p

0 (Ω)], Y = Lp(Ω)× Lp(Ω).

By virtue of the Sobolev embedding theorem, we know that X ⊂ C1(Ω̄) ×
C1(Ω̄). If we define an operator H : R× R×X → Y by

H(a, b, u, v) =

(
−∆u− u

(
a− u−mv/(k1 + u)

)
−∆v − v

(
b− v/(k2 + u)

) )
,

then system (1.1) is equivalent to the following nonlinear equation

H(a, b, u, v) = 0. (2.3)

Let

L0(u, v) =

(
−∆u− λ1u
−∆v − λ1v

)
, F (a, b, u, v) =

(
(λ1 − a)u
(λ1 − b)v

)
,

G(u, v) =

(
u(u+mv/(k1 + u)

)
v2/(k2 + u)

)
.
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Then equation (2.3) is transformed into

L0(u, v) + F (a, b, u, v) +G(u, v) = 0.

Denote the adjoint operator of L0 by L∗0 . It is easy to see that

N(L0) = N(L∗0) = span

{(
φ1
0

)
,

(
0
φ1

)}
,

where N(A) is the null space of the operator A. Therefore, L0 is a Fredholm
operator and thus X and Y can be decomposed as

X = X1 ⊕X2, Y = Y1 ⊕ Y2, (2.4)

where X1 = Y1 = N(L0), Y2 = R(L0), here R(L0) denotes the range of L0.
According to the decomposition (2.4), we define the projection operators P :
Y → Y1, Q = I−P : Y → Y2. It follows from the Lyapunov–Schmidt reduction
method that equation (2.1) is equivalent to the following equations

PH(a, b, u, v) = 0, (2.5)

QH(a, b, u, v) = 0. (2.6)

Suppose that (u, v) ∈ X. Then from the decomposition (2.4) we know that
u and v can be expressed as u = α(φ1 + u2), v = β(φ1 + v2), where α, β ∈ R,
(u2, v2) ∈ X2. Thus

H(a, b, u, v) = L0(αu2, βv2) + F (a, b, α(φ1 + u2), β(φ1 + v2))

+G(α(φ1 + u2), β(φ1 + v2)),

and hence equation (2.6) is equivalent to

K(u2, v2; a, b, α, β) = 0,

where

K(u2, v2; a, b, α, β) = L0(αu2, βv2) + F (a, b, α(φ1 + u2), β(φ1 + v2))

+G(α(φ1 + u2), β(φ1 + v2)).

It is easy to see K(0, 0;λ1, λ1, 0, 0) = 0. In addition, notice that the product of

the matrix
( 1/α 0

0 1/β

)
and the Frechét derivative [16] of K(u2, v2; a, b, α, β) at

(0, 0;λ1, λ1, 0, 0) is(
1/α 0

0 1/β

)
K(u2,v2)(u2, v2; a, b, α, β)

∣∣∣∣
(0,0;λ1,λ1,0,0)

= L0.

Clearly, L0 : X2 → Y2 has a bounded inverse. Thus, the implicit function
theorem implies that there exist sufficiently small positive number s0 and two
continuous differential functions ū2(a, b, α, β), v̄2(a, b, α, β) such that when |a−
λ1|, |b − λ1|, |α|, |β| < s0, ū2(a, b, α, β) and v̄2(a, b, α, β) satisfy equation (2.6)
and

ū2(λ1, λ1, 0, 0) = 0, v̄2(λ1, λ1, 0, 0) = 0.

Math. Model. Anal., 16(4):558–568, 2011.
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Now suppose that |a− λ1|, |b− λ1|, |α|, |β| < s0 and let

ū = α(φ1 + ū2(a, b, α, β)), v̄ = β(φ1 + v̄2(a, b, α, β)).

Then
T (a, b;α, β) := PH(a, b, ū, v̄) = PF (a, b, ū, v̄) + PG(ū, v̄).

Notice that T (λ1, λ1; 0, 0) = 0 and(
1/α 0

0 1/β

)
Tab(a, b;α, β)

∣∣∣∣
(λ1,λ1,0,0)

=

(
−φ1 0

0 −φ1

)
.

Again, from the implicit function theorem, we know that for |α|, |β| small
enough, there exist two C1 functions ā(α, β), b̄(α, β) such that

PH
(
ā(α, β), b̄(α, β), α(φ1 + ū2(ā(α, β), b̄(α, β), α, β)),

β(φ1 + v̄2(ā(α, β), b̄(α, β), α, β))
)

= 0,

and ā(0, 0) = b̄(0, 0) = λ1. From Lemma 1, we can see that when a, b > λ1 and
α, β > 0, (

(ā(α, β), b̄(α, β), α(φ1 + ū2(ā(α, β), b̄(α, β), α, β)),

β(φ1 + v̄2(ā(α, β), b̄(α, β), α, β))
)

is the positive solution of (1.1) bifurcating from the zero solution.
Next, we give the linear approximation of ā(α, β), b̄(α, β) when α, β > 0 are

small enough. Let

ũ2(α, β) = ū2(ā(α, β), b̄(α, β), α, β) and ṽ2(α, β) = v̄2(ā(α, β), b̄(α, β), α, β).

Then the positive solutions of (1.1) bifurcating from the zero solution can be
expressed as

ū(α, β) = α(φ1 + ũ2(α, β)) and v̄(α, β) = β(φ1 + ṽ2(α, β)).

Now, substituting ā(α, β), b̄(α, β), ū(α, β) and v̄(α, β) into the first equation of
(1.1), one can get

−∆(φ1 + ũ2(α, β)) = (φ1 + ũ2(α, β))

×
(
ā(α, β)− α(φ1 + ũ2(α, β))− mβ(φ1 + ṽ2(α, β))

k1 + α(φ1 + ũ2(α, β))

)
. (2.7)

Differentiating two sides of (2.7) with respect to α and β at (α, β) = (0, 0),
respectively, we have

(∆+ λ1)
∂ũ2(0, 0)

∂α
+ φ1

(
∂ā(0, 0)

∂α
− φ1

)
= 0, (2.8)

(∆+ λ1)
∂ũ2(0, 0)

∂β
+ φ1

(
∂ā(0, 0)

∂β
− mφ1

k1

)
= 0. (2.9)
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Multiplying two sides of (2.8) and (2.9) by φ1 and then integrating them on Ω,
according to the Green’s identity, one can get

∂ā(0, 0)

∂α
=

∫
Ω

φ31(x) dx,
∂ā(0, 0)

∂β
=
m

k1

∫
Ω

φ31(x) dx.

Similarly, we have

∂b̄(0, 0)

∂α
= 0,

∂b̄(0, 0)

∂β
=

1

k2

∫
Ω

φ31(x) dx.

Therefore, when α, β > 0 are sufficiently small,

ā(α, β) = λ1 +

∫
Ω

φ31(x) dx

(
α+

m

k1
β

)
+ o(|α|, |β|), (2.10)

b̄(α, β) = λ1 +
1

k2

∫
Ω

φ31(x) dx β + o(|α|, |β|). (2.11)

Thus, we have the following theorem.

Theorem 1. If 0 < a−λ1 � 1, 0 < b−λ1 � 1, then system (1.1) can bifurcate
a small positive solution from the zero solution parameterized by α, β > 0 small
enough as

u(α, β) = α(φ1 + ū2(ā(α, β), b̄(α, β), α, β)),

v(α, β) = β(φ1 + v̄2(ā(α, β), b̄(α, β), α, β)),

where ā(α, β), b̄(α, β) are given respectively by (2.10), (2.11), and

ū2(λ1, λ1, 0, 0) = 0, v̄2(λ1, λ1, 0, 0) = 0.

Remark 1. By using the fixed point index theory in a positive cone, the reference
[14] showed that system (1.1) has no positive solution when a ≤ λ1(mθb/k1).
In fact, system (1.1) can bifurcate a positive solution from the zero solution
when a− λ1 > 0 and b− λ1 > 0 are sufficiently small.

3 Asymptotic Expression of Small Bifurcating Positive
Solutions

In the previous section, we have obtained the existence of positive solutions of
system (1.1) bifurcating from the zero solution by using the Lyapunov–Schmidt
reduction method. In this section, by virtue of the implicit function theorem,
we give a more accurate asymptotic expression for the small positive solutions
of system (1.1) bifurcating from the zero solution.

Suppose that 0 < a − λ1, b − λ1 � 1 and let a − λ1 = b − λ1 =: r. If
(ur, vr) is a positive solution of (1.1) when 0 < r � 1, then (ur, vr) should be

Math. Model. Anal., 16(4):558–568, 2011.
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a solution of the following elliptic boundary value problem

∆u+ u

(
a− u− mv

k1 + u

)
= 0, x ∈ Ω,

∆v + v

(
b− v

k2 + u

)
= 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,
u, v > 0, x ∈ Ω.

(3.1)

Define the operator D by

D =

(
∆+ λ1 0

0 ∆+ λ1

)
,

and let N(D) and R(D) denote the null space and the range of D, respectively.
Then it is easy to see

N(D) = span{η1, η2},

R(D) =

{
y = (y1, y2)T ∈ Y : 〈ηi, y〉

def
=

∫
Ω

yi(x)φ1(x) dx = 0, i = 1, 2

}
and X can be decomposed as X = N(D) ⊕ R(D), where η1 = (φ1, 0)T and
η2 = (0, φ1)T . Let c∗ =

∫
Ω
φ21(x) dx/

∫
Ω
φ31(x) dx and define α0, β0 by α0 =

(1−mk2/k1)c∗, β0 = k2c∗. If the condition

m <
k1
k2

(3.2)

holds, then α0 > 0 and β0 > 0. Now, we consider the following boundary value
problem in X ∩ R(D):

(∆+ λ1)ξ + φ1 −
(
α0 +

m

k1
β0

)
φ21 = 0, x ∈ Ω,

(∆+ λ1) η + φ1 −
1

k2
β0φ

2
1 = 0, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω.

(3.3)

In virtue of the definitions of α0 and β0, and notice thatD is a bijective mapping
from X ∩ R(D) to R(D), we can obtain easily the following result:

Lemma 2. Boundary value problem (3.3) has a unique solution (ξ0(x), η0(x))
in Z ∩ R(D), where Z = H2

0 (Ω)×H2
0 (Ω) and

H2
0 (Ω) = {y ∈ L2(Ω): y′, y′′ ∈ L2(Ω), y = 0 on ∂Ω}.

Theorem 2. If the condition (3.2) holds, then there exists a constant r∗ > 0
and a unique continuously differential mapping r → (ξr, ηr, αr, βr) from [0, r∗]
to (X ∩ R(D))2 × (R+)2 such that system (3.1) has a unique positive solution
parameterized by r as

ur = αrr(φ1 + rξr), vr = βrr(φ1 + rηr), r ∈ (0, r∗], (3.4)

and
〈φ1, ξr〉 = 〈φ1, ηr〉 = 0.
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Proof. Define F = (F1, F2, F3, F4) : Y × R3 → X × R2 by

F1(ξ, η, α, β, r) = (∆+ λ1)ξ + φ1 + rξ

− (φ1 + rξ)

[
α(φ1 + rξ) +

mβ(φ1 + rη)

k1 + rα(φ1 + rξ)

]
,

F2(ξ, η, α, β, r) = (∆+ λ1)η + φ1 + rη − (φ1 + rη)
β(φ1 + rη)

k2 + rα(φ1 + rξ)
,

F3(ξ, η, α, β, r) = 〈φ1, ξ〉, F4(ξ, η, α, β, r) = 〈φ1, η〉.

Then we have

F (ξ0, η0, α0, β0, 0) =


(∆+ λ1)ξ0 + φ1 −

(
α0 + m

k1
β0

)
φ21

(∆+ λ1) η0 + φ1 − 1
k2
β0φ

2
1

〈φ1, ξ0〉
〈φ1, η0〉

 = 0,

and from [16] we know that the Frechét derivative of F at (ξ0, η0, α0, β0, 0) is

D(ξ,η,α,β)F (ξ0, η0, α0, β0, 0) =


∆+ λ1 0 −φ21 −m

k1
φ21

0 ∆+ λ1 0 − 1
k2
φ21

〈φ1, ·〉 0 0 0

0 〈φ1, ·〉 0 0

 .

Notice that φ21(x) 6∈ R(∆ + λ1). Therefore, D(ξ,η,α,β)F (ξ0, η0, α0, β0, 0) is a
bijective mapping from X × R2 to Y × R2. Thus, it follows from the implicit
function theorem [3, 6, 16] that there exist a r∗ > 0 and a unique continuously
differential mapping r → (ξr, ηr, αr, βr) from [0, r∗] to (Y ∩ R(D)) × R2 such
that

F (ξr, ηr, αr, βr, r) ≡ 0, r ∈ [0, r∗].

An easy calculation shows that (ur, vr) given by (3.4) solves the boundary value
problem (3.1) and this completes the proof. ut

4 Stability of Small Bifurcating Positive Solutions

Suppose that 0 < r � 1 and (ur, vr) is the positive solution of system (1.1)
given by (3.4). Then the linearized system of system (1.1) at (ur, vr) is

∆u+

(
a− 2ur −

mvr
k1 + ur

+
murvr

(k1 + ur)2

)
u− mur

k1 + ur
v = 0,

∆v +
v2r

(k2 + ur)2
u+

(
b− 2vr

k2 + ur

)
v = 0.

(4.1)

Define the operator A(r) : D(A(r))→ Y with domain D(A(r)) ⊆ X by

A(r) =

(
∆+ (a− 2ur − mvr

k1+ur
+ murvr

(k1+ur)2
) − mur

k1+ur

v2r
(k2+ur)2

∆+ (b− 2vr
k2+ur

)

)
.

Math. Model. Anal., 16(4):558–568, 2011.
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From [10] we know that A(r) is an infinitesimal generator of a strong continuous
semigroup and A(r) is also a self-adjoint operator. In addition, the eigenvalue
problem corresponding to system (4.1) is given by

(A(r)− λI)(y, z)T = 0, 0 6= (y, z) ∈ D(A(r)), (4.2)

where I is the identity operator. It is well known that (ur, vr) is asymptotically
stable if all the eigenvalues of (4.2) locate in the left-half complex plane and
(ur, vr) is unstable if (4.2) has at least one root locating the right-half complex
plane. In the following, we give a stability result on the positive solution of
(1.1) given by (3.4).

Theorem 3. If m < k1/k2 and 0 < r∗ � 1, then the bifurcating positive
solution (ur, vr) of system (1.1) is asymptotically stable for r ∈ (0, r∗].

Proof. If we ignore a scalar factor, then for r ∈ (0, r∗] the solution (y, z) of
the eigenvalue problem (4.2) can be represented as

y = φ1 + rγ, 〈φ1, γ〉 = 0, z = cφ1 + rδ, 〈φ1, δ〉 = 0, (4.3)

where c is a complex number. Rewrite the eigenvalue problem (4.2) into
(
∆+ a− 2ur −

mvr
k1 + ur

+
murvr

(k1 + ur)2

)
y − mur

k1 + ur
z = λy,

v2r
(k2 + ur)2

y +

(
∆+ b− 2vr

k2 + ur

)
z = λz,

(4.4)

with 0 6= (y, z) ∈ X. From Theorem 2 and (4.3), we have

ur = αrrφ1+O(r2), vr = βrrφ1+O(r2), y = φ1+O(r), z = crφ1+O(r),

where cr is a complex number satisfying cr → c0 as r → 0. Therefore, after
multiplying both sides of the first equality of (4.4) by φ1(x) and integrating
on Ω, we can get that

(λ− r)
∫
Ω

φ21(x) dx = −r
(

2αr +
m

k1
βr +

m

k1
αrcr

)∫
Ω

φ31(x) dx+O(r2).

Let λ = λ
r c∗. Then the above equality can be rewritten as

λ− c∗ = −
(

2αr +
m

k1
βr +

m

k1
αrcr

)
+O(r). (4.5)

Noting that

α0 +
m

k1
β0 = c∗,

and αr → α0, βr → β0, cr → c0 as r → 0, hence, (4.5) can be further rewritten
as

λ = −
(
α0 +

m

k1
α0c0

)
+O(r). (4.6)
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Similarly, from the fact that β0/k2 = c∗, and the second equality of (4.4),
we can obtain

λc0 = −β0
k2
c0 +O(r). (4.7)

If c0 = 0, then from (4.6) we can observe

λ = −α0 +O(r).

Therefore, λ < 0 when 0 < r � 1. If c0 6= 0, then from (4.7) one also can
get easily that λ < 0 when 0 < r � 1. Thus we know that when m < k1

k2
and 0 < r∗ � 1, the bifurcating positive solution (ur, vr) of system (1.1) is
asymptotically stable for r ∈ (0, r∗] and the proof is complete. ut
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