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Abstract. The paper considers the problem of finding a common solution of a
pseudomonotone and Lipschitz-type equilibrium problem and a fixed point problem
for a quasi nonexpansive mapping in a Hilbert space. A new hybrid algorithm is
introduced for approximating a solution of this problem. The presented algorithm
can be considered as a combination of the extragradient method (two-step proximal-
like method) and a modified version of the normal Mann iteration. It is well known
that the normal Mann iteration has the weak convergence, but in this paper we has
obtained the strong convergence of the new algorithm under some mild conditions on
parameters. Several numerical experiments are reported to illustrate the convergence
of the algorithm and also to show the advantages of it over existing methods.
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1 Introduction

The equilibrium problem (EP) can be considered as a general model in the
sense that it includes, as special cases, many mathematical models such as
variational inequality problems, optimization problems, fixed point problems,
complementarity problems and Nash equilibrium problems, see, e.g., [5, 8, 18,
30]. Mathematically, this (EP) problem can be stated as follows:

Find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C, (1.1)

�
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where C is a nonempty closed convex subset of a real Hilbert space H and
f : H × H → < is a given bifunction with f(x, x) = 0 for all x ∈ C. We
denote EP (f, C) the solution set of problem (1.1). Problem (1.1) is also well
known as the Ky Fan inequality early studied in [9]. In recent years, this
problem has received a lot of attention by many authors, for instance, see
[1,2,6,10,11,12,13,14,15,17,23,26,27,28,32]. This interest can be that, as be
seen, it unifies all the aforementioned particular problems in a convenient way.

One of the most popular methods for solving problem (1.1) is the prox-
imal point method [17, 28]. The main idea of this method is to replace the
original problem by a family of regularized equilibrium problems which can be
solved more easily. Regularized solutions can finitely or asymptotically con-
verge to some solution of the original problem. Another notable method is the
proximal-like method presented in [10]. This method was further extended and
investigated the convergence by the authors in [32] under different assumptions
that the cost bifunctions are pseudomonotone and satisfy the Lipschitz-type
condition [26]. The methods in [10, 32] are also called extragradient methods
(or two-step proximal-like methods) due to the results obtained by Korpele-
vich in [19] for saddle problems. The advantages of the extragradient methods
in [10,32] are that they are used for the class of pseudomonotone bifunctions and
can be easier to numerically solve than the proximal point method in [17,28].

In this paper, we are interested in the problem of finding a common solution
of an equilibrium problem and a fixed point problem in a Hilbert space [15,
20, 21, 24, 25, 31, 35, 36, 37]. The motivation and inspiration for studying such
this common solution problem is in its possible application to mathematical
models whose constraints can be expressed as fixed point problems. This is the
case, in particular, in practical problems as signal processing, network resource
allocation and image recovery; see, for instance, [16,24, 25]. Let U : H → H is
a mapping, the fixed point problem (FPP) for the mapping U is to find x∗ ∈ H
such that

Ux∗ = x∗. (1.2)

The solution set of problem (1.2) is called the fixed point set of U and is denoted
by Fix(U). Most of the methods for solving problem (1.2) are obtained from
the normal Mann iteration, namely, from x0 ∈ H, compute xn+1 for all n ≥ 0
by

xn+1 = αnxn + (1− αn)Uxn,

where the parameter sequence {αn} has to satisfy some properties to take the
weak convergence. In order to get the strong convergence, another regularized
iterative method, which is more useful in infinite dimensional Hilbert spaces,
is the Halpern iteration, namely

xn+1 = αnx0 + (1− αn)Uxn,

where x0 ∈ H and the sequence {αn} ⊂ (0, 1) is slowly diminishing and non-
summable, i.e., αn → 0 and

∑∞
n=0 αn = +∞. Besides, it is worth noting

that, together with the Halpern iteration is the general form of it, namely the
viscosity method [29], in which the cost mapping U is incorporated with a
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contraction mapping in the iterates. Finally, another method, which also pro-
vides the strong convergence, is the hybrid steepest descent method introduced
in [39].

In 2007, for finding a common solution of a problem (1.1) and a problem
(1.2), Takahashi and Takahashi [35] introduced the viscosity approximation
method where the authors have combined the proximal point method [17, 28]
with the viscosity technique [29]. Under some suitable conditions imposed the
control parameters, the strong convergence of the method was established. In
2008, using a variant of the hybrid steepest descent method for fixed point
problems in [39], Maingé and Moudafi [25] proposed an iterative process for
finding an element in Ω := EP (f, C) ∩ Fix(U). The norm convergence of the
algorithm has been proved. The algorithm of Maingé and Moudafi in [25] has
first improved and developed the results in this field. Another advantage of that
algorithm is that it allows to relax substantially the conditions on parameters
due to the relaxation process induced on the mapping U .

Recently, by using the extragradient method [10,32] and the hybrid steepest
descent technique in [39], Vuong et al. [37] have introduced a new numerical
algorithm, namely the extragradient viscosity method, for solving an equilib-
rium problem involving a fixed point problem for a demicontractive mapping.
Under assumptions that the bifunction is pseudomonotone and satisfies the
Lipschitz-type condition [26], the authors have established the strong conver-
gence of the algorithm. As remarked in [37], this method has the advantage
in numerically computing by using the tools in optimization. The extragra-
dient viscosity method in [37] also allows to reduce several strong conditions
in establishing the convergence of previously known extragradient algorithms.
It is also worth mentioning additionally that other strongly convergent algo-
rithms for finding an element in Ω := EP (f, C) ∩ Fix(U), which combine the
extragradient method with the hybrid or shrinking projection technique, can
be found in [15,31,34,36].

In this paper, motivated and inspirated by the results of Takahashi and
Takahashi in [35], of Maingé and Moudafi in [25], and of Vuong et al. in [37] and
based on the work [22], we introduce a different strongly convergent algorithm
as the combination between the extragradient method (two-step proximal-like
method) and the Mann-like iteration [7,22] for approximating a common solu-
tion of a pseudomonotone and Lipschitz-type equilibrium problem and a fixed
point problem for a quasi-nonexpansive mapping. As mentioned below, by
considering a relaxation of a demicontractive mapping, then the result in this
paper is still true for the more general class of demicontractive mappings. It
is emphasized that the normal Mann iteration provides the weak convergence
while the algorithm in this paper, which uses the similar version to the Mann
iteration, has provided the strong convergence. This is particularly interest-
ing in infinite dimensional Hilbert spaces where the norm convergence is more
useful than the weak one. Several of our numerical experiments in both finite
and infinite dimensional Hilbert spaces have shown that the new algorithm is
promising and has competitive advantage over existing methods.

The remainder of this paper is organized as follows: In Section 2 we collect
some definitions and preliminary results used in the paper. Section 3 deals
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with proposing the new algorithm and analyzing its convergence. Finally, in
Section 4 we provide several examples to illustrate the numerical behavior of
the new algorithm in comparison with the behaviors of previously known algo-
rithms.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset
of H. It was known that the iterative methods for solving problem (1.1) are
often relative to monotone bifunction or operator theory. Now, we review
some concepts of monotonicity of a bifunction, see [5, 30] for more details. A
bifunction f : H ×H → < is said to be:

• (i) strongly monotone on C if there exists a constant γ > 0 such that

f(x, y) + f(y, x) ≤ −γ||x− y||2, ∀x, y ∈ C;

• (ii) monotone on C if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

• (iii) pseudomonotone on C if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

• (iv) strongly pseudomonotone on C if there exists a constant γ > 0 such
that

f(x, y) ≥ 0 =⇒ f(y, x) ≤ −γ||x− y||2, ∀x, y ∈ C.

From the above definitions, it is easy to see that the following implications
hold,

(i) =⇒ (ii) =⇒ (iii) and (i) =⇒ (iv) =⇒ (iii).

The converses are not true in general. We say that a bifunction f : H×H → <
satisfies a Lipschitz-type condition [26] on H if there exist two positive constants
c1, c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1||x− y||2 − c2||y − z||2, ∀x, y, z ∈ H.

Note that if A : H → H is a Lipschitz continuous operator, i.e., there exists L >
0 such that ||Ax−Ay|| ≤ L||x−y|| for all x, y ∈ H, then the bifunction f(x, y) =
〈Ax, y − x〉 satisfies the Lipschitz-type condition with c1 = L

2µ and c2 = Lµ
2

for any µ > 0. The Lipschitz-type condition is often used in establishing the
convergence of extragradient-like methods (two-step proximal-like methods) for
EPs (see, e.g., [11, 13,15,23,32,34]).

Let U : H → H be a mapping with the fixed point set Fix(U). The
mapping U is said to be demiclosed at zero if for any {xn} in H, the following
implication holds:

xn ⇀ x and (I − U)xn → 0 =⇒ x ∈ Fix(U).

The mapping U is called:
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• nonexpansive if ||Ux− Uy|| ≤ ||x− y||, for all x, y ∈ H.

• quasi-nonexpansive if Fix(U) 6= ∅ and

‖Ux− z‖ ≤ ‖x− z‖, ∀z ∈ Fix(U), x ∈ H,

or equivalently

〈Ux− x, x− z〉 ≤ −1

2
‖x− Ux‖2, ∀z ∈ Fix(U), x ∈ H,

or equivalently

〈Ux− z, x− z〉 ≤ ‖x− z‖2 − 1

2
‖x− Ux‖2, ∀z ∈ Fix(U), x ∈ H. (2.1)

(iii) β-demicontractive with 0 ≤ β < 1 if Fix(U) 6= ∅ and

‖Ux− z‖2 ≤ ‖x− z‖2 + β‖(I − U)x‖2, ∀z ∈ Fix(U), x ∈ H. (2.2)

The class of nonexpansive mappings is contained properly in the one of quasi-
nonexpansive mapping. The latter is a proper subclass of the class of demicon-
tractive mappings. In this paper, we consider the class of quasi-nonexpansive
mappings. Note that if U is a β-demicontractive mapping then Uw = (1−w)I+
wU with w ∈ (0, 1−β] is quasi-nonexpansive and Fix(Uw) = Fix(U). Thus, if
U is β-demicontractive then the result in this paper is still true by replacing U
by Uw for some w ∈ (0, 1−β]. An example for the quasi-nonexpansive mapping
is the subgradient projection. Let g : H → < be a convex function such that
lev≤g := {x ∈ H : g(x) ≤ 0} 6= ∅. The subgradient projection is a mapping
defined by

Ux =

{
x− g(x)

||z(x)||2 z(x), if g(x) > 0,

x, otherwise ,
(2.3)

where z(x) ∈ ∂g(x). In that case, U is quasi-nonexpansive, demiclosed at zero,
and Fix(U) = lev≤g (see, e.g., [3, Lemma 3.1]).

In any Hilbert space, we have the following results.

Lemma 1. Let H be a real Hilbert space. Then the following results hold:
(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, ∀x, y ∈ H;
(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

The metric projection PC : H → C is defined by, for each x ∈ H, PC(x) ∈ C
such that ||PC(x) − x|| ≤ ||y − x|| ∀y ∈ C. It is well-known that the metric
projection has the following properties.

Lemma 2. Let PC : H → C be the metric projection from H onto C. Then

(i) ‖x− PCy‖2 + ‖PCy − y‖2 ≤ ‖x− y‖2 , ∀x ∈ C, y ∈ H.

(ii) z = PCx if and only if 〈x− z, z − y〉 ≥ 0, ∀y ∈ C.

Math. Model. Anal., 24(1):1–19, 2019.



6 D.V. Hieu

The proximal mapping of a proper, convex and lower semicontinuous function
g : C → < with a parameter λ > 0 is defined by

proxλg(x) = arg min
{
λg(y) + 0.5||x− y||2 : y ∈ C

}
, x ∈ H.

The following is a property of the proximal mapping (see [4] for more details).

Lemma 3. For all x ∈ H, y ∈ C and λ > 0, the following inequality holds,

λ
{
g(y)− g(proxλg(x))

}
≥
〈
x− proxλg(x), y − proxλg(x)

〉
.

Remark 1. From Lemma 3, it is easy to show that if x = proxλg(x) then

x ∈ Arg min {g(y) : y ∈ C} :=
{
x ∈ C : g(x) = min

y∈C
g(y)

}
.

Lemma 4. ( [24]) Let {an} be a sequence of nonnegative real numbers such that
there exists a subsequence {anj} of {an} such that anj < anj+1 for all j ≥ 0.
Then there exists a nondecreasing sequence {mk} such that limk→∞mk = ∞
and the following properties are satisfied by all (sufficiently large) number k ≥ 0:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, ..., k} such that an < an+1.

Lemma 5. ( [33, 38]) Let {an} be sequences of nonnegative real numbers such
that:

an+1 ≤ (1− αn)an + αnbn,

where {αn} ⊂ (0, 1) and {bn} is a sequence such that (i)
∑∞
n=0 αn =∞

(ii) lim supn→∞ bn ≤ 0. Then limn→∞ an = 0.

3 Algorithm and convergence analysis

In this section, we present and analyze the strong convergence of a new algo-
rithm for finding a common solution of an equilibrium problem for a bifunction
f : H ×H → < and a fixed point problem for a quasi - nonexpansive mapping
U : H → H. In order to get the convergence of the algorithm, we consider the
following assumptions:

• A1. f is pseudomonotone on C and f(x, x) = 0 for all x ∈ C;

• A2. f satisfies a Lipschitz-type condition on H with the two constants
c1, c2;

• A3. f(x, .) is convex and lower semicontinuos on C for every fixed x ∈ H;

• A4. lim sup
n→∞

f(xn, y) ≤ f(x, y) for each sequence {xn} ⊂ C converging

weakly to x.
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It is easy to show that under assumptions A1 and A3, the solution set EP (f, C)
is closed and convex. Since the set of fixed points of a quasi - nonexpansive
mapping U is closed and convex, the solution set Ω = EP (f, C)∩Fix(U) is also
closed and convex. Throughout this paper, the solution set Ω is assumed to
be nonempty. Moreover, we consider the sequence of stepsizes {λn} ⊂ (0,+∞)
and two parameter sequences {αn} ⊂ [0, 1] and {βn} ⊂ [0, 1] satisfying the
following conditions:

• B1. 0 < λ ≤ λn ≤ λ < min {1/2c1, 1/2c2}.

• B2. lim
n→∞

αn = 0,
∞∑
n=1

αn = +∞.

• B3. βn ⊂ (a, b) ⊂ (0, 1) for some b > a > 0.

Now, for approximating a solution in Ω = EP (f, C) ∩ Fix(U), we inves-
tigate the asymptotic behavior of the sequence {xn} generated, from an
arbitrary point x0 ∈ H, by the following algorithm:

Algorithm 1. (Mann proximal - like algorithm for EPs and FPPs)
Initialization:

Choose x0 ∈ H and three sequences {λn} ⊂ (0,+∞), {αn} ⊂ [0, 1],
{βn} ⊂ [0, 1] such that conditions B1 - B3 above hold.
Iterative Steps:
Assume that xn ∈ H is known, calculate xn+1 as follows:

Step 1. Compute

yn = proxλnf(xn,.)(xn) and zn = proxλnf(yn,.)(xn).

Step 2. Compute

xn+1 = (1− αn − βn)zn + βnUzn.

Set n =: n+ 1 and go back Step 1.

It is well known that the hybrid methods with the normal Mann iteration only
have weak convergence. However, Algorithm 1, which is incorporated with the
similar method to the normal Mann iteration in Step 2, will be proved to be
strongly convergent to an element in Ω. More precisely, we have the following
main result.

Theorem 1. Under assumptions A1 - A4 and B1 - B3, then the sequence {xn}
generated by Algorithm 1 converges strongly to an element in Ω = EP (f, C) ∩
Fix(U).

Before presenting the proof of Theorem 1, we need the following lemmas. We
begin with an important result which will be used to prove the next two lemmas.

Lemma 6. For all y ∈ C, we have the following estimate,

2λnf(yn, y) ≥ (1− 2c1λn)||xn − yn||2 + (1− 2c2λn)||zn − yn||2

+ ||zn − y||2 − ||xn − y||2.

Math. Model. Anal., 24(1):1–19, 2019.
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Proof. It follows from Lemma 3 and the definition of zn that

λn {f(yn, y)− f(yn, zn)} ≥ 〈zn − xn, zn − y〉 , ∀y ∈ C.

Thus, multiplying both two sides of this inequality by 2 and using the equality
2 〈a, b〉 = ||a||2 + ||b||2 − ||a− b||2, we obtain

2λnf(yn, y) ≥ 2λnf(yn, zn) + 2 〈zn − xn, zn − y〉
= 2λnf(yn, zn) + ||zn − xn||2 + ||zn − y||2 − ||xn − y||2. (3.1)

Similarly, from Lemma 3 and the definition of yn, we obtain

λn(f(xn, y)− f(xn, yn)) ≥ 〈yn − xn, yn − y〉 , ∀y ∈ C,

which, with y = zn ∈ C, implies that

λn(f(xn, zn)− f(xn, yn)) ≥ 〈yn − xn, yn − zn〉 .

This together with the Lipschitz-type condition of f and the equality 2 〈a, b〉 =
||a||2 + ||b||2 − ||a− b||2 implies that

2λnf(yn, zn) ≥ 2λn
{
f(xn, zn)− f(xn, yn)− c1||xn − yn||2 − c2||zn − yn||2

}
= 2λn {f(xn, zn)− f(xn, yn)} − 2c1λn||xn − yn||2 − 2c2λn||zn − yn||2

≥ 2 〈yn − xn, yn − zn〉 − 2c1λn||xn − yn||2 − 2c2λn||zn − yn||2

= (1− 2c1λn)||xn − yn||2 + (1− 2c2λn)||zn − yn||2 − ||xn − zn||2. (3.2)

From relations (3.1) and (3.2), we obtain the desired conclusion. Lemma 6 is
proved. ut

Using Lemma 6, we will prove the boundedness of the sequences generated by
Algorithm 1.

Lemma 7. The sequences {xn}, {yn}, {zn} are bounded.

Proof. Let p ∈ Ω = EP (f, C)∩Fix(U). It follows from the definiton of xn+1

and the triangle inequality that

‖xn+1 − p‖ = ‖(1− αn − βn)(zn − p) + βn(Uzn − p)− αnp‖
≤ ‖(1− αn − βn)(zn − p) + βn(Uzn − p)‖+ αn‖p‖. (3.3)

Since αn → 0 and 0 < a ≤ βn ≤ b < 1, there exists a number n0 ≥ 0 such that
1 − αn − βn > 0, and so βn(1 − αn − βn) > 0 for all n ≥ n0. Without loss of
generality, throughout this section, we can assume that βn(1 − αn − βn) > 0
for all n ≥ 0. Thus, from the quasi-nonexpansiveness of U and the equality
(1− αn − βn)2 + 2(1− αn − βn)βn + β2

n = (1− αn)2, we obtain the following
estimate,

‖(1− αn − βn)(zn − p) + βn(Uzn − p)‖2 = (1− αn − βn)2‖zn − p‖2

+ 2(1− αn − βn)βn〈Uzn − p, zn − p〉+ β2
n‖Uzn − p‖2
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= (1− αn − βn)2‖zn − p‖2 + (1− αn − βn)βn

(
||Uzn − p||2

+ ||zn − p||2 − ||zn − Uzn||2
)

+ β2
n‖Uzn − p‖2

≤ (1− αn − βn)2‖zn − p‖2 + (1− αn − βn)βn
(
2‖zn − p‖2 − ‖zn − Uzn‖2

)
+ β2

n‖zn − p‖2 = (1− αn)2‖zn − p‖2 − βn(1− αn − βn)‖zn − Uzn‖2

≤ (1− αn)2‖zn − p‖2.

This implies that

‖(1− αn − βn)(zn − p) + βn(Uxn − p)‖ ≤ (1− αn)‖zn − p‖,

which together with relation (3.3), implies that

‖xn+1 − p‖ ≤ (1− αn)‖zn − p‖+ αn‖p‖. (3.4)

Since p ∈ EP (f, C) and yn ∈ C, f(p, yn) ≥ 0 for all n ≥ 0. This together with
the pseudomonotonicity of f implies that f(yn, p) ≤ 0. Thus, using Lemma 6
with y = p ∈ C, we come to the following estimate

||zn−p||2 ≤ ||xn−p||2 − (1− 2c1λn)||xn − yn||2−(1− 2c2λn)||zn−yn||2, (3.5)

which, together with hypothesis B1, implies that ||zn − p|| ≤ ||xn − p||. Thus,
from (3.4), we get

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖p‖
≤ max{‖xn − p‖, ‖p‖} ≤ . . . ≤ max{‖x0 − p‖, ‖p‖}.

This says that the sequence {xn} is bounded, and so {zn} is. Furthermore, the
boundedness of {yn} follows from (3.5). This completes the proof of Lemma 7.
ut

Next, we are interested in the weak cluster points of the sequence {xn}. We
have the following result.

Lemma 8. If {xnk
} is a subsequence of {xn} such that xnk

⇀ p, ||xnk
−ynk

|| →
0, ||ynk

− znk
|| → 0 and ||znk

−Uznk
|| → 0, then p ∈ Ω = EP (f, C)∩Fix(U).

Proof. It follows from the hypotheses of Lemma 8 that ynk
⇀ p and znk

⇀ p
as k →∞. Moreover,

|||znk
−y||2 − ||xnk

−y||2| = |||znk
−y|| − ||xnk

− y||| (||znk
− y||+ ||xnk

− y||)
≤ ||znk

− xnk
||(||znk

− y||+ ||xnk
− y||)

≤ (||znk
− ynk

||+ ||xnk
− ynk

||)(||znk
− y||+ ||xnk

− y||).

Thus, also from the hypotheses of Lemma 8 and the boundedness of {xnk
} and

{znk
}, we obtain

||znk
− y||2 − ||xnk

− y||2 → 0. (3.6)

Math. Model. Anal., 24(1):1–19, 2019.
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From Lemma 6 with noting that λnk
≥ λ > 0, we obtain for all y ∈ C that

f(ynk
, y) ≥1− 2c1λnk

2λnk

||xnk
− ynk

||2 +
1− 2c2λnk

2λnk

||znk
− ynk

||2

+
||znk

− y||2 − ||xnk
− y||2

2λnk

.

Passing to the limit in the last inequality, using relation (3.6), the hypotheses
of Lemma 8 and A4, we obtain f(p, y) ≥ 0, ∀y ∈ C. Thus, p ∈ EP (f, C).
Moreover, from ||znk

− Uznk
|| → 0, the demi-closedness at zero of U and

znk
⇀ p, we get that p ∈ Fix(U). Then, p ∈ EP (f, C)∩Fix(U). This finishes

the proof of Lemma 8. ut

Since {zn} and {xn} are bounded, there exists Mp > 0 for each p ∈ Ω such
that

2 sup
n≥0
|〈zn, p− xn+1〉| ≤Mp. (3.7)

We have the following lemma.

Lemma 9. The following estimates hold for all p ∈ Ω,

(i) βn(1− βn)‖zn − Uzn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnMp,

(ii) ‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + 2αnβn‖zn − Uzn‖‖xn+1 − p‖
+ 2αn〈p, p− xn+1〉.

Proof. (i). It follows from the definiton of xn+1 and Lemma 1 that

‖xn+1 − p‖2 =‖(zn − p) + βn(Uzn − zn)− αnzn‖2

≤‖(zn − p) + βn(Uzn − zn)‖2 − 2αn〈zn, xn+1 − p〉
=‖zn − p‖2 + β2

n‖Uzn − zn‖2 + 2βn〈Uzn − zn, zn − p〉
+ 2αn〈zn, p− xn+1〉. (3.8)

On the other hand, from Lemma 1(i) and the quasi-nonexpansiveness of U , we
have that

2〈Uzn− zn, zn− p〉 = ||Uzn− p||2−||zn− p||2−||Uzn− zn||2 ≤ −||Uzn− zn||2,

which, together with relations (3.7), (3.8) and the fact ||zn − p|| ≤ ||xn − p||,
implies that

‖xn+1 − p‖2 ≤‖zn−p‖2+β2
n‖Uzn − zn‖2−βn‖zn−Uzn‖2+2αn〈zn, p−xn+1〉

≤‖zn − p‖2 − βn(1− βn)‖zn − Uzn‖2 + αnMp (3.9)

≤‖xn − p‖2 − βn(1− βn)‖zn − Uzn‖2 + αnMp. (3.10)

This leads to conclusion (i).

(ii). Setting tn = (1 − βn)zn + βnUzn, and so from the definition of xn+1 we
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obtain that xn+1 = tn − αnzn. It follows from Lemma 1(i) and the quasi-
nonexpansiveness of U that

‖tn − p‖2 = ‖(1− βn)(zn − p) + βn(Uzn − p)‖2

= (1− βn)2‖zn − p‖2 + β2
n‖Uzn − p‖2 + 2(1− βn)βn〈Uzn − p, zn − p〉

= (1− βn)2‖zn − p‖2 + β2
n‖Uzn − p‖2

+ (1− βn)βn
{
||Uzn − p||2 + ||zn − p||2 − ||Uzn − zn||2

}
≤ (1− βn)2‖zn − p‖2 + β2

n‖zn − p‖2

+ (1− βn)βn
{

2||zn − p||2 − ||Uzn − zn||2
}

= ‖zn − p‖2 − βn(1− βn)‖Uzn − zn‖2, (3.11)

in which the last equality follows from the fact (1−βn)2+β2
n+2(1−βn)βn = 1.

By condition B3, relation (3.11) and the fact ||zn − p|| ≤ ||xn − p||, we get
‖tn − p‖2 ≤ ‖zn − p‖2 ≤ ‖xn − p‖2. Thus,

‖tn − p‖ ≤ ‖xn − p‖. (3.12)

From the definitions of xn+1 and tn, we obtain

xn+1 = tn − αnzn = (1− αn)tn − αn(zn − tn)

= (1− αn)tn − αnβn(zn − Uzn),

which, together with Lemma 1(ii), the inequality 〈a, b〉 ≤ ||a||||b|| and relation
(3.12), implies that

‖xn+1 − p‖2 = ‖(1− αn)(tn − p)− (αnβn(zn − Uzn) + αnp) ‖2

≤ (1− αn)2‖tn − p‖2 − 2〈αnβn(zn − Uzn) + αnp, xn+1 − p〉
= (1− αn)2‖tn − p‖2 + 2αnβn〈zn − Uzn, p− xn+1〉+ 2αn〈p, p− xn+1〉
≤ (1− αn)‖tn − p‖2 + αn (2βn‖zn − Uzn‖‖xn+1 − p‖+ 2〈p, p− xn+1〉)
≤ (1− αn)‖xn − p‖2 + αn (2βn‖zn − Uzn‖‖xn+1 − p‖+ 2〈p, p− xn+1〉) .

This completes the proof of Lemma 9. ut

The proof of Theorem 1.

Proof. Since Ω is nonempty closed and convex set, there exists a unique ele-
ment p† ∈ Ω such that p† = PΩ(0). This, from Lemma 2(ii), is equivalent to
the following inequality, 〈

p†, p† − p
〉
≤ 0, ∀p ∈ Ω. (3.13)

We will prove the sequence {‖xn − p†‖2} converges to zero as n→∞. Indeed,
using Lemma 9 with p = p† ∈ Ω and setting M = Mp† > 0, we can rewrite
those inequalities as follows:

βn(1− βn)‖zn − Uzn‖2 ≤ ‖xn − p†‖2 − ‖xn+1 − p†‖2 + αnM. (3.14)

Math. Model. Anal., 24(1):1–19, 2019.
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‖xn+1 − p†‖2 ≤ (1− αn)‖xn − p†‖2 + αnbn, (3.15)

where bn = 2βn‖zn − Uzn‖‖xn+1 − p†‖ + 2〈p†, p† − xn+1〉. Now, we consider
two possible cases on the sequence {‖xn − p†‖2}.

Case 1: There exists an integer number n0 ≥ 0 such that ‖xn+1 − p†‖2 ≤
‖xn − p†‖2 for all n ≥ n0. This means that the sequence

{
‖xn − p†‖2

}
n≥n0

is

non-increasing. Thus, the limit of ‖xn−p†‖2 exists. This together with relation
(3.14), hypotheses B2 and B3 implies that

lim
n→∞

‖zn − Uzn‖ = 0. (3.16)

Moreover, recalling relations (3.9) and (3.10) with p = p† and M = Mp† > 0,
we have

‖xn+1 − p†‖2 ≤ ‖zn − p†‖2 − βn(1− βn)‖zn − Uzn‖2 + αnM

≤ ‖xn − p†‖2 − βn(1− βn)‖zn − Uzn‖2 + αnM.

Passing to the limit in the last inequality and using relation (3.16), αn → 0,
we obtain that limn→∞ ‖zn − p†‖2 = limn→∞ ‖xn − p†‖2. Hence, ‖zn − p†‖2 −
‖xn − p†‖2 → 0 which, together with relation (3.5) and hypothesis B1, implies
that

‖yn − xn‖ → 0 and ‖zn − yn‖ → 0. (3.17)

Thus, from the triangle inequality, we obtain that ‖zn−xn‖ → 0. Hence, from
the definition of xn+1, the triangle inequality and relation (3.16), we obtain
that

‖xn+1 − xn‖ ≤ ‖zn − xn‖+ αn‖zn‖+ βn‖zn − Uzn‖ → 0 as n→∞. (3.18)

Since {xn} is bounded, without loss generality, we can assume that there exists
a subsequence {xnj

} of {xn} such that xnj
⇀ p and

lim sup
n→∞

〈p†, p† − xn〉 = lim
j→∞
〈p†, p† − xnj

〉 = 〈p†, p† − p〉. (3.19)

Thus, from relations (3.16), (3.17) and Lemma 8, we obtain that p ∈ Ω.
This together with ‖xn+1 − xn‖ → 0 and relations (3.13), (3.19) implies that
lim supn→∞〈p†, p† − xn+1〉 ≤ 0. Hence, it follows from the definiton of bn and
relation (3.16) that lim supn→∞ bn ≤ 0. Combining this with relation (3.15),
hypothesis B2 and Lemma 5, we obtain that limn→∞ ‖xn − p†‖2 = 0, i.e.,
xn → p† as n→∞.

Case 2: There exists a subsequence {‖xnj
−p†‖2} of {‖xn−p†‖2} such that

‖xnj
− p†‖2 < ‖xnj+1 − p†‖2 for all j ≥ 0. In this case, it follows from Lemma

4 that there exists a non-decreasing sequence {mk} such that limk→∞mk =∞
and the following inequalities hold for all k ≥ 0:

‖xmk
− p†‖2 ≤ ‖xmk+1 − p†‖2 and ‖xk − p†‖2 ≤ ‖xmk+1 − p†‖2. (3.20)
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Thus, from relation (3.14), we obtain

βmk
(1−βmk

) ‖zmk
−Uzmk

‖2≤‖xmk
−p†‖2−‖xmk+1−p†‖2+αmk

M≤αmk
M,

which, together with hypotheses B2, B3, implies that

lim
k→∞

‖zmk
− Uzmk

‖ = 0. (3.21)

On the other hand, it follows from relations (3.20) and (3.9), (3.10) with p = p†

and M := Mp† > 0 that

‖xmk
− p†‖2 ≤ ‖xmk+1 − p†‖2

≤ ‖zmk
− p†‖2 − βmk

(1− βmk
) ‖zmk

− Uzmk
‖2 + αmk

M

≤ ‖xmk
− p†‖2 − βmk

(1− βmk
)]‖zmk

− Uzmk
‖2 + αmk

M.

Thus, from relation (3.21) and B2, we obtain that ‖zmk
−p†‖2−‖xmk

−p†‖2 → 0.
By arguing similarly to relations (3.17) and (3.18) in Case 1, we obtain

‖ymk
− xmk

‖ → 0, ‖zmk
− ymk

‖ → 0, ‖xmk+1 − xmk
‖ → 0,

lim sup
k→∞

〈p†, p† − xmk+1〉 ≤ 0. (3.22)

It follows from relations (3.15), (3.20) and the definition of bn that

‖xmk+1 − p†‖2 ≤ (1− αmk
)‖xmk

− p†‖2

+ αmk
[2βmk

‖zmk
− Uzmk

‖‖xmk+1 − p†‖+ 2〈p†, p† − xmk+1〉]
≤ (1− αmk

)‖xmk+1 − p†‖2

+ αmk
[2βmk

‖zmk
− Uzmk

‖‖xmk+1 − p†‖+ 2〈p†, p† − xmk+1〉].

A straightforward computation into the last inequality with noting that αmk
>

0 implies that

‖xmk+1 − p†‖2 ≤ 2βmk
‖zmk

− Uzmk
‖‖xmk+1 − p†‖+ 2〈p†, p† − xmk+1〉.

Combining this with relation (3.20), we get

‖xk − p†‖2 ≤ 2βmk
‖zmk

− Uzmk
‖‖xmk+1 − p†‖+ 2〈p†, p† − xmk+1〉,

which, from relations (3.21) and (3.22), implies that lim supk→∞ ‖xk−p†‖2 ≤ 0,
i.e., xk → p† as k →∞. This completes the proof of Theorem 1. ut

4 Computational experiments

In this section, we consider three examples, one in a finite dimensional space
and the two other ones in infinite dimensional spaces, to illustrate the conver-
gence of the proposed algorithm (Algorithm 1) with the aim to compare its
numerical behavior with four other strongly convergent algorithms, namely the
extragradient-viscosity method (EGVM) introduced in [37, Algorithm 1], the

Math. Model. Anal., 24(1):1–19, 2019.
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hybrid extragradient method (HEGM) proposed in [36, Algorithm 1] and the
shrinking extragradient method (SEGM) presented in [31, Theorem 4.2].

We use the sequence Dn = ||xn − x∗||2, n = 0, 1, 2, . . . to study the conver-
gence of all the algorithms, where x∗ is the solution of the considered problem
and {xn} is the sequence generated by each algorithm. The convergence of
Dn to zero implies that the sequence {xn} converges to the solution x∗ of the
problem. All the programs are written in Malab 7.0 and computed on a PC
Desktop Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz RAM 2.00 G.B

Example 1. Consider our problem in the space H = <m for the equilibrium
bifunction f(x, y) = 〈Px+Qy + q, y − x〉 and the mapping Ux is defined by
the form (2.3) in Section 2, where g : <m → < is a convex function such that
lev≤g := {x ∈ <m : g(x) ≤ 0} 6= ∅, z(x) ∈ ∂g(x), q ∈ <m and P, Q are two
matrices of order m such that Q is symmetric positive semidefinite and Q− P
is symmetric negative semidefinite. The feasible set C is given by

C = {x ∈ <m : xi ≥ −1, ∀i = 1, . . . ,m} .

In that case, U is quasi-nonexpansive and demiclosed at zero, see, e.g., [3,
Lemma 3.1] and Fix(U) = lev≤g. Moreover, f satisfies conditions A1–A4 with
c1 = c2 = ||P − Q||/2. We choose the stepsize λn = 1

2.1c1
, the parameter

sequence αn = 1√
n+1

or αn = 1
n+1 , and βn = 0.5(1−αn) for all the algorithms.

The starting point in this example is x0 = (1, 1, . . . , 1)T ∈ <m.
For experiments, we choose g(x) = max {0, 〈c, x〉+ d}, where d ∈ <− is

a negative real number generated randomly and uniformly in (−2, 0), c is a
vector in <m with its entries being generated randomly and uniformly in (0, 2)
and c̄ ∈ ∂g(x) (if 〈c, x〉 = −d) has been chosen randomly. The vector q equals
to the zero and the two matrices P, Q are generated randomly1 such that their
conditions are satisfied. In that case the solution of the problem is x∗ = 0. All
the optimization problems in the algorithms are effectively solved by Matlab
Optimization Toolbox. Figures 1 and 2 describe the numerical results in <100

while Figures 3 and 4 are in <200.

Example 2. Consider our problem in the space H = L2[0, 1], the feasible set C
is the unit ball B[0, 1], the equilibrium bifunction f is of the form f(x, y) =
〈Ax, y − x〉 with the operator A : H → H defined by

A(x)(t) =

∫ 1

0

[x(t)− F1(t, s)f1(x(s))] ds+ g1(t), x ∈ H, t ∈ [0, 1], (4.1)

and the mapping U : H → H is given by

U(x)(t) =

∫ 1

0

F2(t, s)f2(x(s))ds+ g2(t), x ∈ H, t ∈ [0, 1]. (4.2)

1 We randomly choose λ1k ∈ (−2, 0), λ2k ∈ (0, 2), k = 1, . . . ,m. We set Q̂1, Q̂2 as
two diagonal matrices with eigenvalues {λ1k}mk=1 and {λ2k}mk=1, respectively. Then, we
construct a positive semidefinite matrix Q and a negative semidefinite matrix T by using
random orthogonal matrices with Q̂2 and Q̂1, respectively. Finally, we set P = Q− T
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Figure 1. Experiment in <100 for
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αn = 1
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Figure 3. Experiment in <200 for
αn = 1√

n+1
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Figure 4. Experiment in <200 for
αn = 1

n+1

For experiments, we have chosen the functions in the following forms:

F1(t, s) =
2tset+s

e
√
e2 − 1

, f1(x) = cosx, g1(t) =
2tet

e
√
e2 − 1

,

F2(t, s) =

√
21

7
(t+ s), f2(x) = exp(−x2), g2(t) = −

√
21

7

(
t+

1

2

)
.

Note that g1(t) and g2(t) are generated such that x∗ = 0 is the solution of

the problem. Since the mappings Si(x)(t) =
∫ 1

0
Fi(t, s)fi(x(s))ds, i = 1, 2

are Fréchet differentiable and ||S′i(x)h|| ≤ ||x||||h|| for all x, h ∈ H. Thus, a
straightforward computation implies that f is monotone (so, pseudomonotone)
and satisfies the Lipschitz-type condition with c1 = c2 = 1, and U is non-
expansive (thus, quasi-nonexpansive). All the optimization problems in the
algorithms become the projections on C which is inherently explicit. All inte-
grals in (4.1), (4.2) and others are computed by the trapezoidal formula with
the stepsize τ = 0.001. It is not easy to compute numerically in this example
for the two algorithms HEGM and SEGM due to the complexity of the hybrid
or shrinking step in those two algorithms. So, we only compute in comparison
between the proposed algorithm and EGVM. We illustrate the results for four
parameter sequences αn = 1

(n+1)p , βn = 0.5(1− αn), p = 1, 0.7, 0.5, 0.1 and

Math. Model. Anal., 24(1):1–19, 2019.
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two stepsizes λn = 1
5c1

or λn = 1
2.1c1

. The starting point is x0(t) = t + cos t.
The results are described in Figures 5 and 6.
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2.1c1
in Example 2

Example 3. In this example, we consider the problem in the Hilbert space H =
l2 for the feasible set C is the unit ball B[0, 1], the bifunction f defined, for all
x = (xi)

∞
i=1 ∈ l2 and y = (yi)

∞
i=1 ∈ l2, by

f(x, y) =

∞∑
i=1

(
y2i + 2xiyi − 3x2i

)
,

and the mapping U given, for all x ∈ l2, by Ux = − 3
2x. In that case, it is easy

to see that the bifunction f is pseudomonotone. Moreover, f(x, y) + f(y, z) =
f(x, z) − ||x − y||2 − ||y − z||2 + ||x − z||2 ≥ f(x, z) − ||x − y||2 − ||y − z||2.
Thus, f satisfies the Lipschitz-type condition with c1 = c2 = 1. We see that
U is not nonexpansive and Fix(U) = {0}. On the other hand, we have that
||Ux − 0||2 = ||x − 0||2 + 1

5 ||(I − U)x||2. Thus, U is demicontractive with
the constant β = 1

5 . We set Uw = (1 − w)I + wU with w ∈ (0, 1 − β],
and so, as mentioned in Section 2, the mapping Uw is quasi-nonexpansive and
Fix(Uw) = Fix(U). Then, we apply Algorithm 1 for this quasi-nonexpansive
mapping. Note the solution set of the problem is x∗ = 0 ∈ l2. For experiment,
we choose the stepsize λn = 2

5 , four parameter sequences αn = 1
(n+1)p , βn =

0.5(1 − αn), p = 1, 0.7, 0.5, 0.1, the starting point x0 =
√
6
π ( 1

i )
∞
i=1 and the

parameter w = 1
5 . As Example 2, we only compare Algorithm 1 and EGVM.

The results are shown in Figure 7. It is seen that the result of convergence in
this example is similar to the one in Example 2.

From the aforementioned results we see that the proposed algorithm works
well and its convergence is seen to be better than the one of other well known
algorithms.

5 Conclusions

The paper has presented a new hybrid algorithm for tackling a pseudomonotone
equilibrium problem with a Lipschitz-type condition, and a fixed point problem
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Figure 7. Experiment in Example 2

for a quasi - nonexpansive mapping in a Hilbert space. We have described how
to incorporate the extragradient method (two-step proximal-like method) with
a similar technique to the Mann iteration. It is known that the hybrid methods
with the normal Mann iteration often have the weak convergence, while the
presented algorithm has the strong convergence. We have also considered some
numerical examples in both finite and infinite dimensional Hilbert spaces to
illustrate the convergence and also to show the advantage of the new algorithm
over existing methods in this field.
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