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Abstract. In this paper we develop and validate mathematical models and numer-
ical algorithms for the heat transfer simulation in composite materials. The main
features of the problem deal with the dependence of the heat source on the solution,
discontinuous diffusion coefficients and nonlinear convection and radiation boundary
conditions. The differential problem is approximated by the finite volume discrete
scheme. It is proved that for a sufficiently small parameter, which defines the depen-
dence of the source term on the solution, the discrete problem has a unique solution
which converges to the solution of the differential problem. Linearization of the
nonlinear problem is done by using the Picard method and the convergence of the
iterations is proved. Results of numerical experiments are presented.

Keywords: heat conduction, nonlinear boundary conditions, finite volume method,
convergence analysis, Picard’s iterations.
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1 Introduction

The main purpose of this paper is to study a finite volume approximation to the
solution of the steady-state heat radiation with nonlinear Stefan–Boltzmann
boundary condition in two dimensional rectangular region. The domain is
made up of three layers of different materials with different thermal diffusion
coefficients. We note, that one material is metal, the other two are isolators,
therefore the diffusion coefficients have very different values. The heat source
is generated by a current in the metal region and it depends linearly on the
temperature of the body.

The elliptic nonlinear equations with nonlinear boundary conditions arise
as mathematical models of many interesting processes in physics, technology,
engineering. Here we mention applications in engineering for detection the
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corrosion of containers, where direct and inverse heat transfer problems in
composite materials are solved [2, 9, 18], and optimal design of electrical cables
[5, 6, 11].

The paper is organized as follows. In Section 2, we give a brief description
of the model, describe the main processes of heat conduction in composite
structures. A discrete scheme is constructed using the Finite Volume Method
(FVM). A special attention is given to the approximation of the nonlinear Robin
boundary conditions. The stability and convergence of the 1D difference scheme
is presented in Section 3. The Picard iterative method is used to linearize
the nonlinear discrete problem. The convergence of iterations is also proved
in Section 3. Some details of implementation of the 2D discrete scheme and
results of computational experiments are given in Section 4.

2 Problem Formulation

In domain D = (0, L1) × (0, L2) we solve the nonlinear stationary problem,
which describes a distribution of the temperature T (X, t) in the domain D,
which describes a composite structure of metal and isolator materials (see,
Figure 1).

Figure 1. Scheme of the composite structure of metal and isolator materials.

2.1 Mathematical model of heat conduction in composite structure

The mathematical model consists of the elliptic differential equation [10]:

−

2
∑

i=1

∂

∂xi

(

k(X)
∂T

∂xi

)

=
(I(X)

A

)2

ρ0
(

1 + c(T − 20)
)

, X ∈ D, (2.1)

subject to the symmetry condition on ∂D1 = {(0, x2), x2 ∈ [0, L2]}

k(X)
∂T

∂x1

= 0, X ∈ ∂D1 (2.2)

and the nonlinear boundary condition on the remaining part of the boundary:

k(X)
∂T

∂η
+ αK(T )

(

T (X, t)− Ta

)

+ εσ
(

T̃ 4 − T̃ 4
a

)

= 0, X ∈ ∂D \ ∂D1, (2.3)
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where T̃ = T + 273.15 is a temperature in the Kelvin scale. This boundary
condition describes the heat transfer on the boundary due to the Newton con-
vection and the Stefan–Boltzmann radiation processes. The convection heat
transfer coefficient αK(T ) ≥ α0 > 0 for T ≥ Ta.

Here I is a given current, A is an area of the metal, ρ0 is the specific
resistivity of the conductor, c > 0 is a constant, Ta is the temperature of the
environment. Let us define the metal domain

DM = {X ∈ D : 0 < x1 < L1M < L1, 0 < l2M < x2 < L2M < L2}.

Then the current function I(X) and diffusion coefficient k(X) have the follow-
ing form

I(X) =

{

I0 if X ∈ D̄M ,

0 if X ∈ D \ D̄M ,
k(X) =

{

KM if X ∈ D̄M ,

KI if X ∈ D \ D̄M ,
(2.4)

and 0 < KI ≪ KM . The standard continuity conditions are specified at the
points of discontinuity of coefficients

[T (x, t)] = 0,
[

k
∂T

∂n

]

= 0, X ∈ ∂DM ,

where n is a normal vector.

2.2 Discrete approximation

Let us introduce in the domain D a non-uniform grid Dh = ω1h × ω2h, where

ω1h = {x1i : x1i = x1,i−1 + h1,i−0.5, i = 1, . . . , N1 − 1}, x1,N1
= L1,

ω2h = {x2j : x2j = x2,j−1 + h2,j−0.5, j = 1, . . . , N2 − 1}, x2,N2
= L2.

For grid steps we also use notation h1,i = 0.5(h1,i−0.5 + h1,i+0.5), h2,j =
0.5(h2,j−0.5 + h2,j+0.5).

Let us define a set of discrete functions U ∈ H , where Uij := U(x1i, x2j)
denotes a value of function U at discrete point Xij ∈ D̄h. We also define the
following difference operators:

Vi+0.5,j := ∂x1
Uij =

Ui+1,j − Uij

h1,i+0.5
, Wij := ∂x̄1

Vi+0.5,j =
Vi+0.5,j − Vi−0.5,j

h1,i
,

Vi,j+0.5 := ∂x2
Uij =

Ui,j+1 − Uij

h2,j+0.5
, Wij := ∂x̄2

Vi,j+0.5 =
Vi,j+0.5 − Vi,j−0.5

h2,j
.

Integrating the differential equation (2.1) over the control volume and ap-
proximating the obtained integrals with an individual quadrature for each term,
the differential problem is approximated by the conservative scheme

−

2
∑

α=1

∂x̄α

(

k(Xij,α) ∂xα
Uij

)

=
(Iij
A

)2

ρ0
(

1 + c(Uij − 20)
)

, Xij ∈ Dh,
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where the notation Xij,α = (x1,i+ 1

2
δ1α , x2,j+ 1

2
δ2α) is used, here δij is the Kro-

neker symbol. The boundary conditions are approximated in a similar way.
The symmetry condition (2.2) is approximated by:

−
2

h1,0.5
k(X0j,1) ∂x1

U0j − ∂x̄2

(

k(X0j,2) ∂x2
U0j

)

=
(I0j
A

)2

ρ0
(

1 + c(U0j − 20)
)

, x2j ∈ ω2h.

We restrict to presentation of discrete boundary equations only on one line of
the boundary. The boundary conditions (2.3) are approximated by

−
2

h2,0.5
k(Xi0,2) ∂x2

Ui0 − ∂x̄1

(

k(Xi0,1) ∂x1
Ui0

)

+
2

h2,0.5
αG(Ui0)

(

Ui0 − Ta

)

= 0, x1i ∈ ω1h,

where αG(U) = αK(U) + εσ
(

Ũ2 + T̃ 2
a

)(

Ũ + T̃a

)

.
It remains to write discrete approximations at the corner points of the

domain Dh. Let us consider this equation for the left upper corner:

−
2

h1,0.5
k(X0,N2,1) ∂x1

U0,N2
+

2

h2,N2−0.5

(

k(Xi,N2−1,2) ∂x2
Ui,N2−1

+ αG(Ui,N2
)
(

Ui,N2
− Ta

)

)

= 0.

Taking into account (2.4) we can write the discrete scheme in an operator
form:

Lh(U)Uij =
(Iij
A

)2

ρ0
(

1 + c(Uij − 20)
)

, Xij ∈ D̄h, (2.5)

where the nonlinearity in Lh(U) is due to nonlinear function αG(U).
Finite volume approximations of second order elliptic equations with dis-

continuous coefficients where considered in [8, 16] (see also references given
therein). The existence and convergence of finite difference schemes for elliptic
problems with nonlinear boundary coefficients and nonlinear f was considered
in many papers. First results were given in [3], where a variational formulation
of 1D problem was used and approximation by splines was applied. A good
review on numerical algorithms for nonlinear 3D heat radiation problem and
existence and convergence analysis of the Galerkin method is presented in [12].
Their analysis is based on minimization of the obtained functional of poten-
tial energy. Moreover, they apply the Newton iterative method for solving the
nonlinear equations resulting from the minimization problem and prove the
standard convergence result for a sufficiently good initial approximation.

3 Analysis of 1D Discrete Algorithm

In order to simplify all notation we restrict to one dimensional problem and
solve problem in domain where D = {x ∈ D : 0 < x < L1} and the metal
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domain is defined as DM = {x ∈ D : 0 < l1 ≤ x ≤ l2 < L1}. Then we get the
discrete problem

Lh(U)Ui = F (xi, Ui), xi ∈ D̄h, (3.1)

where the operator Lh(V ) and vector-function F are defined as

Lh(V )U =























ll−
2

h1/2

(

k(x1/2) ∂xU0− αG(V0)U0

)

, i = 0,

−∂x̄
(

k(xi+1/2) ∂xUi

)

, 0 < i < N,

2

hN−1/2

(

k(xN−1/2) ∂xUN−1+ αG(VN )UN

)

, i = N,

F (X,U) =































2

h1/2
αG(U0)Ta, i = 0,

(Ii
A

)2

ρ0
(

1 + c(Ui − 20)
)

, 1 ≤ i < N,

2

h1/2
αG(UN )Ta, i = N.

3.1 Existence and uniqueness of a solution

First we will show, that if a solution of problem (3.1) exists, then Ui ≥ Ta,
xi ∈ D̄h. Let us assume that the following inequality is valid for a density of
heat source:

1 + c(Ta − 20) ≥ 0. (3.2)

Lemma 1. Assume that hypothesis (3.2) is satisfied and αK(V ) ≥ 0. Then for
a solution U of (3.1), if it exists, we have that

Ui ≥ Ta xi ∈ D̄h.

Proof. Consider two discrete linear problems for W j , j = 1, 2:


















−k(x1/2) ∂xW
j
0 + αj

0(W
j
0 − Ta) = 0, i = 0,

−∂x̄
(

k(xi+1/2) ∂xW
j
i

)

= f j
i , 0 < i < N,

k(xN−1/2) ∂xW
j
N−1

+ αj
N (W j

N − Ta) = 0, i = N.

where α1
l ≥ α2

l ≥ 0, l = 0, N , and f2
i ≥ f1

i ≥ 0, xi ∈ Dh. Due to these
assumptions and since matrix of the system is an M-matrix [15], we have that
W j

i ≥ Ta for xi ∈ D̄h. Subtracting all equations of the first problem from the
second problem, we get for V = W 2 −W 1:















−k(x1/2) ∂xV0 + α2V0 = (α1
0 − α2

0)(W
1
0 − Ta), i = 0,

−∂x̄
(

k(xi+1/2) ∂xV
j
i

)

= f2
i − f1

i , 0 < i < N,

k(xN−1/2) ∂xW
j
N−1

+ α2VN = (α1
N − α2

N )(W 1
N − Ta), i = N.

Since W 1
i ≥ Ta, f2

i − f1
i ≥ 0, α1

l − α2
l > 0, it follows from the maximum

principle that Vi ≥ 0. This implies that W 2 ≥ W 1. Thus a bound from below

Math. Model. Anal., 15(1):9–22, 2010.
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U ≥ W for a solution U of problem (3.1) is obtained by solving a problem with
the maximal value of the convection coefficient (i.e., α = ∞) and the minimal
source density (i.e., f ≡ 0, see estimate (3.2)):















W0 = Ta, i = 0,

−∂x̄
(

k(xi+1/2) ∂xWi

)

= 0, 0 < i < N,

WN = Ta, i = N.

From the maximum principle it follows that W ≥ Ta, which completes the
proof. ⊓⊔

For notational convenience, we set V := U − Ta, where V satisfies the
following nonlinear discrete problem















−k(x1/2) ∂xV0+ α̃K(V0)V0 + εσ
(

(V0 + T̃a)
4 − T̃ 4

a

)

= 0, i = 0,

−∂x̄
(

k(xi+1/2) ∂xVi

)

=
(Ii
A

)2

ρ0
(

1 + c(V j
i +Ta−20)

)

, 0 < i < N,

k(xN− 1

2

) ∂xVN−1+α̃K(VN )VN+εσ
(

(VN+T̃a)
4 − T̃ 4

a

)

= 0, i = N,

where α̃K(V ) := αK(V + Ta).
In the following analysis we will use the relation between finite volume

scheme and the minimization problem (for a similar analysis of Galerkin type
approximations see [3, 9, 12], linear finite difference schemes [16]). We define
a bilinear form

a(Z,W ):=
N−1
∑

i=0

k(xi+1/2)
(

∂xZi

) (

∂xWi

)

hi+1/2−
N−1
∑

i=1

cfiZiWihi, Z,W∈H(Dh),

where fi := (Ii/A)
2ρ0, and a linear functional

R(Z) :=

N−1
∑

i=1

fiZihi + εσT̃ 4
a (Z0 + ZN ), Z ∈ H(Dh).

Let introduce notation A(u) :=
∫ u

0
αK(s+ Ta)s ds.

Consider the functional of energy

J(Z) =
1

2
a(Z,Z)+A(Z0)+A(Zn)+

εσ

5

(

(

Z0+T̃a

)5
+
(

ZN+T̃a

)5
)

−F (Z). (3.3)

Let us define a set of non-negative functions

B = {Z ∈ H(Dh) : Zi ≥ 0, xi ∈ D̄h}.

Next we formulate the following minimization problem: find V ∈ B such that

J(V ) = inf
Z∈B

J(Z). (3.4)
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Remark 1. The solution of variational problem (3.3) is equivalent to the solution
of discrete problem (3.1). Indeed, the solution of (3.3) is characterized by the
condition

J ′(V ;Z) = 0 ∀Z ∈ B,

where the first Gateaux derivative of J is defined as

J ′(V ;Z) := lim
t→0

J(V + tZ)− J(V )

t
, V, Z ∈ B.

Simple computations give that

J ′(V ;Z) = a(V, Z) +
(

α̃K(V0)V0 + εσ(V0 + T̃a)
4
)

Z0

+
(

α̃K(VN )VN + εσ(VN + T̃a)
4
)

ZN −R(Z),

or after summation by parts in the bilinear form, we get

N
∑

i=0

(Lh(Vi)Vi − F (xi, Vi))Zi = 0, ∀Z ∈ B

which coincides with discrete problem (3.1).

Theorem 1. Assume that hypothesis (3.2) is satisfied and

αK(Ta) = α0 > 0, α′
K(v) ≥ 0, ∀v ≥ Ta, (3.5)

Then the functional J is continuous on B. For a sufficiently small c ≤ c0 this
functional is also strictly convex and coercive on B. Therefore, the minimiza-
tion problem (3.4) has a unique solution V ∈ B.

Proof. It is easy to check by direct computations that J is continuous on B.
The second Gateaux derivative of J is given as

J ′′(V ;Z,W ) = a(W,Z) +
(

α̃K(V0) + α̃′
K(V0)V0 + 4εσ(V0 + T̃a)

3
)

W0Z0

+
(

α̃K(VN ) + α̃′
K(VN )VN + 4εσ(VN + T̃a)

3
)

WNZN .

Let us define the norm ‖ · ‖B in the space B by

‖U‖2B :=

N−1
∑

i=0

k(xi+1/2)
(

∂xUi

)2
hi+1/2 +

(

α0 + 4εσT̃ 3
a

)(

U2
0 + U2

N

)

.

It follows from the well known embedding theorem [16], that there exists a
constant γ > 0 such that

inf
Z∈H

‖Z‖2B
N−1
∑

i=1

fiZ2
i hi

≥
1

γ
. (3.6)

Let us take c0 such that 1 − c0γ ≥ 1/2. Then for c ≤ c0 and any V, Z ∈ B we
have

J ′′(V ;Z,Z) ≥
1

2
‖Z‖2B ≥ 0.

Math. Model. Anal., 15(1):9–22, 2010.
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It is easy to check that J ′′(V ;Z,Z) = 0 if and only if Z ≡ 0 for any V ∈ B.
We have proved that J is strictly convex on B.

Let us assume that fi ≤ Mf , xi ∈ Dh. Since T̃a > 4, then applying similar
analysis we get the estimate

J(V ) ≥
1

2
‖V ‖2B −

√

γMfL ‖V ‖B,

which implies that J(V ) → ∞ as ‖V ‖B → ∞, thus J is coercive on B. From
all these properties of J it follows that minimization problem (3.4) has a unique
solution V ∈ B (see, [7]). ⊓⊔

Remark 2. The existence of a unique solution of 2D discrete problem (2.5) can
be proved analogically.

3.2 Convergence analysis

Let us denote the error function of the discrete solution of (3.1) as Zi = Ui −
u(xi), xi ∈ D̄h. By putting it into the finite-difference scheme we get a discrete
problem for the error functions:















−k(x1/2) ∂xZ0+
(

αK(U0) + α′
K(Uθ

0 ) + εσP̃0

)

Z0 = η1/2, i = 0,

−∂x̄
(

k(xi+1/2) ∂xZi

)

=
(Ii
A

)2

ρ0cZi+∂x̄ηi+1/2, 0 < i < N,

k(xN− 1

2

) ∂xZN−1+
(

αK(UN ) + α′
K(Uθ

N ) + εσP̃N

)

ZN = ηN− 1

2

, i = N,

(3.7)
here we use notation:

Uθ
j := θUj + (1− θ)uj , 0 < θ < 1, P̃j = Ũ3

j + Ũ2
j ũj + Ũj ũ

2
j + ũ3

j .

Functions ηj+1/2, j = 0, . . . , N − 1, define the truncation errors in approxi-
mation of fluxes

ηj+1/2 := k(xj+1/2)∂xuj ,

and they can be estimated in a standard way as ηj+1/2 = Ch2
j+1/2.

Theorem 2. Assume that assumptions (3.2), (3.5) are satisfied. Then for a
sufficiently small c ≤ c0 the solution of discrete problem (3.1) converges to the
solution of 1D differential problem and the following estimate is valid

‖U − u‖B ≤ Ch2, h = max
j=1,...,N

hj−1. (3.8)

Proof. We multiply each equation of (3.7) by Zihi, add the obtained equalities
and apply the formula of summation by parts, then we get the equality

a(Z,Z) +
(

αK(U0) + α′
K(Uθ

0 ) + εσP̃0

)

Z2
0 +

(

αK(UN )

+ α′
K(Uθ

N ) + εσP̃N

)

Z2
N =

N−1
∑

i=1

∂x̄ηi+1/2Zihi + η1/2Z0 + ηN−1/2ZN .
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Recalling that U, u ≥ Ta, using the embedding estimate (3.6) on the left side
of this inequality and taking a sufficiently small c ≤ c0, we get that

1

2
‖Z‖2B ≤ a(Z,Z) +

(

αK(U0) + α′
K(Uθ

0 ) + εσP̃0

)

Z2
0

+
(

αK(UN ) + α′
K(Uθ

N ) + εσP̃N

)

Z2
N .

Using the formula of summation by parts and the ε inequality

|ab| ≤ εa2 +
1

4ε
b2,

we have

N−1
∑

i=1

∂x̄ηi+1/2Zihi + η1/2Z0 + ηN−1/2ZN = −

N−1
∑

i=0

ηi+1/2∂xZihi+1/2

+ 2ηN−1/2ZN ≤
1

4
‖Z‖2B +

N−1
∑

i=0

η2i+1/2

ki+1/2
hi+1/2 +

η2N−1/2

α0 + 4εσ
.

Combining both estimates we obtain that

‖Z‖B ≤ C max
0≤j<N

|ηj+1/2|,

which completes the proof. ⊓⊔

3.3 Convergence analysis of Picard’s iterations

The fixed point iteration is a very convenient method, since we have a possibility
to control the properties of the system of linear equations obtained after a
linearization step. Choosing an initial guess U0 ∈ B, we find a solution of (2.5)
or (3.9) by the Picard iterative algorithm:

Lh(U
s−1)Us = F (X,Us−1), s = 1, 2, . . . , S. (3.9)

3.3.1 Positivity of iterations

We take the initial approximation as U0
i = Ta, xi ∈ D̄h.

Lemma 2. Assume that hypothesis (3.2) is satisfied and U0
i = Ta, xi ∈ D̄h.

Then for sequence {Us} generated by the iterative algorithm (3.9) we have that

Us
i ≥ Ta xi ∈ D̄h, ∀s ≥ 1. (3.10)

Proof. For U0 estimate (3.10) is valid. Let assume that Us−1 ≥ Ta. Then,
taking in the proof of Lemma 1 coefficients α1 = ∞, α2

l = αG(U
s−1

l ), l = 0, N ,
f1 ≡ 0, f2 = F (X,Us−1) ≥ 0 we obtain that Us ≥ Ta. The proof is completed
by using the mathematical induction method. ⊓⊔

Remark 3. If a more strict condition 1 + αρ(Ta − 20) > 0 is satisfied, then we
have that Us

i > Ta, xi ∈ D̄h, ∀s ≥ 1.

Math. Model. Anal., 15(1):9–22, 2010.
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3.3.2 Convergence of iterations

First, we consider the case when αρ = 0, i.e. the heat source density does not
depend on the solution. Then it follows from Remark 3 that Us

i > Ta for all
s ≥ 1.

Lemma 3. Assume that α′
G(v) > 0 for v > Ta and U0

i = Ta, xi ∈ D̄h.
Then for sequence {Us} generated by the iterative algorithm (3.9) we have the
following estimates

U0
i < U2

i < . . . < U2j
i ≤ Ui ≤ U2j+1

i < . . . < U3
i < U1

i , xi ∈ D̄h. (3.11)

Proof. Let us take discrete functions Ta < V 1
i < V 2

i , xi ∈ D̄h and solve
problems

Lh(V
j)W j = F (X,V j), j = 1, 2.

Then it follows from the proof of Lemma 1, that

W 2
i < W 1

i , xi ∈ D̄h. (3.12)

Then it follows from Remark 3 that U1
i > Ta = U0

i . Using (3.12) we get that
U2
i < U1

i and also U2
i > Ta = U0

i . Repeating these iterations we prove (3.11).
⊓⊔

This lemma gives very useful error bounds of iterations Us but this result is
not sufficient to prove the convergence of Picard’s iterations.

Theorem 3. Assume that assumptions (3.2), (3.5) and

α′
G(U)(U − Ta) ≤ q αG(U), q < 1 (3.13)

are satisfied. Then for a sufficiently small c ≤ c0 iterations (3.9) converge to
the solution of discrete problem (3.1) and the following estimate is valid

(1− µ)‖Zs‖2B + µ
(

αG(U0)(Z
s
0)

2 + αG(UN )(Zs
N )2

)

≤ (q + cγ)

×
[

(1− µ)‖Zs−1‖2B + µ
(

αG(U0)(Z
s−1
0 )2 + αG(UN )(Zs−1

N )2
)]

, (3.14)

where Zs = Us − U is the error of iterations, and µ = q/(q + cγ).

Proof. Error function Zs satisfies the boundary value problem















−k(x1/2) ∂xZ
s
0 + αG(U

s−1

0 )Zs
0 = α′

G(U
θ,s−1

0 )(U0 − Ta)Z
s−1

0 , i = 0,

−∂x̄
(

k(xi+1/2) ∂xZ
s
i

)

=
(Ii
A

)2

ρ0cZ
s−1

i , 0 < i < N,

k(xN− 1

2

) ∂xZ
s
N−1+ αG(U

s−1

N )Zs
N = α′

G(U
θ,s−1

N )(UN − Ta)Z
s−1

N , i = N,

where we set Uθ,s = θU+(1−θ)Us. In order to make all technical details more
simple, in the following we apply the freezing method and compute nonlinear
coefficients at U . Otherwise, hypothesis (3.13) should be changed to a varia-
tional inequality in a neighbourhood of the solution. We multiply each equation
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by Zs
i hi, add the obtained equalities and apply the formula of summation by

parts, then we get the equality

N−1
∑

i=0

ki+1/2(∂xZ
s)2hi+1/2+αG(U0)(Z

s
0)

2+αG(UN )(Zs
N )2= c

N−1
∑

i=1

fiZ
s
i Z

s−1

i hi

+ α′
G(U0)(U0 − Ta)Z

s
0Z

s−1
0 + α′

G(UN )(UN − Ta)Z
s
NZs−1

N .

Using (3.6), (3.13) and the ε-inequality, it is straightforward to show for 0 ≤
µ ≤ 1 that

(1− µ)‖Zs‖2B + µ
(

αG(U0)(Z
s
0)

2 + αG(UN)(Zs
N )2

)

≤

N−1
∑

i=0

ki+1/2(∂xZ
s)2hi+1/2 + αG(U0)(Z

s
0)

2 + αG(UN )(Zs
N )2,

α′
G(Uj)(Uj − Ta)Z

s
jZ

s−1

j ≤ q αG(Uj)|Z
s
j | |Z

s−1

j |

≤
µ

2
αG(Uj)

(

(

Zs
j

)2
+

q2

µ2

(

Zs−1

j

)2
)

, j = 0, N,

N−1
∑

i=1

fiZ
s
i Z

s−1

i hi ≤ ε0

N−1
∑

i=1

fi(Z
s
i )

2hi +
1

4ε0

N−1
∑

i=1

fi(Z
s−1

i )2hi

≤ ε0γ ‖Z
s‖2B +

γ

4ε0
‖Zs−1‖2B ≤

1− µ

2

(

‖Zs‖2B +
(γc)2

(1− µ)2
‖Zs−1‖2B

)

.

Thus if we take µ = q/(q + cγ), then we get estimate (3.14). Let us pick c0
such that q+ c0γ < 1, then the Picard iteration operator defines a contraction
provided that c ≤ c0. ⊓⊔

Remark 4. For the application considered in this paper we have the following
generalized convection coefficient

αG(V ) := αK(V ) + αR(V ), αK(V ) = (c1 + c2V
1/6)2,

αR(V ) = ερ(Ṽ 3 + Ṽ 2T̃a + Ṽ T̃ 2
a + T̃ 3

a ).

It is easy to see, that

α′
K(U)(U − Ta)

αK(U)
≤

c2U
1/6

3(c1 + c2U1/6)
≤

1

3
,

α′
R(U)(U − Ta)

αR(U)
=

3Ũ3 − Ũ2T̃a − Ũ T̃ 2
a − T̃ 3

a

Ũ3 + Ũ2T̃a + Ũ T̃ 2
a + T̃ 3

a

=
6q + 8q2 + 3q3

4 + 6q + 4q2 + q3
.

Typical values of q for considered applications are q ≤ 0.15, then

α′
R(U)(U − Ta)/αR(U) ≤ 0.22.
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4 Computational Experiments

In this section, we present results of numerical experiments.

We have solved problem (2.1)–(2.3) on the domain D = (0, 0.05)×(0, 0.006),
when the thickness of the upper and the lower sides of the isolator are equal
to 0.003 and in the domain D = (0, 0.05) × (0, 0.009), when the thickness of
the lower isolator is equal to 0.006. The metal domain is defined as DM =
(0, 0.035) × (−3 · 10−5, 3 · 10−5). We use a uniform grid in the x1 direction
and a non-uniform grid in the x2 direction. Such a grid is constructed in
the following way: it is uniform in the metal domain DM and grid steps are
increased continuously outside of this domain, e.g. for the upper isolator as

h2j ∼ exp
(α

(

x2j − 0.5(L2 + L2M )
)

L2 − 0.5L2M

)

h2M , α ≥ 1,

where h2M defines a grid step in the metal domain.
We choose the following values of coefficients: the thermal conductivity

coefficient for a metal layer KM = 58.5 W/mK and for ABC isolator KI =
0.17 W/mK, the emissivity coefficient ε = 0.93, the specific resistivity of the
conductor ρ0 = 6.85 and c = 0.0067.

The obtained nonlinear finite volume scheme was linearized using the Pi-
card method (3.9). An aggregation-based algebraic multigrid solver AGMG,
developed by Y. Notay was used to solve systems of linear equations [13, 14].
Algebraic multigrid (AMG) is one of the most effective iterative methods for
the solution of large, sparse linear systems obtained from the discretization
of elliptic self-adjoint PDEs (see [1, 17], where results of many computational
experiments with different AMG solvers are presented for diffusion, diffusion-
convection, the Stokes and the Boussinesq problems in 2D and 3D domains).

Table 1. The results of application of AGMG with FGC iterative algorithm for an
elliptic problem with strongly discontinuous coefficients

300× 384 600 × 768 1200 × 1576 1800× 2304

Numb. Iter. 81 106 118 114
CPU Time 3.8 22 98 226

AGMG was used as a preconditioner for Krylov subspace methods, e.g.
PCG, GMRES algorithms ( for similar simulations of electrical cables we have
used also a preconditioned version of BiCGStab [5, 6]). The matrix of a linear
system obtained after the Picard linearization is an M-matrix. Since we have
the Robin type boundary conditions, this matrix is also symmetric, therefore
the FCG iterative algorithm can be used as a Krylov subspace method. Even
though coefficients of the elliptic problem are strongly discontinuous, the di-
rect application of the AGMG solver was very robust (see results in Table 1,
where the total number of iterations and CPU time are presented for 5 Picard’s
iterations).
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But a proper tuning of some parameters of the solver was required in the
case when GMRES was used as a Krylov subspace method. The properties
of the application should be taken in account. In order to guarantee the con-
vergence of AMG-preconditioned Krylov solver, we have done the following
modifications:

• the number of Gauss-Seidel pre-smooting and post-smoothing iterations
was increased till 2 iterations;

• the number of recursion steps was limited to 3-4 steps (depending on the
size of the discrete problem), therefore the size of the problem on the
coarse grid remained quite large.

We note, that the robustness of MG solvers can be increased also by selecting
a proper smoother, which is tailored for a given application, see [4].

Fig. 2(a) illustrates the distribution of the temperature in the case of a sym-
metrical composite structure and Fig. 2(b) gives results in the case when the
lower part of the isolator is twice larger than the upper side (here the compu-
tational domain is defined as D = (0, 0.05)× (0, 0.009)). In both experiments
the current was equal to I = 65 A, the external temperature Ta = 25 C.

In both cases the accuracy 0.001 of the Picard iterations was achieved after
7 iterations.

a) b)

Figure 2. Distribution of the temperature in the composite structure for I = 65 A: a) the
symmetrical position of the metal layer, b) non-symmetrical position of the metal layer.

The presented numerical results illustrate our theoretical results and show
the efficiency of the Picard iterative method for such applications. An open
problem is a proper selection and optimization of parameters within the AMG
solver, which is used to solve linearized systems of finite volume scheme. In this
paper we have restricted to such values of parameters and smoothing strategies
which give a robust algorithm.
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