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Abstract. The author considers a three–point third order boundary value problem.
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1 Introduction

Nonlinear boundary value problems arise in a variety of different areas of ap-
plied mathematics and physics. The theory of nonlinear boundary value prob-
lems is a very actual part of nonlinear analysis since it is aimed to applications.
There are a lot of investigations on this subject. The classical results in the
theory of nonlinear boundary value problems concern the existence and unique-
ness of solutions. Let us mention books by P. Bailey, L. Shampine, P. Waltman
[2], S. Bernfeld and V. Lakshmikantham [3], N.I. Vasilyev and Yu.A. Klokov
[11], and modern treatises by C. Coster, P. Habets [4], W. Kelley, A. Peterson
[7]. The more complicated, more actual questions are about the number of so-
lutions of boundary value problems, of their properties etc. This type problems
are insufficiently investigated in the literature even for the second order prob-
lems. There are few results on multiple solutions of the third order nonlinear
problems. Results concerning two-point third order nonlinear boundary value
problems were obtained by E. Rovderova [9], F. Sadyrbaev [10]. In [9] the au-
thor states some results on the number of solutions of two-point boundary value
problems. In [10] the author established multiplicity results for certain classes
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of third order nonlinear boundary value problems. His approach was based
on the Hanan’s theory [5] of conjugate points for third order linear differential
equations.

In the present paper we consider a three-point third order boundary value
problem. The similar type problems were investigated by P. Hartman in [6]
with respect to existence of a solution. The focal three–point boundary value
problem was considered in [1] where the authors evaluated the number of solu-
tions. The main object of investigation in our paper is three–point boundary
value problem

x′′′ = f(x), (1.1)

x(a) = x(b) = x(c) = 0, a < b < c, (1.2)

where f(x) is strictly increasing, continuous function such that f(0) = 0. By a
solution of (1.1) we mean C3(I) function x(t), which satisfies the equation.

We are looking for multiple solutions of the problem (1.1), (1.2). The idea
is based on the following argumentation. First, consider the auxiliary initial
value problem

x′′′ = f(x), (1.3)

x(b) = 0, x′(b) = α, x′′(b) = β.

Let M+ be a set of (α, β) such, that the solution of (1.3) vanishes at t = c.
Let M− be a set of (α, β) such, that the solution of (1.3) vanishes at t = a. If
M+ ∩M− 6= ∅, then the problem (1.1), (1.2) has solutions. We can estimate
the number of solutions if properties of the set M+ ∩M− are known.

In our investigation we consider the structure and properties of solutions
of equation (1.1). We are interested in solutions which vanish at t = b and
oscillate for t > b and t < b. We show that the structure of solutions is similar
to that of solutions of the linear equation

x′′′ = x. (1.4)

Linear equations of type (1.4) were intensively studied by Hanan [5].
Section 2 contains some auxiliary results. In Section 3 we consider some

important properties of solutions of the equation (1.1). In Section 4 we investi-
gate the structure of solutions. Section 5 deals with the three-point boundary
value problem, we state and prove some propositions and one theorem.

2 Preliminaries

Proposition 1. Suppose x(t) ∈ C3(I). If the values x(a), x′(a), x′′(a) are
non-negative (but not all zero) and x′′′(t) is positive if x(t) is positive, then the
functions x(t), x′(t), x′′(t) are positive for t > a.

Remark 1. This result is analogous to Lemma 2.1 from [8], but it is true for
general functions not only for solutions of linear differential equations.
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Proof. Let x(a) ≥ 0, x′(a) ≥ 0, x′′(a) ≥ 0 and (x(a))2+(x′(a))2+(x′′(a))2 > 0.
Then in all cases x(t) will be positive in some open interval whose left boundary
point is t = a. Suppose that x(t), x′(t), x′′(t) are not positive for all t such
that t > a and there exists a point t = t0 such that x(t0) = 0 and x(t) > 0 for
a < t < t0. Since x(t0) = 0, there will exist a point t = t1, a ≤ t1 < t0 such
that x′(t1) = 0 and x′(t) < 0 for t1 < t < t0. Since x′(t1) = 0, there will exist
a point t = t2, a ≤ t2 < t1 such that x′′(t2) = 0 and x′′(t) < 0 for t2 < t < t1.
Since x′′′(t) > 0 for x(t) > 0, it follows that x′′′(t) > 0 for a < t < t0.

Consider

x′′(t) = x′′(a) +

∫ t

a

x′′′(s) ds, a < t ≤ t0.

The right-hand side is positive, and increases in t, as long as x′′′(t) remains
positive. We thus conclude that x′′(t) is positive for a < t ≤ t0. Next consider

x′(t) = x′(a) +

∫ t

a

x′′(s) ds, a < t ≤ t0.

The right-hand side is positive, and increases in t, as long as x′′(t) remains
positive. We thus conclude that x′(t) is positive for a < t ≤ t0. Consider

x(t) = x(a) +

∫ t

a

x′(s) ds, a < t ≤ t0.

The right-hand side is positive, and increases in t, as long as x′(t) remains posi-
tive. We thus conclude that x(t) is positive for a < t ≤ t0. These contradictions
prove the proposition. ⊓⊔

Proposition 2. Suppose x(t) ∈ C3(I). If the values x(a), x′(a), x′′(a) are
non-positive (but not all zero) and x′′′(t) is negative if x(t) is negative, then
the functions x(t), x′(t), x′′(t) are negative for t > a.

The proof is analogous to the prove of Proposition 1.

Remark 2. Function x(t) from Propositions 1 and 2 may be thought as a solu-
tion of differential equation (1.1).

3 Properties of Solutions

Corollary 1. If x(t) is a nontrivial solution of (1.1) and x(a) = x(b) = 0, a < b,
then x′(a) 6= 0.

Proof. Assume x′(a) = 0, and, without loss of generality, let x′′(a) > 0. Then,
by the Proposition 1 x(t) > 0 for t > a. But x(b) = 0, a < b. The contradiction
proves the corollary. ⊓⊔

Corollary 2. If x(t) is a nontrivial solution of (1.1) and x(a) = x(b) = 0 (a < b),
then x′(a) · x′′(a) < 0.

Math. Model. Anal., 15(1):127–136, 2010.
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Proof. Assume x′(a) · x′′(a) ≥ 0. If x′(a) ≥ 0, x′′(a) ≥ 0, then, by the
Proposition 1 x(t) > 0 for t > a. We have a contradiction, since x(b) = 0.

If x′(a) ≤ 0, x′′(a) ≤ 0, then, by the Proposition 2 x(t) < 0 for t > a. We
have a contradiction, since x(b) = 0. ⊓⊔

Proposition 3. If x(t) is a nontrivial solution of (1.1) and x(a) = 0, then the
function x(t) changes sign for t < a.

Proof. First let x′(a) = 0. Without loss of generality, let x′′(a) > 0. Assume
that x(t), x′(t), x′′(t) do not change sign for t < a, that is x(t) > 0, x′(t) < 0,
x′′(t) > 0 for t < a. Then x′′′(t) > 0 for t < a. Consider

x′′(t) = x′′(a)−

∫ a

t

x′′′(s) ds.

Obviously, there exists t1 < a such, that

∫ a

t1

x′′′(s) ds > x′′(a).

Thus x′′(t) < 0 for t < t1. Consider

x′(t) = x′(t1)−

∫ t1

t

x′′(s) ds.

Obviously, there exists t2 < t1 such, that

∫ t1

t2

x′′(s) ds < x′(t1).

Thus x′(t) > 0 for t < t2. Consider

x(t) = x(t2)−

∫ t2

t

x′(s) ds.

Obviously, there exists t3 < t2 such, that

∫ t2

t3

x′(s) ds > x(t2).

Thus x(t) < 0 for t < t3. Let x′(a) 6= 0. Assume that x(t) does not change
sign for t < a. Four cases are possible.

1. x′(a) > 0, x′′(a) ≥ 0. Thus x(t) < 0 for t < a.

2. x′(a) > 0, x′′(a) ≤ 0. Thus x(t) < 0 for t < a.

3. x′(a) < 0, x′′(a) ≥ 0. Thus x(t) > 0 for t < a.

4. x′(a) < 0, x′′(a) ≤ 0. Thus x(t) > 0 for t < a.
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We will give the prove for the first case. For the other cases the proof is similar.
Since x(t) < 0 for t < a, then x′′′(t) < 0 for t < a. Consider

x′′(t) = x′′(a)−

∫ a

t

x′′′(s) ds.

The right-hand side is positive, hence x′′(t) is positive for t < a. Consider

x′(t) = x′(a)−

∫ a

t

x′′(s) ds.

Obviously, there exists t1 < a such, that

∫ a

t1

x′′(s) ds > x′(a).

Thus x′(t) < 0 for t < t1. Consider

x(t) = x(t1)−

∫ t1

t

x′(s) ds.

Obviously, there exists t2 < t1 such, that

∫ t1

t2

x′(s) ds < x(t1).

Thus x(t) > 0 for t < t2. These contradictions prove the proposition. ⊓⊔

Corollary 3. If x(t) is a nontrivial solution of (1.1) and t = t0 is a simple or
a double zero of x(t), then x(t) has an infinity of simple zeros in (−∞, t0). If
t = t0 is a double zero of x(t), then x(t) does not vanish in (t0,+∞).

Proposition 4. Assume that x(t) is a solution of (1.1) and x(a) = 0, x′(a) =
α > 0, x′′(a) = β < 0. If x(t) is a solution of (1.1) such that x(a) = 0,
x′(a) = α > 0, x′′(a) = β < 0 and β > β, then x(t) > x(t), x′(t) > x′(t),
x′′(t) > x′′(t) for t > a.

Proof. Consider the auxiliary function z(t) = x(t)−x(t). Obviously z(a) = 0,
z′(a) = 0, z′′(a) = β − β > 0 and z′′′(t) > 0, since f(x) is an increasing
function. Thus, by Proposition 1, we get that z(t) > 0, z′(t) > 0, z′′(t) > 0 for
t > a. Hence x(t) > x(t), x′(t) > x′(t), x′′(t) > x′′(t) for t > a. ⊓⊔

Proposition 5. Assume that x(t) is a solution of (1.1) and x(a) = 0, x′(a) =
α > 0, x′′(a) = β < 0. If x(t) is a solution of (1.1) such that x(a) = 0,
x′(a) = α > 0, x′′(a) = β < 0 and α > α, then x(t) > x(t), x′(t) > x′(t),
x′′(t) > x′′(t) for t > a.

The proof is analogous to the proof of Proposition 4.

Math. Model. Anal., 15(1):127–136, 2010.
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4 Structure of Solutions

Consider the auxiliary initial value problem (1.3).

Proposition 6. For any k = 1, 2, . . . there exists a continuous branch Γk of
initial values (α, β) such that the respective initial value problem (1.3) has a
solution xk(t, α, β) with a double zero at some point τk(α, β) and k − 1 simple
zeros in (b; τk).

Proof. Consider the auxiliary Cauchy problem (1.1) with the following initial
conditions

x(η) = x′(η) = 0, x′′(η) = ξ > 0.

The solutions continuously depend on ξ. These solutions have only simple zeros
to the left of t = η (see, Corollary 3). Let us denote zeros to the left of t = η
by −∞ < · · · < t2 < t1 < η. Let x′(t1) = α, x′′(t1) = β, η be fixed and ξ is
varied. Initial values (α, β) at t = t1 continuously vary with ξ. So Γ1 (the set
of all respective (α, β)) is a continuous one-parametric curve. As the equation
(1.1) is autonomous, we can identify t1 with t = b and Γ1 does not change. For
the rest branches Γi the proof is similar. ⊓⊔

Remark 3. x(t) 6= 0 for t > τk (see, Corollary 3).

Proposition 7. Branches Γn and Γm cannot intersect unless n = m.

Proof. The proof follows from the existence and uniqueness theorem. ⊓⊔

Proposition 8. For any k = 0, 1, 2, . . . there exists a set Fk of initial val-
ues (α, β) such that the respective initial value problem (1.3) has a solution
xk(t, α, β) with exactly k simple zeros in (b; τk) and no zeros in (τk; +∞).

Consider the initial value problem (1.3), where α > 0 is arbitrary and
β = β0 < 0 is fixed. Let α decrease from +∞. If α is sufficiently large,
then the solution x(t, α, β0) does not vanish in (b; +∞). Then there exists
such α = α1 that the solution x1(t, α1, β0) has a double zero at some point
τ1(α1;β0) and no zero in (b; τ1). Analogously, there exists such α = α3 that
the solution x3(t, α3, β0) has a double zero at some point τ3(α3;β0) > τ1(α1;β0)
and two simple zeros in (b; τ3). Then there exists such α = α5 that the solution
x5(t, α5, β0) has a double zero at some point τ5(α5;β0) > τ3(α3;β0) and four
simple zeros in (b; τ5). We can continue this process.

Let α increase from zero. If α is sufficiently small, then the solution
x(t, α, β0) has exactly one simple zero in (b; τ1) and no zero in (τ1; +∞). Then
there exists such α = α2 that the solution x2(t, α2, β0) has a double zero at some
point τ2(α2, β0) (τ1 < τ2 < τ3) and one simple zero in (b; τ2). If t1 is a simple
zero of x2(t, α2, β0), then b < t1 < τ1. Then there exists such α = α4 that the
solution x4(t, α4, β0) has a double zero at some point τ4(α4, β0) (τ3 < τ4 < τ5)
and three simple zeros in (b; τ4). If t1, t2, t3 are simple zeros of x4(t, α4, β0),
then b < t1 < τ1 < t2 < τ2 < t3 < τ4. We can continue this process.

Thus, let tn is the n-th simple zero of xk(t, αk, β0) in (b; τk), then τn−1 <
tn < τn, n = 1, 2, . . . , k, k ∈ N.
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Let α ∈ (α3;α1), then the solution x(t, α, β0) has exactly two simple zeros
in (b; τ2) and no zero in (τ2; +∞). If t1, t2 are simple zeros of x(t, α, β0), then
b < t1 < τ1 < t2 < τ2. Let α ∈ (α2;α4), then the solution x(t, α, β0) has
exactly three simple zeros in (b; τ3) and no zero in (τ3; +∞). If t1, t2, t3 are
simple zeros of x(t, α, β0), then b < t1 < τ1 < t2 < τ2 < t3 < τ3. We can
continue this process. A structure of the solution is presented in Fig. 1.

t

xHtL

Τ1

Τ2

x1Ht,Α1,Β0L

x2Ht,Α2,Β0L

Figure 1. Structure of the solutions of (1.3), α > 0 is arbitrary, β = β0 < 0 is fixed.

Remark 4. Analogous argumentation is valid, if we chose α = α0 > 0 fixed and
let β < 0 to be arbitrary.

Remark 5. It follows that Γi are monotone curves.

Remark 6. Suppose, that f(x) = kx. If we change α2 + β2 (staying on a fixed
branch Γi), then the points τ1, τ2, . . . do not change the location (because of
the linear dependence of solutions). These points are called conjugate points
[5]. If f(x) is not a linear function, the points τ1, τ2, . . . can change their
location.

Let lk(α, β) be simple zeros of the initial value problem (1.3) to the left of
t = b.

Definition 1. We shall say that the function f(x) in (1.1) has the property
P sup, if the following statement holds: let (α, β) ∈ Γk and α2 + β2 tends
to infinity, then τk(α, β) and lk(α, β) continuously and monotonically tend to
t = b and if α2 + β2 tends to zero, then τk(α, β) and lk(α, β) continuously and
monotonically tend to infinity.

Definition 2. We shall say that the function f(x) from (1.1) has the property
Psub, if the following statement holds: let (α, β) ∈ Γk and α2 + β2 tends
to infinity, then τk(α, β) and lk(α, β) continuously and monotonically tend to
infinity and if α2 + β2 tends to zero, then τk(α, β) and lk(α, β) continuously
and monotonically tend to t = b.

5 Three–Point Boundary Value Problem

Let Zr
k (k = 1, 2, . . .) be a branch of initial values (α, β) such that the respective

initial value problem (1.3) has a solution x(t, α, β) which vanishes at t = c and
has (k − 1) simple zeros in (b, c). Zr

k ⊂ M+ and ∪Zr
k = M+.

Math. Model. Anal., 15(1):127–136, 2010.
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Let Z l
k (k = 1, 2, . . .) be a branch of initial values (α, β) such that the

respective initial value problem (1.3) has a solution x(t, α, β) which vanishes at
t = a and has k − 1 simple zeros in (a, b). Z l

k ⊂ M− and ∪Z l
k = M−. So Z l

k

and Zr
k are subsets of the fourth quadrant of the plane (α, β).

If Zr
k ∩ Z l

m 6= ∅ for some integers k and m, then the problem (1.1), (1.2)
has a solution with (α, β) belonging to the above intersection. The number of
these intersections is the number of solutions of the main problem.

So knowledge of properties of the sets Zr
k and Z l

m is essential for solvability
of the problem (1.1), (1.2).

Proposition 9. If the right side function in (1.1) has the property P sup (or
Psub), then the set Z l

k is a continuous line connecting the rays ϕ = −π/2 (β ∈
(−∞, 0), α = 0) and ϕ = 0 (α ∈ (0,+∞), β = 0) for any k = 1, 2, . . .. For any
M > 0 there exists integer k such that Z l

k are in the outer region with respect
to the sector with radius M .

Proof. We will prove the proposition for the P sup case, for Psub case the proof
is analogous. Let choose angle ϕ close to ϕ = −π/2. Denote by rϕ the ray em-
anating from the origin in direction of angle ϕ (in the fourth quadrant). By
property P sup there are countably many points Pk on the ray with the proper-
ties: for Pk(αk, βk) k = 1, 2, . . . the respective solution of (1.3) x(t, αk, βk) has
exactly k− 1 zeros in the interval (a, b) and x(a, αk, βk) = 0. Consider now the
family of rays rϕ parameterized by the angle ϕ ∈ (−π/2, 0). We got a sequence
Pk(ϕ) for any angle ϕ. It is evident that the Z l

k = ∪ϕPk(ϕ) is a continuous
line connecting the ray ϕ = −π/2 and ϕ = 0 for any k = 1, 2, . . . and for any
M > 0 there exists integer k such that Z l

k are in the outer region with respect
to the sector with radius M . ⊓⊔

Proposition 10. If the right side function in (1.1) has the property P sup (or
Psub), then the set ∪kZ

r
k is a continuous line which emanates from the origin

and stretches to infinity (in the fourth quadrant).

Proof. We will prove the proposition for the P sup case, for Psub case the
proof is analogous. Let choose radius ρ close to zero (ρ is so small that initial
conditions (α, β) corresponding to any double zero of solutions of (1.3) are in
the outer region with respect to the sector with radius ρ). We parameterize
the respective arc by the angle ϕ ∈ (−π/2, 0). We know that for small enough
ϕ < 0 the solution x(t, α, β) has no zeros at all for t > 0. A point of intersection
with Γ1 gives a solution with the double zero τ1 > c. We continue this process
and for some ϕ2 the arc intersects Γ2 (τ2 > c). Now consider ϕ between −π/2
and ϕ2. Any solution with the initial values α, β on the arc has exactly one
zero t1(ϕ). It is evident that t1(ϕ) → 0 as ϕ → −π/2. It follows also that
t1(ϕ) = c for some ϕ ∈ (−π/2, ϕ2) where ϕ2 is angle corresponding to point
of intersection with Γ2. Let increase radius ρ. There exists ρ such that the
respective solution has a double zero at t = c and no zeros in (b, c). Thus, we
got the set Zr

1 with the property: any solution with (α, β) ∈ Zr
1 has the first

zero at t = c. Repeating this process with respect to the second zeros we got
the set Zr

2 with the property: any solution with (α, β) ∈ Zr
2 has the second

zero at t = c.
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On the branches Γk (k = 0, 1 . . .) mark the points Tk(αk;βk) such, that the
solution of (1.3) xk(t, αk, βk) has a double zero at t = c and k− 1 simple zeros
in (b; c). Obviously, if f(x) has the property P sup, then α2

k +β2
k < α2

k+1+β2
k+1

for any k = 1, 2, . . .. Zr
1 emanates from the origin (origin does not belong

to any branch), goes through the region F1, then intersects all branches Γk

(and regions between them) and ends in the point T1. Zr
2 emanates from the

point T1, intersects all branches Γk between Γ1 and Γ2 and ends in the point
T2. Generally, Zr

k emanates from the point Tk−1, intersects all branches Γk

between Γk−1 and Γk and ends in the point Tk (see, Fig.2). So, the branch
∪Zr

k = M+ is continuous line which emanates from the origin and tends to the
minus infinity. ⊓⊔

G1G2 G3G4 G5G6 .....

Z1
r

Z2
r

Z3
r

Z4
r

Z5
r

Z1
l Z2

l Z3
l Z4

l Z5
l Z6

l Z7
l Z8

l Α
Β

Figure 2. Sets Zl
k

and Zr
k

for P sup function (schematically).

Theorem 1. Suppose, that the right side function f(x) in (1.1) has the prop-
erty P sup (or Psub). Then the problem (1.1), (1.2) has a countable set of
solutions.

Proof. It follows from Propositions 9 and 10 that any set Z l
n intersects ∪iZ

r
i .

Sets Z l
n are countably many. Any point of intersection by definitions of the

sets Zr
i and Z l

n corresponds to the solution of boundary value problem (1.1),
(1.2). Hence we get the proof. ⊓⊔

Remark 7. Any point of intersection of Z l
n with ∪iZ

r
i yields a solution to the

problem (1.1), (1.2). Suppose this point belongs to Z l
n ∩ Zr

m for certain n and
m, then the corresponding solution x(t) has exactly (m − 1) simple zeros in
(b, c) and (n− 1) simple zeros in (a, b).

Example 1. Consider the problem

x′′′ = x3, x(−1) = x(0) = x(1) = 0.

Numerical experiments show that the branches Z l
1 and Zr

1 intersect at the point
(9.85,−21.2) ∈ F1, branches Z l

2 and Zr
1 intersect at the point (26.8,−73) ∈ F1,

branches Z l
3 and Zr

1 intersect at the point (38.18,−117.83) ∈ F1 (coordinates
of points are given approximately). The respective solutions are depicted in.
Fig. 3. So it is shown that the sets Zr

i may intersect with multiple sets Z l
j .

The converse is not true.

Math. Model. Anal., 15(1):127–136, 2010.
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-1.0 -0.5 0.5 1.0
t

-30

-20

-10

10

20

xHtL

Figure 3. Some solutions of the problem x′′′ = x3, x(−1) = x(0) = x(1) = 0.
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