MATHEMATICAL MODELLING AND ANALYSIS Volume 15 Number 2, 2010, pages 153–160 Doi:10.3846/1392-6292.2010.15.153-160 © Vilnius Gediminas Technical University, 2010

Some Notes on Matrix Transforms of Summability Domains of Cesàro Matrices

A. Aasma

Tallinn University of Technology, Department of Economics Akadeemia tee 3, 12618, Tallinn, Estonia E-mail: ants.aasma@tseba.ttu.ee

Received September 25, 2009; revised December 18, 2009; published online April 20, 2010

Abstract. In this paper sufficient conditions for a matrix $M = (m_{nk})$ $(m_{nk}$ are Cesàro numbers A_{n-k}^s , $s \in C$ if $k \leq n$ and $m_{nk} = 0$ if k > n) to be a transform from the summability domain of the Cesàro method C^{α} into the summability domain of another Cesàro method C^{β} , where $\alpha, \beta \in C \setminus \{-1, -2, \ldots\}$, are found.

Keywords: matrix transformations, summability method of Cesàro.

AMS Subject Classification: 40C05; 40G05.

1 Introduction

Let $C^{\alpha} = (c_{nk}), \alpha \in \mathcal{C} \setminus \{-1, -2, \ldots\}$, be a series-to-sequence Cesàro method, i.e. (see [4] or [5])

$$c_{nk} = \begin{cases} \frac{A_{n-k}^{\alpha}}{A_n^{\alpha}} & (k \le n), \\ 0 & (k > n), \end{cases}$$

where $A_n^{\alpha} = \binom{n+\alpha}{n}$ are Cesàro numbers. Throughout this paper we assume that summation indices run from 0 to ∞ unless otherwise specified. A series $x := \sum x_k$ is said to be C^{α} -summable if the sequence $C^{\alpha}x = (C_n^{\alpha}x)$ is convergent, where

$$C_n^{\alpha} x = \sum_{k=0}^n c_{nk} x_k$$

We denote the domain of all C^{α} -summable series by $c_{C^{\alpha}}$, i.e.

$$c_{C^{\alpha}} := \Big\{ x = (x_n) \, \Big| \, \lim_{n \to \infty} C_n^{\alpha} x \text{ exists} \Big\}.$$

In [1, 3, 10] necessary and sufficient conditions for a matrix M with real or complex entries to be a transform from $c_{C^{\alpha}}$ into $c_{C^{\beta}}$ for $\alpha, \beta \in \mathcal{R}$ or $\alpha, \beta \in \mathcal{C} \setminus \{-1, -2, \ldots\}$ are described. The summability domains (and the subsets of summability domains) of different Cesàro methods are compared in several papers (see, for example, [2, 7, 8]). For double Cesàro methods this problem has in recent years been considered, for example, in [6, 9].

In the present paper the particular subcase of the above-described problem is studied: sufficient conditions for a matrix $M = (m_{nk})$, defined by the relation

$$m_{nk} = \begin{cases} A_{n-k}^{s} & (k \le n, \, s \in \mathcal{C}), \\ 0 & (k > n), \end{cases}$$
(1.1)

to be a transform from $c_{C^{\alpha}}$ into $c_{C^{\beta}}$, $\alpha, \beta \in \mathcal{C} \setminus \{-1, -2, \ldots\}$ are found. It is easy to see that this problem is equivalent to the problem of finding sufficient conditions for $c_{C^{\alpha}} \subset c_G$, where $G := C^{\beta}M$.

2 Auxiliary Results

For the proof of main results we need the following properties of Cesàro numbers (see [4], p. 77–81):

$$\sum_{k=0}^{n} A_{n-k}^{\alpha} A_{k}^{\beta} = A_{n}^{\alpha+\beta+1} \text{ for every } \alpha, \beta \in \mathcal{C},$$
(2.1)

$$|A_n^{\alpha}| \le K_1(n+1)^{Re\alpha} \quad \text{for every } \alpha \in \mathcal{C}, \ K_1 > 0,$$
(2.2)

$$|A_n^{\alpha}| \ge K_2(n+1)^{Re\alpha}$$
 for $\alpha \in \mathcal{C} \setminus \{-1, -2, \ldots\}, K_2 > 0.$ (2.3)

Further we also use the following lemma.

Lemma 1. Let $\alpha \in C$, $\beta \in C$. The following assertions hold: (A) If $Re \alpha \neq -1$ and $Re \beta \neq -1$, or $\alpha = \beta = -1$, then

$$D_{n} := \sum_{k=0}^{n} \left| A_{n-k}^{\alpha} A_{k}^{\beta} \right| = \mathcal{O}\left[(n+1)^{Re \, \alpha} \right] + \mathcal{O}\left[(n+1)^{Re \, \beta} \right] + \mathcal{O}\left[(n+1)^{Re \, (\alpha+\beta)+1} \right].$$
(2.4)

(B) If $\operatorname{Re}\beta = -1$, then

$$D_n = \begin{cases} \mathcal{O}\left[(n+1)^{Re\,\alpha}\ln(n+1)\right] & (Re\,\alpha \ge -1), \\ \mathcal{O}\left[(n+1)^{-1}\right] & (Re\,\alpha < -1). \end{cases}$$

(C) If $Re \alpha = -1$, then

$$D_n = \begin{cases} \mathcal{O}\left[(n+1)^{Re\,\beta} \ln(n+1) \right] & (Re\,\beta \ge -1), \\ \mathcal{O}\left[(n+1)^{-1} \right] & (Re\,\beta < -1). \end{cases}$$

Proof. First we note that for all α , $\beta \in \mathcal{R}$ relation (2.4) is proved, for example, in [4], p. 79–81. Let now $Re \alpha \neq -1$, $Re \beta \neq -1$. Then by (2.2) and (2.3) there

exist $K_1^1, K_1^2, K_2^1, K_2^2 > 0$ so that

$$D_n \leq K_1^1 K_1^2 \sum_{k=0}^n (n-k+1)^{Re\,\alpha} (k+1)^{Re\,\beta} \leq K_1^1 K_1^2 K_2^1 K_2^2 \sum_{k=0}^n \left| A_{n-k}^{Re\,\alpha} A_k^{Re\,\beta} \right|.$$

Hence relation (2.4) holds, since $Re\alpha, Re\beta \in \mathcal{R}$. Thus assertion (A) is satisfied.

Let now $Re\beta = -1$. Then with the help of relation (2.2) we have

$$D_n \le M V_n, \quad M > 0,$$

where

$$V_n := \sum_{k=0}^n v_{nk}, \quad v_{nk} := (n-k+1)^{Re\,\alpha} (k+1)^{-1}.$$

Further we can write

$$V_n = \begin{cases} \sum_{k=0}^{\frac{n}{2}-1} v_{nk} + \left(\frac{n}{2}+1\right)^{Re\,\alpha-1} + \sum_{k=\frac{n}{2}+1}^{n} v_{nk} & (n \text{ is even }), \\ \frac{\frac{n-1}{2}}{\sum_{k=0}^{2}} v_{nk} + \sum_{k=\frac{n+1}{2}}^{n} v_{nk} & (n \text{ is odd}), \end{cases}$$

i.e.,

$$V_n = (n+1)^{Re\,\alpha} 1^{-1} + n^{Re\,\alpha} 2^{-1} + \dots + \left(\frac{n}{2} + 3\right)^{Re\,\alpha} \left(\frac{n}{2} - 1\right)^{-1} \\ + \left(\frac{n}{2} + 2\right)^{Re\,\alpha} \left(\frac{n}{2}\right)^{-1} + \left(\frac{n}{2} + 1\right)^{Re\,\alpha-1} + \left(\frac{n}{2}\right)^{Re\,\alpha} \left(\frac{n}{2} + 2\right)^{-1} \\ + \dots + 2^{Re\,\alpha} n^{-1} + 1^{Re\,\alpha} (n+1)^{-1}$$

for an even number n, and

$$V_n = (n+1)^{Re\,\alpha} 1^{-1} + n^{Re\,\alpha} 2^{-1} + \dots + \left(\frac{n+5}{2}\right)^{Re\,\alpha} \left(\frac{n-1}{2}\right)^{-1} \\ + \left(\frac{n+3}{2}\right)^{Re\,\alpha} \left(\frac{n+1}{2}\right)^{-1} + \left(\frac{n+1}{2}\right)^{Re\,\alpha} \left(\frac{n+3}{2}\right)^{-1} \\ + \left(\frac{n-1}{2}\right)^{Re\,\alpha} \left(\frac{n+1}{2}\right)^{-1} + \dots + 2^{Re\,\alpha} n^{-1} + 1^{Re\,\alpha} (n+1)^{-1}$$

for an odd number n. Let us suppose first that $\operatorname{Re} \alpha \geq -1$. Then

$$(n+1)^{Re\,\alpha} 1^{-1} \ge 1^{Re\,\alpha} (n+1)^{-1},$$

$$n^{Re\,\alpha} 2^{-1} \ge 2^{Re\,\alpha} n^{-1},$$

$$\dots$$

$$\left(\frac{n}{2} + 2\right)^{Re\,\alpha} \left(\frac{n}{2}\right)^{-1} \ge \left(\frac{n}{2}\right)^{Re\,\alpha} \left(\frac{n}{2} + 2\right)^{-1},$$

Math. Model. Anal., 15(2):153-160, 2010.

if n is an even number, and

$$(n+1)^{Re \alpha} 1^{-1} \ge 1^{Re \alpha} (n+1)^{-1},$$

 $n^{Re \alpha} 2^{-1} \ge 2^{Re \alpha} n^{-1},$

$$\left(\frac{n+3}{2}\right)^{Re\,\alpha} \left(\frac{n+1}{2}\right)^{-1} \ge \left(\frac{n+1}{2}\right)^{Re\,\alpha} \left(\frac{n+3}{2}\right)^{-1},$$

if n is an odd number. Consequently

$$V_n \leq \begin{cases} 2\sum_{k=0}^{\frac{n}{2}-1} (n-k+1)^{Re\,\alpha} (k+1)^{-1} + \left(\frac{n}{2}+1\right)^{Re\,\alpha-1} & (n \text{ is even}), \\ \frac{n-1}{2} \sum_{k=0}^{\frac{n-1}{2}} (n-k+1)^{Re\,\alpha} (k+1)^{-1} & (n \text{ is odd}). \end{cases}$$

Therefore

$$V_n \leq \begin{cases} 2\left(\frac{n}{2}+2\right)^{Re\,\alpha}\sum_{k=0}^{\frac{n}{2}-1}(k+1)^{-1} + \left(\frac{n}{2}+1\right)^{Re\,\alpha-1} & (n \text{ is even}),\\ \\ 2\left(\frac{n+3}{2}\right)^{Re\,\alpha}\sum_{k=0}^{\frac{n-1}{2}}(k+1)^{-1} & (n \text{ is odd}) \end{cases}$$

if $-1 \leq \operatorname{Re} \alpha \leq 0$, and

$$V_n \leq \begin{cases} 2(n+1)^{Re\,\alpha} \sum_{k=0}^{\frac{n}{2}-1} (k+1)^{-1} + \left(\frac{n}{2}+1\right)^{Re\,\alpha-1} & (n \text{ is even}), \\ 2(n+1)^{Re\,\alpha} \sum_{k=0}^{\frac{n-1}{2}} (k+1)^{-1} & (n \text{ is odd}) \end{cases}$$

if $\operatorname{Re} \alpha > 0$. Hence

$$D_n = \mathcal{O}\left[(n+1)^{\operatorname{Re}\alpha}\ln(n+1)\right]; \ \operatorname{Re}\alpha \ge -1.$$
(2.5)

We assume now that $\operatorname{Re} \alpha < -1$. Then

if n is an even number, and

if n is an odd number. Consequently

$$V_n \leq \begin{cases} 2\sum_{k=\frac{n}{2}+1}^{n} (n-k+1)^{Re\,\alpha} (k+1)^{-1} + \left(\frac{n}{2}+1\right)^{Re\,\alpha-1} & (n \text{ is even}), \\ 2\sum_{k=\frac{n+1}{2}}^{n} (n-k+1)^{Re\,\alpha} (k+1)^{-1} & (n \text{ is odd}). \end{cases}$$

Therefore

$$V_n \leq \begin{cases} 4(n+4)^{-1} \sum_{\substack{k=\frac{n}{2}+1}}^n (n-k+1)^{Re\,\alpha} + \left(\frac{n}{2}+1\right)^{Re\,\alpha-1} & (n \text{ is even}), \\ 4(n+3)^{-1} \sum_{\substack{k=\frac{n+1}{2}}}^n (n-k+1)^{Re\,\alpha} & (n \text{ is odd}). \end{cases}$$

Hence

$$D_n = \mathcal{O}\left[(n+1)^{-1}\right]; \ Re \,\alpha < -1).$$
 (2.6)

Consequently assertion (B) holds by (2.5) and (2.6). The proof of assertion (C) is similar to the proof of assertion (B). So we omit it. \Box

3 Main Results

Now we are able to prove the main result of this paper.

Theorem 1. Let $\alpha, \beta \in C \setminus \{-1, -2, ...\}$ and $s \in C$. If Res < -1 and $Res < Re \alpha \leq Re \beta$, then the matrix $M = (m_{nk})$, defined by relation (1.1), transforms $c_{C^{\alpha}}$ into $c_{C^{\beta}}$.

Proof. It is sufficient to show that $c_{C^{\alpha}} \subset c_G$, where $G = C^{\beta}M := (g_{nk})$. Using equality (2.1), we get

$$g_{nl} = \frac{1}{A_n^{\beta}} \sum_{k=l}^n A_{n-k}^{\beta} A_{k-l}^s = \frac{1}{A_n^{\beta}} \sum_{k=0}^{n-l} A_{n-l-k}^{\beta} A_k^s = \frac{A_{n-l}^{\beta+s+1}}{A_n^{\beta}}$$

As the inverse matrix (η_{lk}) of $C^{\alpha} = (c_{nk})$ is defined by the equalities (see [4], p. 86)

$$\eta_{lk} = \begin{cases} A_k^{\alpha} A_{l-k}^{-\alpha-2} & (k \le l), \\ 0 & (k > l), \end{cases}$$

for every $x = (x_k) \in c_{C^{\alpha}}$ we get

$$\sum_{k=0}^{n} g_{nk} x_k = \sum_{k=0}^{n} \gamma_{nk} y_k,$$

where $y_k := C_k^{\alpha} x$ and $\gamma_{nk} = A_{n-k}^{\beta+s-\alpha} A_k^{\alpha} / A_n^{\beta}$ by equality (2.1). Consequently, for $c_{C^{\alpha}} \subset c_G$ it is sufficient to show by the well-known theorem of Kojima-Schur that

there exists the finite limits
$$\lim_{n} \gamma_{nk}$$
, $\lim_{n} \sum_{k=0}^{n} \gamma_{nk}$, (3.1)

Math. Model. Anal., 15(2):153-160, 2010.

and

$$\sum_{k} |\gamma_{nk}| = \mathcal{O}(1), \tag{3.2}$$

since the sequence (y_k) is convergent for every $x \in c_{C^{\alpha}}$. Thus, with the help of relations (2.1)–(2.3) we have

$$\Big|\sum_{k=0}^{n} \gamma_{nk}\Big| = \Big|\frac{A_n^{\beta+s+1}}{A_n^{\beta}}\Big| = \mathcal{O}(1)(n+1)^{Re\,s+1} = o(1)$$

(since Res + 1 < 0), and

$$|\gamma_{nk}| = \mathcal{O}(1) \frac{(n-k+1)^{Re\,(\beta+s-\alpha)}}{(n+1)^{Re\,\beta}}$$
$$= \mathcal{O}(1) \left(1 - \frac{k}{n+1}\right)^{Re\,\beta} (n-k+1)^{Re\,(s-\alpha)} = o(1)$$

(since $Re(s - \alpha) < 0$). Thus condition (3.1) is fulfilled.

The proof of validity of condition (3.2) we divide into three parts.

1) Let $Re(\beta + s - \alpha) \neq -1$, $Re \alpha \neq -1$, or $\beta + s - \alpha = \alpha = -1$. Then we get

$$S_{n} := \sum_{k=0}^{n} \left| A_{n-k}^{\beta+s-\alpha} A_{k}^{\alpha} \right| = \mathcal{O}\Big[(n+1)^{Re(\beta+s-\alpha)} \Big] + \mathcal{O}\Big[(n+1)^{Re\alpha} \Big] + \mathcal{O}\Big[(n+1)^{Re(\beta+s)+1} \Big]$$

by Lemma 1. If

$$L := \max\left\{Re\left(\beta + s - \alpha\right), Re\alpha, Re\left(\beta + s\right) + 1\right\} = Re\left(\beta + s - \alpha\right),$$

then $S_n = \mathcal{O}\left[(n+1)^{Re(\beta+s-\alpha)}\right]$, and consequently with the help of (2.3) we have

$$T_n := \sum_{k=0}^n \left| \gamma_{nk} \right| = \frac{S_n}{|A_n^\beta|} = \mathcal{O}\left[(n+1)^{Re\,(s-\alpha)} \right] = \mathcal{O}(1).$$

If $L = Re(\beta + s) + 1$, then using (2.3) we can conclude that

$$S_n = \mathcal{O}\left[(n+1)^{\operatorname{Re}(\beta+s)+1} \right],$$

and therefore

$$T_n = \mathcal{O}\left[(n+1)^{Re\,s+1}\right] = \mathcal{O}(1).$$

If $L = \operatorname{Re} \alpha$, then $S_n = \mathcal{O}\left[(n+1)^{\operatorname{Re} \alpha}\right]$, and hence

$$T_n = \mathcal{O}\left[(n+1)^{Re(\alpha-\beta)}\right] = \mathcal{O}(1),$$

i.e. condition (3.2) holds.

158

2) Let $Re \alpha = -1$. Then

$$S_n = \begin{cases} \mathcal{O}\left[(n+1)^{Re\,(\beta+s-\alpha)}\ln(n+1)\right] & (Re\,(\beta+s-\alpha) \ge -1), \\ \mathcal{O}\left[(n+1)^{-1}\right] & (Re\,(\beta+s-\alpha) < -1), \end{cases}$$

and consequently

$$T_n = \begin{cases} \mathcal{O}\left[(n+1)^{Re\,(s-\alpha)}\ln(n+1)\right] & (Re\,(\beta+s-\alpha) \ge -1), \\ \mathcal{O}\left[(n+1)^{-Re\,\beta-1}\right] & (Re\,(\beta+s-\alpha) < -1). \end{cases}$$

Therefore $T_n = \mathcal{O}(1)$, because $Re(s - \alpha) < 0$ and $Re\beta \geq Re\alpha = -1$, i.e. condition (3.2) holds.

3) Let $Re(\beta + s - \alpha) = -1$. Then

$$S_n = \begin{cases} \mathcal{O}\left[(n+1)^{\operatorname{Re}\alpha}\ln(n+1)\right] & (\operatorname{Re}\alpha \ge -1), \\ \mathcal{O}\left[(n+1)^{-1}\right] & (\operatorname{Re}\alpha < -1), \end{cases}$$

and consequently

$$T_n = \begin{cases} \mathcal{O}\left[(n+1)^{Re\,(\alpha-\beta)}\ln(n+1)\right] & (Re\,\alpha \ge -1), \\ \mathcal{O}\left[(n+1)^{-Re\,\beta-1}\right] & (Re\,\alpha < -1). \end{cases}$$

Therefore $T_n = \mathcal{O}(1)$, because $Re(\alpha - \beta) = Res + 1 < 0$ and $-Re\beta - 1 = Re(s - \alpha) < 0$, i.e. condition (3.2) holds. \Box

It is well known that C^{β} includes C^{α} , i.e. $c_{C^{\beta}} \supseteq c_{C^{\alpha}}$, if $Re \beta > Re \alpha > -1$ (see [4], p. 87). Therefore for real numbers α, β we get

Corollary 1. Let $\alpha, \beta \in \mathcal{R}, s \in \mathcal{C}$ with $\alpha, \beta > -1$, Res < -1 and M be defined by (1.1). If M transforms $c_{C^{\alpha}}$ into $c_{C^{\beta}}$, then C^{β} includes C^{α} .

Proof. We see from the proof of Theorem 1 that the validity of condition (3.2) is necessary for M to be a transformation from $c_{C^{\alpha}}$ into $c_{C^{\beta}}$. We prove that condition (3.2) is not satisfied for $\beta < \alpha$. Indeed, by (2.2) and (2.3) there exists a number K > 0 so that

$$T_{n} = \sum_{k=0}^{n} \left| \frac{A_{n-k}^{\beta+s-\alpha} A_{k}^{\alpha}}{A_{n}^{\beta}} \right| = \sum_{k=0}^{n-1} \left| \frac{A_{n-k}^{\beta+s-\alpha} A_{k}^{\alpha}}{A_{n}^{\beta}} \right| + \left| \frac{A_{n}^{\alpha}}{A_{n}^{\beta}} \right| \ge \left| \frac{A_{n}^{\alpha}}{A_{n}^{\beta}} \right| \ge K \Big[(n+1)^{Re(\alpha-\beta)} \Big].$$

As the sequence $((n+1)^{Re(\alpha-\beta)})$ is not bounded for $\beta < \alpha$, then also the sequence (T_n) is not bounded for $\beta < \alpha$. Consequently for the validity of condition (3.2) it is necessary that $\beta \ge \alpha$. As $\alpha, \beta > -1$, then C^{β} includes C^{α} . \Box

References

 A. Aasma. Transformations of summability fields. Acta et Comment. Univ. Tart., 770:38–51, 1987.

Math. Model. Anal., 15(2):153-160, 2010.

- [2] I. Albayrak and B.E. Rhoades. The question of equivalence for generalized Hausdorff matrices. J. Math. Anal. Appl., 328:414–428, 2007.
- [3] L. Alpár. On the linear transformations of series summable in the sense of Cesàro. Acta Math. Hungar., 39:233–243, 1982.
- [4] J. Baron. Introduction to the Theory of Summability of Series. Valgus, Tallinn, 1977.
- [5] J. Boos. Classical and Modern Methods in Summability. Oxford University Press, Oxford, 2000.
- [6] E. Savas and B. E. Rhoades. An inclusion theorem for double Cesàro matrices over the space of absolutely k-convergent double series. Appl. Math. Lett., 22:1462–1466, 2009.
- [7] U. Stadtmüller and A. Tali. On some families of certain Nörlund methods and power series methods. J. Math. Anal. Appl., 238:44–66, 1999.
- [8] U. Stadtmüller and A. Tali. Comparison of certain summability methods by speeds of convergence. Anal. Math., 29:227–242, 2003.
- U. Stadtmüller and A. Tali. A family of generalized Nörlund methods and related power series methods applied to double sequences. *Math. Nachr.*, 282:288–306, 2009.
- [10] B. Thorpe. Matrix transformations of Cesàro summable series. Acta Math. Hungar., 48:255–265, 1986.