
Mathematical Modelling and Analysis ISSN 1392-6292 print

Volume 15 Number 2, 2010, pages 175–187 ISSN 1648-3510 online

Doi:10.3846/1392-6292.2010.15.175-187 www.vgtu.lt/mma/

c©Vilnius Gediminas Technical University, 2010

Advanced Impulsive Differential Equations with

Piecewise Constant Arguments

H. Bereketoglu, G. Seyhan and A. Ogun

Ankara University, Faculty of Sciences, Department of Mathematics,
06100, Ankara, TURKEY

E-mail(corresp.): bereket@science.ankara.edu.tr
E-mail: gseyhan@science.ankara.edu.tr; aogun@science.ankara.edu.tr

Received July 13, 2009; revised December 18, 2009; published online April 20, 2010
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lation and global asymptotic stability for some special cases.
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1 Introduction

The theory of differential equations with piecewise constant arguments (DE-
PCA) of the type

x′(t) = f (t, x(t), x(h(t)))

was initiated in [8, 21] where h(t) = [t], [t − n], [t + n], etc. These types of
equations have been intensively investigated for twenty five years. Systems
described by DEPCA exist in a widely expanded area such as biomedicine,
chemistry, physics and mechanical engineering. Busenberg and Cooke [7] first
established a mathematical model with a piecewise constant argument for an-
alyzing vertically transmitted diseases. In physical and engineering systems,
the phenomena related to stepwise or piecewise constant variables or motions
under piecewise constant forces are common. These kinds of systems can usu-
ally be formulated as first or second order differential equations with piecewise
constant arguments. Examples in practice include machinery driven by servo
units, charged particles moving in a piecewise constantly varying electric field,
and elastic systems impelled by a Geneva wheel.

DEPCA is closely related to difference and differential equations [8]. So,
they describe hybrid dynamical systems and combine the properties of both
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differential and difference equations. The oscillation, periodicity and some
asymptotic properties for various differential equations with piecewise constant
arguments without impulses were methodically demonstrated in [1, 2, 3, 11, 12,
13, 17, 19, 20, 22, 24, 27]. Also, Wiener’s book [25] is a distinguished source in
this area.

The theory of impulsive differential equations developed rapidly, in recent
years. This development, in particular, is due to the fact that many phenomena
and process in natural sciences, such as physics, population dynamics, ecology,
biology, etc., can be simulated by these type of equations.

There are many papers that study the qualitative behaviours of the impul-
sive differential equations [5, 6, 9, 10, 14, 18, 28]. Among these investigations
stability and instability problems are very interesting. Impulses can make un-
stable systems stable and stable systems can become unstable after impulse
effects [4, 16, 23]. To the best of our knowledge, there are only a few papers
involving impulsive differential equations with piecewise constant arguments
[15, 26]. In [15], Li and Shen considered the problem

y′(t) = f(t, y[t− k]), t 6= n, t ∈ J,

∆y(n+) = In(y(n)), n = 1, 2, . . . , p, y(0) = y(T ).

Using the method of upper and lower solutions, they proved that it has at
least one solution. In [26], however, Wiener and Lakshmikantham proved the
existence and uniqueness of solutions of the initial value problem

x′(t) = f (x(t), x(g(t))), x(0) = x0,

and they also studied the cases of oscillation and stability, where f is a contin-
uous function and g : [0,∞) → [0,∞), g(t) ≤ t is a step function.

In this paper, we consider the first order linear nonhomogeneous advanced
impulsive differential equation with piecewise constant arguments of the form

x′(t) + a(t)x(t) + b(t)x([t]) + c(t)x([t+ 1]) = f(t), t 6= n, (1.1)

∆x(n) = dnx(n), n ∈ N = {0, 1, 2, . . .}, (1.2)

and the initial condition
x(0) = x0, (1.3)

where a, b, c, f : [0,∞) → R are continuous functions, dn : N → R, ∆x(n) =
x(n+) − x(n−), x(n+) = lim

t→n+
x(t), x(n−) = lim

t→n−

x(t) and [·] denotes the

greatest integer function.
This paper is organised as follows. In Section 2, we calculate the solutions

of (1.1)–(1.2) and prove the existence and uniqueness of them. In Section 3,
we present our main results. This section consist of three subsections. Firstly,
the necessary and sufficient conditions are given for the existence of k – peri-
odic solutions of (1.1)–(1.2) when a(t), b(t), c(t) and dn are constant functions.
Secondly, we show the conditions for the oscillation and nonoscillation of solu-
tions of (1.1)–(1.2) with f(t) ≡ 0. In this section, finally, we prove the global
asymptotical stability of zero solution of (1.1)–(1.2) with constant coefficients
and f(t) = 0. Section 4 covers some examples.
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2 Preliminaries

Definition 1. A function x(t) defined on [0,∞) is said to be a solution of
(1.1)–(1.2) if it satisfies the following conditions:

(i) x : [0,∞) → R is continuous for t ∈ [0,∞) with the possible exception
of the points [t] ∈ [0,∞),

(ii) x(t) is right continuous and has left-hand limits at the points [t] ∈ [0,∞),

(iii) x′(t) exists for every t ∈ [0,∞) with the possible exception of the points
[t] ∈ [0,∞) where one-sided derivatives exist,

(iv) x(t) satisfies (1.1) with the possible exception of the points [t] ∈ [0,∞),

(v) x(n) satisfies (1.2) for n = 0, 1, 2, . . . .

Theorem 1. Let

1− dn+1 +

∫ n+1

n

c(u) exp
(

∫ u

n+1

a(s) ds
)

du 6= 0. (2.1)

Then the initial value problem (1.1)–(1.3) has a unique solution x(t) on [0,∞)

x(t) = exp
(

−

∫ t

[t]

a(s) ds
)(

1−

∫ t

[t]

b(u) exp
(

∫ u

[t]

a(s) ds
)

du
)

y[t] (2.2)

−
(

∫ t

[t]

c(u) exp
(

∫ u

t

a(s) ds
)

du
)

y[t+1] +

∫ t

[t]

f(u) exp
(

∫ u

t

a(s) ds
)

du,

where y[t] = x([t]) for t ∈ [0,∞) and it is found by

y[t] =
(

[t]−1
∏

i=0

α(i)
)

x0 +

[t]−1
∑

j=0

(

[t]−1
∏

i=j+1

α(i)
)

β(j), (2.3)

α(i) =
exp

(

−
∫ i+1

i
a(s) ds

)(

1−
∫ i+1

i
b(u) exp

(

∫ u

i
a(s)ds

)

du
)

1− di+1 +
∫ i+1

i
c(u) exp

(

∫ u

i+1 a(s) ds
)

du
, (2.4)

β(i) =

∫ i+1

i
f(u) exp

(

∫ u

i+1 a(s) ds
)

du

1− di+1 +
∫ i+1

i
c(u) exp

(

∫ u

i+1
a(s) ds

)

du
. (2.5)

Proof. Let xn(t) ≡ x(t) be a solution of (1.1)–(1.2) on n ≤ t < n+ 1.Then

x′(t) + a(t)x(t) = −b(t)x(n)− c(t)x(n + 1) + f(t).

So,

xn(t) = exp
(

−

∫ t

n

a(s)ds
)(

1−

∫ t

n

b(u) exp
(

∫ u

n

a(s) ds
)

du
)

x(n) (2.6)

−
(

∫ t

n

c(u) exp
(

∫ u

t

a(s) ds
)

du
)

x(n+ 1) +

∫ t

n

f(u) exp
(

∫ u

t

a(s) ds
)

du.
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Because of the impulse conditions (1.2),

xn

(

(n+ 1)−
)

= (1 − dn+1)xn+1(n+ 1).

This equality leads to the nonhomogenous difference equation

yn+1 =
exp

(

−
∫ n+1

n
a(s) ds

)(

1−
∫ n+1

n
b(u) exp

( ∫ u

n
a(s) ds

)

du
)

1− dn+1 +
∫ n+1

n
c(u) exp

( ∫ u

n+1
a(s) ds

)

du
yn

+

∫ n+1

n
f(u) exp

( ∫ u

n+1
a(s) ds

)

du

1− dn+1 +
∫ n+1

n
c(u) exp

( ∫ u

n+1 a(s) ds
)

du
, (2.7)

where yn = x(n), n = 0, 1, 2, . . . . It is to be noted that the initial condition
(1.3) takes the form

y0 = x0. (2.8)

Therefore, the unique solution of the initial value problem (2.7)–(2.8) can be
represented by

yn =
(

n−1
∏

i=0

α(i)
)

x0 +

n−1
∑

j=0

(

n−1
∏

i=j+1

α(i)
)

β(j),

where α(i) and β(i) are as in (2.4) and (2.5), respectively. ⊓⊔

Theorem 2. Let

1− d−n+1 +

∫ −n+1

−n

c(u) exp
(

∫ u

−n+1

a(s) ds
)

du 6= 0.

Then the initial value problem (1.1)–(1.3) has a unique backward continuation
on (−∞, 0] given by (2.2)–(2.3).

Proof. Let us denote the solution of (1.1)–(1.2) as x−n(t) on [−n,−n+1), n =
0, 1, 2, . . . . Repeating the proof of Theorem 1, we have the unique solution
x−n(t) which is the same as (2.6) with n replaced by −n. ⊓⊔

From Theorem 1 and 2 we have the following result.

Corollary 1. Assume that the condition (2.1) holds, then the initial value prob-
lem (1.1)–(1.3) has a unique solution on (−∞,∞) given (2.2) and (2.3).

By the way, we need to restate the above results for (1.1)–(1.2) with constant
coefficients:

x′(t) + ax(t) + bx([t]) + cx([t+ 1]) = f(t), t 6= n, (2.9)

∆x(n) = dx(n), n ∈ N, (2.10)

where a, b, c, d are real constants.
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Theorem 3. Let a 6= 0 and d 6= 1−b1. Then the unique solution of the problem
(2.9)–(2.10), (1.3) is formulated on [0,∞) by

x(t) = m0({t})y[t] +m1

(

{t}
)

y[t+1] +

∫ t

[t]

e−a(t−u)f(u) du, (2.11)

where {t} = t− [t],

y[t] =
( b0
1− d− b1

)[t]

x0 +

[t]−1
∑

j=0

( b0
1− d− b1

)[t]−j−1

γ(j), (2.12)

m0(t) = e−at + (e−at − 1)ba−1, m1(t) = (e−at − 1)ca−1, (2.13)

m0(1) = b0, m1(1) = b1, (2.14)

γ(j) =
1

1− d− b1

∫ j+1

j

e−a(j+1−u)f(u) du. (2.15)

Proof. In this case the difference equation (2.7) reduces to

yn+1 = b0yn/(1− d− b1) + γ(n). (2.16)

From (2.2) and (2.3) , we obtain (2.11) and (2.12), respectively. ⊓⊔

Theorem 4. Let a 6= 0, d 6= 1− b1 and b0 6= 0. Then the problem (2.9)–(2.10),
(1.3) has a unique backward continuation on (−∞, 0] given by (2.11), (2.12).

Corollary 2. Under the conditions of Theorem 4, the problem (2.9)–(2.10),
(1.3) has a unique solution on (−∞,∞) given by (2.11), (2.12).

3 Main Results

This section contains the statements and proofs of our main results about
periodicity, oscillation, nonoscillation and global asymptotic stability.

3.1 Periodicity

Theorem 5. Assume that a 6= 0, 1− d− b1 6= 0 and f(t) is a periodic function
with period 1. Then the solution x(t) of the problem (2.9)–(2.10), (1.3) is k-
periodic if and only if

yk = y0, (3.1)

where k = 1, 2, 3, . . . and yn is a solution of the difference equation (2.16).

Proof. Let the solution x(t) of (2.9)–(2.10), (1.3) be periodic with period k.
This implies that

xn(t− k) = xn+k(t), n+ k ≤ t < n+ k + 1, n = 0, 1, 2, . . . . (3.2)

For n = 0, Eqn. (3.2) becomes

x0(t− k) = xk(t), k ≤ t < k + 1. (3.3)

Math. Model. Anal., 15(2):175–187, 2010.
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By using (2.11), we obtain

x0(t− k) =
(

e−a(t−k) +
(

e−a(t−k) − 1
)

ba−1
)

y0 +
(

e−a(t−k) − 1
)

ca−1y1

+

∫ t−k

0

e−a(t−u−k)f(u) du, k ≤ t < k + 1, (3.4)

xk(t) = (e−a(t−k) + (e−a(t−k) − 1)ba−1)yk + (e−a(t−k) − 1)ca−1yk+1

+

∫ t

k

e−a(t−u)f(u) du, k ≤ t < k + 1. (3.5)

If we take u = z + k in the integral on the right-hand side of (3.5), we deduce
that

t
∫

k

e−a(t−u)f(u)du =

t−k
∫

0

e−a(t−u−k)f(u)du.

Combining (3.4) and (3.5), we have

y0 = yk, y1 = yk+1.

Because of (2.16), the equality y1 = yk+1 implies (3.1). For n = 1, Eqn. (3.2)
reduces to

x1(t− k) = xk+1(t), k + 1 ≤ t < k + 2,

and this equality implies (3.1), again. If we continue the same procedure, we
always obtain (3.1) from (3.2) for each n = 2, 3, 4 . . . . Now we assume that
y0 = yk. From the difference equation (2.16) for n = 0 and n = k, we get

y1 =
b0

1− d− b1
y0 + γ(0), yk+1 =

b0
1− d− b1

yk + γ(k),

respectively. Let u = z+k in γ(k) given by (2.15). Then we obtain γ(0) = γ(k).
Combining (3.4) and (3.5), we get

x0(t− k) = xk(t), k ≤ t < k + 1.

Moreover, by taking n = 1 and n = k+ 1 in (2.16), respectively, and using the
same procedure above, we have

x1(t− k) = xk+1(t), k + 1 ≤ t < k + 2.

By the induction principle, we conclude

xn(t− k) = xn+k(t), k + n ≤ t < k + n+ 1.

Finally, it can be shown that for n = 0,−1,−2, . . .

xn(t− k) = xn+k(t), k + n ≤ t < k + n+ 1.

Hence, the proof is complete. ⊓⊔
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3.2 Oscillation and Nonoscillation

In this section, we are interested in the following homogeneous case:

x′(t) + a(t)x(t) + b(t)x([t]) + c(t)x([t + 1]) = 0, t 6= n, (3.6)

∆x(n) = dnx(n), n ∈ N = {0, 1, 2 . . .}, (3.7)

x(0) = x0. (3.8)

By taking f(t) = 0 in (2.2) and (2.3) , we obtain the unique solution of the
initial value problem (3.6)–(3.8) as

x(t) = exp
(

−

∫ t

[t]

a(s) ds
)(

1−

∫ t

[t]

b(u) exp
(

∫ u

[t]

a(s) ds
)

du
)

y[t]

−
(

∫ t

[t]

c(u) exp
(

∫ u

t

a(s) ds
)

du
)

y[t+1], (3.9)

where

y[t] =
(

[t]−1
∏

i=0

α(i)
)

x0 (3.10)

and α(i) is defined in (2.4). In this case, the difference equation (2.7) reduces
to

yn+1 =
exp

(

−
∫ n+1

n
a(s) ds

)(

1−
∫ n+1

n
b(u) exp

(

∫ u

n
a(s) ds

)

du
)

1− dn+1 +
∫ n+1

n
c(u) exp

(

∫ u

n+1 a(s) ds
)

du
yn. (3.11)

Definition 2. A function x(t) defined on [0,∞) is said to be oscillatory if there
exist two real valued sequences (tn)n≥0, (t

′
n)n≥0 ⊂ [0,∞) such that tn → +∞,

t′n → +∞ as n → +∞ and x(tn) ≤ 0 ≤ x(t′n) for n ≥ N , where N is sufficiently
large. Otherwise, the solution is called nonoscillatory.

Remark 1. According the to Definition 2 given above, a piecewise continuous
function x : [0,∞) → R can be oscillatory even if x(t) 6= 0 for all t ∈ [0,∞).
Also, zero function on [0,∞) is oscillatory with subject to the same definition.

Definition 3. A solution yn of the difference equation (3.11) is called oscilla-
tory if ynyn+1 ≤ 0. Otherwise, yn is called nonoscillatory.

Theorem 6. Let x(t) be the unique solution of the problem (3.6)–(3.8) on
[0,∞). Assume that c(t) > 0 and 1− dn+1 > 0.

(i) If the solution yn of the problem (3.11) , (2.8) is oscillatory, then the
solution x(t) of (3.6)–(3.8) is also oscillatory;

(ii) If yn is nonoscillatory, then x(t) is nonoscillatory if and only if

yn+1

yn
<

1−
∫ t

n
b(u) exp

( u
∫

n

a(s)ds
)

du

∫ t

n
c(u) exp

(

∫ u

n
a(s) ds

)

du
, n ≤ t < n+1, n ≥ N ′, (3.12)

where N ′ is sufficiently large.

Math. Model. Anal., 15(2):175–187, 2010.
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Proof. (i) From (3.9), x(t) can be written on the interval n ≤ t < n + 1,
n = 0, 1, 2, . . . , as

x(t) = exp
(

−

∫ t

n

a(s)ds
)(

1−

∫ t

n

b(u) exp
(

∫ u

n

a(s)ds
)

du
)

yn

−
(

∫ t

n

c(u) exp (

∫ u

t

a(s) ds)du
)

yn+1. (3.13)

This implies x(t) = y(n) for t = n. From the theory of the difference equations
it is well known that yn is oscillatory if and only if yn · yn+1 ≤ 0 for n ≥ N ′,
where N ′ is a sufficiently large integer. Thus x(t) is an oscillatory solution.
(ii) Now, let yn be a nonoscillatory solution. According to this, we can assume
that yn > 0 for n ≥ N ′ where N ′ is large enough. If x(t) is a nonoscillatory
solution, then we can take x(t) > 0 for t ≥ T where T is sufficiently large.
Hence, from (3.13)

x(t) = exp
(

−

∫ t

n

a(s) ds
)[(

1−

∫ t

n

b(u) exp
(

∫ u

n

a(s) ds
)

du
)

yn

−
(

∫ t

n

c(u) exp
(

∫ u

n

a(s) ds
)

du
)

yn+1

]

(3.14)

for n ≥ n′ where n′ = max{N ′, T }. Since x(t) > 0 and exp(−
∫ t

n
a(s)ds) > 0,

we have

(

1−

∫ t

n

b(u) exp
(

∫ u

n

a(s)ds
)

du
)

yn −
(

∫ t

n

c(u) exp
(

∫ u

n

a(s)ds
)

du
)

yn+1 > 0,

which implies (3.12). Now, let us assume that (3.12) is true. We should show
that x(t) is nonoscillatory. For a contradiction assume that x(t) is an oscillatory
solution. Therefore, there must exist two sequences (tk), (t

′
k) such that tk →

+∞, t′k → +∞ as k → +∞ and x(tk) ≤ 0 ≤ x(t′k). From (3.14),

x(tk) = exp
(

−

∫ tk

nk

a(s) ds
)[(

1−

∫ tk

nk

b(u) exp
(

∫ u

nk

a(s) ds
)

du
)

ynk

−
(

∫ tk

nk

c(u) exp
(

u
∫

nk

a(s) ds
)

du
)

ynk+1

]

,

where nk = [tk] and it is obvious that nk → +∞ as k → +∞. Hence,

(

1−

∫ tk

nk

b(u) exp
(

∫ u

nk

a(s) ds
)

du
)

ynk
−
(

∫ tk

nk

c(u) exp
(

∫ u

nk

a(s) ds
)

du
)

ynk+1 ≤ 0,

1−
∫ tk

nk

b(u) exp
(

∫ u

nk

a(s) ds
)

du

∫ tk

nk

c(u) exp
(

∫ u

nk

a(s) ds
)

du
≤

ynk+1

ynk

,

which contradicts to (3.12). The proof is similar when yn < 0 for n > N ′. ⊓⊔
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Theorem 7. Suppose that 1−dn+1 > 0 for n ∈ N and c(t) > 0 for t ≥ 0. Then
all solutions of Eqn. (3.11) are oscillatory if and only if

lim
n→∞

inf

∫ n+1

n

b(u) exp
(

∫ u

n

a(s) ds
)

du ≥ 1. (3.15)

Proof. First, assume that all solutions of Eqn. (3.11) are oscillatory. So,
every solution yn of (3.11) satisfies the inequality ynyn+1 ≤ 0. By using (3.10),
we obtain α(n) ≤ 0, where α(n) is given by (2.4) for i = n. Substituting the
hypotheses 1− dn+1 > 0 and c(t) > 0 into (2.4), we get

1−

∫ n+1

n

b(u) exp
(

∫ u

n

a(s) ds
)

du ≤ 0

that leads to (3.15). Now assume that (3.15) is true. Then, we have

1−

∫ n+1

n

b(u) exp
(

∫ u

n

a(s)ds
)

du ≤ 0. (3.16)

Taking into account (3.16) together with the hypotheses 1 − dn+1 > 0 and
c(t) > 0 into (2.4), we obtain α(n) ≤ 0. So, ynyn+1 ≤ 0 and this completes the
proof. ⊓⊔

Corollary 3. Under the hypotheses of Theorem 7, all solutions of (3.6)–(3.7)
are oscillatory.

Now, consider the homogeneous impulsive equation with constant coeffi-
cients

x′(t) + ax(t) + bx([t]) + cx([t+ 1]) = 0, t 6= n, (3.17)

∆x(n) = dx(n), n ∈ N (3.18)

where a, b, c, d are real constants.

Theorem 8. Let a 6= 0, c > 0 and 1 − d > 0. Then, all solutions of (3.17)–
(3.18) are oscillatory if and only if b ≥ a/(ea − 1).

Proof. The proof comes out from Theorem 7 and Corollary 3. ⊓⊔

3.3 Global Asymptotic Stability

Theorem 9. Let a 6= 0, 1−d−b1 6= 0. Then the zero solution of (3.17)–(3.18)
is globally asymptotically stable if and only if

|b0/(1− d− b1)| < 1, (3.19)

where b0 and b1 are as in (2.14).
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Proof. A solution x(t) of (3.17)–(3.18) is

x(t) = m0({t})y[t] +m1({t})y[t+1],

where y[t] = (b0/(1− d− b1))
[t] x0,

m0({t}) = e−a{t} + (e−a{t} − 1)ba−1, m1({t}) = (e−a{t} − 1)ca−1. (3.20)

Since {t} ∈ [0, 1), e−a{t} ≤ e|a|. It means that m0({t}) and m1({t}) are
bounded on the interval 0 ≤ t < ∞. Therefore, y[t] → 0 as t → +∞ when
(3.19) holds. So lim

t→+∞
x(t) = 0. Conversely, if lim

t→+∞
x(t) = 0, then y[t] → 0 as

t → +∞ which implies (3.19). ⊓⊔

The next theorem gives only a necessary condition for the global asymptotic
stability of zero solution of (3.17)–(3.18).

Theorem 10. Let a 6= 0, c > 0 and 1− d > 0. If the zero solution of (3.17)–
(3.18) is globally asymptotically stable, then

a

ea − 1
+

aea

ea − 1
(d− 1)− c < b <

a

ea − 1
−

aea

ea − 1
(d− 1) + c. (3.21)

Proof. Let the solution x = 0 of (3.17)–(3.18) be globally asymptotically sta-
ble. Therefore, (3.19) is satisfied. Substituting b0 = e−a + (e−a − 1)ba−1 and
b1 = (e−a − 1)ca−1 into (3.19), we obtain (3.21). ⊓⊔

4 Examples

In this section, we give some examples to illustrate our results.

Example 1. Let us consider the initial value problem

x′(t) + x(t) + 2x([t]) + 3x([t+ 1]) = sin 2πt, t 6= n, (4.1)

∆x(n) = 2x(n), n ∈ N, x(0) = x0, (4.2)

that is a special case of (2.9)–(2.10) with a = 1, b = 2, c = 3, d = 2 and
f(t) = sin 2πt, Here, a 6= 0, 1 − d − b1 = 2e− 3/e 6= 0 and f(t + 1) = f(t).
Moreover, by (2.12), y2 = y0. Thus all hypotheses of Theorem 5 are verified.
So, by Theorem 5, the problem (4.1)–(4.2) has a unique 2−periodic solution.
Indeed, this solution is

x(t) =
(

3e−{t} − 2
)

y[t] + 3
(

e−{t} − 1
)

y[t+1] +

∫ t

[t]

e−(t−u) sin 2πu du (4.3)

and it is easy to check that xn(t−2) = xn+2(t), n+2 ≤ t < n+3, n = 0, 1, 2, . . . ,
where

y[t] = (−1)[t]y0 +
e

2e− 3

[t]−1
∑

j=0

(−1)[t]−j−1

∫ j+1

j

e−(j+1−u) sin 2πu du.
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Example 2. Consider the equation

x′(t) + x(t) +
2

e− 1
x([t]) + x([t+ 1]) = 0, t 6= n, (4.4)

∆x(n) =
1

2
x(n), n ∈ N, (4.5)

that is a special case of (3.17)–(3.18) with a = 1, b =
2

e− 1
, c = 1 and d =

1

2
.

Since all hypotheses of Theorem 8 are satisfied for (4.4)–(4.5), every solution of
this equation is oscillatory. Indeed, a solution x(t) of (4.4)–(4.5) that satisfies
the initial condition x(0) = x0 > 0 has the form

x(t) =
((e+ 1

e− 1
e−{t} −

2

e− 1

)( 2

2− 3e

)[t]

+
(

e−{t} − 1
)( 2

2− 3e

)[t+1])

x0.

Here, it is possible to choose two sequences as (tn) = (2n) and (t′n) = (2n+ 1)
that lead to the inequality x(2n + 1) < 0 < x(2n). If x0 < 0, then x(2n) <
0 < x(2n + 1). So, by Definition 2, we deduce that x(t) is oscillatory. On the
other hand, all assumptions of Theorem 9 are satisfied for (4.4)–(4.5). Because,

a = 1 6= 0, 1−d−b1 =
3e− 2

2e
6= 0 and

b0
1− d− b1

=
2

2− 3e
∈ (−1, 0). Thus the

zero solution of (4.4)–(4.5) is globally asymptotically stable. As a conclusion,
it can be said that any solution of (4.4)–(4.5) goes to zero as t → +∞ by
oscillating.

Example 3. Now, consider the equation

x′(t) + x(t)−
3

2
x([t]) + x([t + 1]) = 0, t 6= n, (4.6)

∆x(n) =
1

2
x(n), n ∈ N, (4.7)

that is also a special case of (3.17)–(3.18) with a = 1, b = −
3

2
, c = 1, d =

1

2
.

In this case,
b0

1− d− b1
=

3e− 1

3e− 2
> 1. Therefore, the condition (3.19) is not

fulfilled. So, due to Theorem 9, the zero solution of (4.6)–(4.7) is not globally
asymptotically stable. Indeed, a solution x(t) of (4.6)–(4.7) has the form

x(t) =
((3

2
−

1

2
e−{t}

)(3e− 1

3e− 2

)[t]

+
(

e−{t} − 1
)(3e− 1

3e− 2

)[t+1])

x0

and for a sequence such as (tn) = (n) we have

lim
t→+∞

x(t) = lim
n→+∞

x(n) = +∞.
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