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Abstract. The present study is devoted to the classical problem on stability of
a magnetic fluid layer under the influence of gravity and a uniform magnetic field.
A periodical peak-shaped stable structure is formed on the fluid surface when the
applied magnetic field exceeds a critical value. The mathematical model describes
a single peak in the pattern assuming axial symmetry of the peak shape. The field
configuration in the whole space, the magnetic particle concentration inside the fluid
and the free surface structure are unknown quantities in this model. The unknown free
surface is treated explicitly, using a parametric representation with respect to the arc
length. The nonlinear problem is discretized by means of a finite element method for
the Maxwell’s equations and a finite-difference method for the free surface equations.
Numerical modelling allows to get over-critical equilibrium free surface shapes in
a wide range of applied field intensities. Our numerical results show a significant
influence of the particle diffusion on the overcritical shapes.

Keywords: magnetic fluid, particle diffusion, equilibrium free surface, finite element
method, finite-difference scheme.
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1 Introduction

Magnetic fluids are stable colloidal suspensions of ferromagnetic nano-particles
(of size 3-15 nm) in a carrier liquid (water, oil, bio-compatible liquid and oth-
ers). On a macroscopic level magnetic fluids can be considered as incompress-
ible and nonconducting continuous media. A unique property of magnetic fluids
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is the combination of fluidity and strong interaction with magnetic fields.
The present study is devoted to the classical problem of ferrohydrostatics

on stability (known as the normal field instability or the Rosensweig instabil-
ity) of a horizontal semi-infinite layer of a magnetic fluid under the influence
of gravity and a uniform magnetic field normal to the plane free surface of the
layer [13]. A periodical peak-shaped structure is formed on the fluid surface
when the applied magnetic field exceeds a critical value. A modified free sur-
face of the layer presents a new static state. This phenomenon was observed
first experimentally [5]. Later, the occurrence of regular hexagonal and square
pattern of peaks was theoretically predicted in [6], using the energy minimiza-
tion principle. A quantitative comparison between experiment and numerical
simulation of the Rosensweig instability can be found in [7]. Up to now all
analytical and numerical investigations of the Rosensweig instability assumed
a uniform ferromagnetic particle distribution in the bulk of the magnetic fluid
for any applied field intensity.

In order to reach the equilibrium between concentration and the magnetic
field, quite a long time (up to days) is needed. The concentration remains
almost constant for much shorter time scales. That is why, the validity of the
results presented in [7] are not abolished by the present paper. Long-term
experiments of the Rosensweig instability for measuring the particle density
would be desirable.

A contemporary mathematical modelling of hydrostatics problems for a
magnetic fluid should take into account the process of diffusion of ferromag-
netic particles under the action of nonuniform magnetic fields. The main goal
of the present study is to investigate the influence of the particle diffusion on
a free magnetic-fluid surface shape in the case of uniform external magnetic
fields. A uniformity of the external field is disturbed by the presence of the
magnetic fluid. We perform a mathematical modeling of the Rosensweig insta-
bility phenomenon, taking into consideration the particle inhomogeneity in the
magnetic fluid.

A spatially varying concentration presents a new unknown quantity of the
model. The nonlinear problem is discretized by the finite element method for
the Maxwell’s equations and the finite-difference method for the free surface
equations. The finite element method proves to be a powerful tool for a nu-
merical treatment of free surface problems in ferrohydrodynamics [9].

2 Mathematical Modelling

We consider a semi-infinite magnetic-fluid layer with a horizontal plane free
surface bounded from above by a nonmagnetic gas (air). The system is regarded
under the action of gravity and a uniform magnetic field normal to the plane
free surface of the layer. The magnetic fluid consists of spherical non-interacting
particles of a ferromagnetic material. The particles are uniformly distributed
inside of the unperturbed fluid layer with the constant volumetric concentration
C0. The initially unperturbed plane free surface is defined by the equation z =
0. The applied magnetic field H0 is parallel to the z-axis, i.e., H0 = (0, 0, H0).
A two-dimensional cut through the perturbed three-dimensional layer surface
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is shown in Fig. 1. Here a denotes half of the distance between two nearest
peaks in the pattern.

g H = (0, 0, H0)

x

z

a

magnetic fluid

nonmagnetic gas

initial flat interface

Figure 1. Illustration of the surface deformation.

A simplified mathematical model can be derived for a single peak in the
pattern under the assumption of axial symmetry. It allows us to formulate
the model in cylindrical coordinates (r, z) with a range of definition [0, a] ×
[−∞,+∞]. This model was successfully applied in [2] for the numerical study
of the Rosensweig instability under a uniform concentration approximation.

The applied uniform field H0 is perturbed only in a neighbourhood of the
interface Γ between fluid and air. The magnetic field approximates the verti-
cally directed uniform field far from the interface both inside and outside the
fluid. The unbounded domain in z-direction can be restricted to a bounded one
by introducing the asymptotic boundaries z = ±δa. Of course, the distances
of these boundaries from the interface should be large enough.

The mathematical model for a diffusion process of ferromagnetic particles
in a magnetic fluid with a free surface leads to a coupled problem formulation
consisting of three subproblems. The first subproblem describes the magnetic
field structure inside the fluid and in the surrounding air by the Maxwell’s
equations. The second subproblem concerns the diffusion of particles in the
bulk of the fluid as a steady-state concentration problem. Finally, the third
subproblem is given by the generalized Young-Laplace equation for the ax-
isymmetric equilibrium free-surface shape of the peak. The model equations
are formulated in dimensionless variables with characteristic scales H0, C0 and
a for the magnetic field H, the particle concentration C and space variables
(r, z), respectively.

The Maxwell’s equations inside the magnetic fluid and in the air are

∇×H = 0, ∇ ·
[(

1 +
M(H,C)

H0H

)

H

]

= 0

where M = M(H,C) denotes the magnetisation, H the magnetic field inten-
sity. The concentration C is determined by the diffusion of magnetic particles
and equals one in uniform magnetic fields. The magnetisation of air is equal to
zero. A magnetic-fluid magnetisation follows the Langevin equation. In mag-
netically dilute fluids, the magnetisation can be assumed to be proportional to
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the particle concentration, i.e.

M(H,C) =MsCL(γH), L(t) = coth(t)− 1

t
, γ =

3χ

Ms

H0. (2.1)

Here Ms are the saturation magnetisation and χ the initial susceptibility of the
fluid. We express the magnetic field in terms of a scalar magnetic potential φ
as H = ∇φ. The Maxwell’s equations are reformulated in the form

∇ · (µ(C, |∇φ1|)∇φ1) = 0, µ = 1 +
3χ

γ

CL(γ|∇φ1|)
|∇φ1|

in the fluid, (2.2)

∇ · (∇φ2) = 0 in the air. (2.3)

The subscripts 1 and 2 denote variables in the fluid and in the air, respectively.
The magnetic potential satisfies the transition boundary conditions

φ1 = φ2, µ(C, |∇φ1|)
∂φ1
∂n

=
∂φ2
∂n

at Γ (2.4)

where Γ is the interface between the magnetic and the non-magnetic media,
see [13], and n is a unit normal vector. Symmetry conditions

∂φ1
∂r

= 0,
∂φ2
∂r

= 0 for r = 0, z ∈ [−δ, δ], (2.5)

∂φ1
∂r

= 0,
∂φ2
∂r

= 0 for r = 1, z ∈ [−δ, δ] (2.6)

are set at the peak axis (r = 0) and at the peak foot (r = 1). Far from the
interface Γ the magnetic field takes constant value h10 inside the fluid and equals
one in the air. This means

φ1 = h10z for z = −δ, φ2 = z for z = δ. (2.7)

To define h10, conditions (2.4) are considered at the undisturbed interface z = 0

µ(1, |∇φ1|)
∂φ1
∂z

=
∂φ2
∂z

⇒ µ(1, h10)h
1
0 = 1 ⇒ h10 +

3χ

γ
L(γh10) = 1.

The magnetic field structure is defined in terms of the magnetic potential by
equations (2.2),(2.3) with boundary conditions (2.4)–(2.7) formulated in the
bounded rectangular domain [0, 1]× [−δ, δ].

The second subproblem of the mathematical model describes a magneto-
phoresis process, i.e. the diffusion of ferromagnetic particles in the magnetic
fluid under the action of a nonuniform magnetic field. This process was math-
ematically studied in [11]. An explicit analytical solution for the steady-state
particle concentration problem was constructed

C = C(γH) =
ψ(γH)V

∫

Ωf

ψ(γH)dΩf

, ψ(t) = exp
(

∫ t

0

L(x)dx
)

=
sinh(t)

t
in Ωf .
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Here V is the volume of the fluid and Ωf denotes a domain, filled with the
fluid. As a result, we can write an exact solution for the particle concentration
problem in the magnetic-fluid layer

C(γH) =
δ

I
ψ(γH), I =

1

π

∫

Ωf

ψ(γH)dΩf = 2

∫

Ωf

sinh(γH)

γH
rdrdz in Ωf . (2.8)

Equilibrium shapes of a free magnetic-fluid surface are described by the
generalized Young-Laplace equation

σ
K
a

= −aρgz + µ0

2

(

M(H,C)
Hn

H

)2

+ µ0H0

∫ H

0

M(H,C)dH + c on Γ.

Here σ is the surface tension coefficient, K the sum of principal curvatures,
scaled over a, ρ is the fluid density, g the acceleration of gravity. The magnetic
constant µ0 = 4π × 10−7H/m, the magnetic field H is determined from the
fluid side H = |∇φ1| and Hn = ∇φ1 · n, n the normal vector. The constant c
is unknown. In the rfFollowing all unknown constants will be denoted by c.

We substitute the explicit formula (2.1) for the magnetisationM(H,C) into
the Young-Laplace equation to get on Γ

K = −λ2z + λSi
(

C(γH)L(γH)
Hn

H

)2

+
2λSi

3χ

∫ γH

0

C(γH)L(γH)d(γH) + c.

Here, λ = a
√

ρg/σ and Si = µ0M
2
s /(2

√
ρgσ) are dimensionless parameters.

The integral can be computed as follows

∫ γH

0

C(t)L(t) dt =
δ

I

∫ γH

0

ψ(t)L(t) dt =
δ

I

γH
∫

0

eL
∗(t)dL∗(t)

=
δ

I

(

eL
∗(γH) − 1

)

=
δ

I

(

ψ(γH)− 1
)

,

where L∗(t) =
∫ t

0 L(x)dx and dL∗(t) = L(t)dt. Then, the Young-Laplace
equation reads:

K = −λ2z + f(H) + c on Γ

with

f(H) =
λSiδ2

I2

(

ψ(γH)L(γH)
Hn

H

)2

+
2λSiδ

3χI

(

ψ(γH)− 1
)

.

The surface Γ is described by the parametric functions r(s) and z(s):

Γ =
{

(r, z)
∣

∣ r = r(s), z = z(s), s = [0, ℓ]
}

,

where the parameter s is the arc length of the free boundary Γ measured from
the top of the peak (s = 0) up to the peak foot (s = ℓ). Space variables are
dimensionless over a. Based on the approach in [10], the Young-Laplace equa-
tion is reformulated as a system of second-order ordinary differential equations
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for the unknown functions r̄ = r/ℓ and z̄ = z/ℓ, where s̄ = s/ℓ ∈ [0, 1]

r̄′′ = −z̄′F, z̄′′ = r̄′F 0 < s̄ < 1;

r̄(0) = 0, r̄′(1) = 1; z̄′(0) = 0, z̄(1) = ℓ2
∫ 1

0

r̄2z̄′ ds̄; (2.9)

F = − z̄
′

r̄
+ λ2ℓ2z̄ − ℓf(H) + 2ℓ3

∫ 1

0

r̄r̄′f(H) ds̄, ℓ =
1

r̄(1)
.

The nonlocal boundary condition is due to the integration by parts of the

volume conservation condition
∫ 1

0
z̄r̄r̄′ds̄ = 0.

The full mathematical model consists of subproblem (2.2)–(2.7) for the mag-
netic potential, explicit analytical formula (2.8) for the concentration and sub-
problem (2.9) for the equilibrium magnetic-fluid surface shape.

The three subproblems are coupled to each other. In order to determine the
magnetic field structure, the knowledge about the particle distribution inside
the fluid and the interface position between fluid and air is needed. The parti-
cle concentration itself depends explicitly on the magnetic field configuration.
Finally, the interface between fluid and air is defined as an equilibrium shape
of a free magnetic-fluid surface depending both on the magnetic field and on
the concentration.

Notice that problems with nonlocal boundary conditions is of an inter-
est in modern computational mathematics. As an important contribution to
this field, we mention papers [3, 4], where finite-difference schemes for linear
boundary-value problems with nonlocal boundary conditions are investigated.

3 Numerical Treatment

An iterative decoupling strategy is applied to the coupled problem (2.2)–(2.9).
Three steps are performed at the n-th iteration. The first step deals with the
subproblem for the magnetic potential, whereas the concentration and the in-
terface position are unchanged and taken from the (n− 1)-th iteration. In the
second step we compute Cn = C(γHn) and Hn = |∇φn1 |. The third step up-
dates the interface position Γn, using the last computed values for Hn and Cn.
The iterations are stopped when the change in the surface shape is smaller than
10−6. The initial surface configuration Γ 0 is chosen as a small perturbation
of the plane surface with an amplitude of around 1% of the wavelength. We
interpret a damping of the perturbation in the course of iterations as stability
of the plane surface. Convergence to a solution with a curved surface indicates
the onset of the Rosensweig instability. In the latter case, the initial perturba-
tion evolves to a stationary configuration of a finite amplitude. Thereafter, Γ 0

is defined by the last computed equilibrium surface.
The magnetostatic problem (2.2)–(2.7) is solved by a finite-element method.

The problem is a nonlinear elliptic second-order boundary value problem with
discontinuous coefficients and mixed Dirichlet-Neumann boundary conditions.
Due to its formulation in cylindrical coordinates and the assumption of axial
symmetry, a variational formulation in a weighted Sobolev space W 1,2(Ω,w)
with the weight function w(r, z) = r is used. The existence of a unique weak
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solution was shown in [8] in case of a uniform concentration. The variational
problem is discretized by continuous piecewise linear functions on triangles.
Structured meshes with 160×800 nodes both inside and outside of the magnetic
fluid are used. The two-dimensional meshes over the domain Ω and the one-
dimensional meshes over the interface Γ are matched pointwise. Nonlinearities
in the discrete equations are treated by a fixed-point iteration. The resulting
system of linear equations is solved by a successive over relaxation method
(SOR) in each iteration.

An iterative finite-difference scheme of the second order approximation for
the parametric Young-Laplace equations was constructed in [10]. We apply the
same strategy for system (2.9)

1

τ

(

r̄k+1
ss,i − r̄kss,i

)

+ r̄kss,i + z̄k◦
s,i
F k
i = 0, i = 1, ..., N − 1,

r̄k+1
0 = 0,

r̄k+1
N − r̄k+1

N−1

h
= 1, ℓk =

1

r̄kN
,

1

τ

(

z̄k+1
ss,i − z̄kss,i

)

+ z̄kss,i − r̄k◦
s,i
F k
i = 0, i = 1, . . . , N − 1,

z̄k+1
1 − z̄k+1

0

h
=
h

2
F k
0 , z̄

k+1
N =

(

ℓk
)2 N

∑

i=1

[(

z̄ki − z̄ki−1

)( r̄ki−1 + r̄ki
2

)2]

,

F k
i = −

z̄k◦
s,i

r̄ki
+ λ2

(

ℓk
)2
z̄ki − ℓkf(Hk

i ) +
(

ℓk
)3

N
∑

i=1

[(

(

r̄ki
)2 −

(

r̄ki−1

)2
)

f(Hk
i )
]

.

Here {r̄i}Ni=0 and {z̄i}Ni=0 are grid-functions uniformly distributed over the free
surface with a step size h = 1/N . The difference quotients correspond to the
central derivatives (r̄◦

s
, z̄◦

s
) and the second derivatives (r̄ss, z̄ss). Nonlinearities

of equations (2.9) are resolved by iterations, resulting in a three-diagonal sys-
tem for the unknown grid functions at the (k + 1)-th iteration. A relaxation
technique with a parameter τ is applied to improve numerical stability.

4 Numerical Results

Numerical calculations were performed for the magnetic fluid EMG 901 (Fer-
rotec) with the following characteristic properties: χ = 2.2, ρ = 1406 kg/m3,
σ = 0.025 kg/s2, Ms = 48 kA/m, C0 = 0.107. The control parameter of
the model is a dimensionless applied field intensity γ = 3χH0/Ms. All others
dimensionless characteristics (χ, λ, Si) are fixed.

We set δ = 5. Computations with different δ have shown that the error
caused by replacing the unbounded domain by a bounded one is less than 1%.

A linear stability analysis was carried out in [13] for the Rosensweig insta-
bility under the assumption of a uniform particles distribution. The stability
theory allows to get a critical value of the magnetic field intensity inside the
fluid Hc as solution of the nonlinear equation

M(Hc)
2 =

2
√
ρgσ

µ0

(

1 +
(

1 +
M(Hc)

Hc

)

−1(

1 +
∂M

∂H
(Hc)

)

−1)

.
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To define the critical applied field H∗, conditions (2.4), written for dimensional
fields, are satisfied at the flat interface z = 0

µ(1, Hc)Hc = H∗, where µ(1, Hc) = 1 +
3χ

γ

L(γHc)

Hc

for γ =
3χ

Ms

.

For the considered magnetic fluid we get γc = 3χH∗/Ms = 1.252. The stability
theory predicts a critical value of the pattern wavelength λc = 2π/

√

ρg/σ. The
hexagonal pattern wavenumber λhex is related to the distance between two
nearest peaks by the relation λhex =

√
3a. In the model we define that for any

applied field intensity

λhex = λc ⇒ λ = a
√

ρg/σ =
λc√
3

√

ρg/σ =
2π√
3
.
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Figure 2. Overcritical free-surface shapes, isolines of the dimensionless potential (left) and
of the dimensionless concentration (right) at the applied field intensity γ = 1.265. Solid
(dashed) shape-lines corresponds to the non-uniform (uniform) particle distribution.

Fig. 2 (left) shows equilibrium free-surface shapes in the case of the uni-
form and non-uniform particle concentration for the applied field γ = 1.265.
A more elongated peak region is formed for the non-homogeneous magnetic
fluid. Isolines of the magnetic potential and the relative concentration in the
equilibrium state are shown as well. The main inhomogeneity of the particle
distribution occurs in the peak region. The concentration for a homogeneous
fluid would be one in the whole volume.

The distribution of the dimensionless magnetic field intensity inside of the
magnetic fluid and in the air is presented in Fig. 3. The magnetic field inside of
the flat layer is uniform with the intensity h10 = 0.315 (see (2.7)), which jumps
to the value one at the fluid-air interface (z = 0). For equilibrium surfaces of
finite amplitude the intensity inside of the fluid increases monotonically from
h10 at z = −δ to a value close to one at the interface. Crossing the interface, the
magnetic intensity jumps to the value 3.174 and decreases monotonically up to
one at z = δ. The magnetic field achieves the maximum at the peak top, which
is three time greater than the value taken inside the layer. The inhomogeneity
of the magnetic particle distribution strengthens the magnetic field in the peak
region compared to the case of a uniform particle concentration.
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Figure 3. Distribution of the field in-
tensity over the peak axis (r = 0) at
γ = 1.265 in comparison with a flat layer
at γ < γc.
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Figure 4. Distribution of the particle
concentration over the peak axis (r = 0)
and the peak foot (r = a) at γ = 1.265.

Fig. 4 shows the non-uniform equilibrium distribution of the particle con-
centration over the peak axis and the peak foot. The concentration increases
monotonically in z-direction, moving along the peak axis. The relative concen-
tration takes a value at the peak top which is about 25% greater than in the
fluid bulk. The concentration increases at places with higher magnetic intensi-
ties and takes the smallest value at the peak foot. The magnetic fluid becomes
uniform over the fluid volume for z/a < −1. The particle diffusion mechanism
is absent there and the relative concentration is constant C = 1.

1.1 1.3 1.5
0  

1  

2  

γ

z(0)−z(l)

increasing γ, uniform C
decreasing γ, uniform C
increasing γ, non−uniform C
decreasing γ, non−uniform C

γ*

Figure 5. Dimensionless peak amplitude vs. the applied field intensity.

Fig. 5 shows the dependency of a peak amplitude on the applied field in-
tensity γ for a uniform and non-uniform distribution of the particles. The
parameter γ is increased starting from zero. The free surface remains flat until
the critical point γ∗ is reached. At γ = γ∗ the fluid configuration is modi-
fied and a formation of surface protuberances takes place. Computations show
that the value of γ∗ does not depend on the particle distribution and equals
1.254± 0.001 both for the uniform and non-uniform concentrations. A critical

Math. Model. Anal., 15(2):223–233, 2010.
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value γc = 1.252 predicted theoretically nearly coincides with the numerically
obtained value γ∗. The flat surface configuration preserves the uniformity of
particle distribution. That is why, the concentration effect does not influence
the onset of instability. In the overcritical range γ > γ∗ the peak amplitude
increases for the increasing γ. The non-uniform particle distribution results in
a 20% higher peak amplitude in comparison to a homogeneous fluid. The am-
plitude difference between homogeneous and non-homogeneous fluids increases
for stronger magnetic fields. If we choose any overcritical solution as an initial
state and decrease γ then an effect of hysteresis takes place in the subcritical
region (γ < γ∗). A state of an undisturbed plane surface is reached at the turn-
ing point γ∗ < γ∗. The value of γ∗ is smaller for the non-homogeneous fluid
(γ∗ = 1.161± 0.001) than for the homogeneous one (γ∗ = 1.181± 0.001). We
point out that two stable surface configurations are resolved in the hysteretic
interval γ∗ < γ < γ∗. These are the plane surface and the curved surface
of a finite amplitude. Which of these two states is formed, depends on the
amplitude of the initial surface perturbation Γ 0. The recent experimental [12]
and numerical [9] results confirm the existence of an additional localized stable
state (ferrosoliton) in the hysteretic interval.

Note that a hysteretic behavior of magnetic fluids in normal fields has been
predicted theoretically in [6] and verified experimentally at first in [1].

5 Conclusions

In the paper, the mathematical model of the Rosensweig instability phenome-
non, taking into consideration the magnetic particle inhomogeneity, is devel-
oped. It is based on the exact solution for the steady-state particle diffusion
problem, obtained in [11]. The influence of the particle diffusion on a free
magnetic-fluid surface shape for the Rosensweig instability is studied numer-
ically for the first time. It is shown that the particle diffusion influences on
overcritical free surface configurations appreciably. The nonuniform particle
distribution results in about 20% higher peak amplitude in comparison to the
uniform distribution approximation. At the same time, the diffusion effect does
not influence on the onset of instability. The critical magnetic field intensity
values coincide in homogeneous and inhomogeneous cases.
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