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Abstract. For a strictly monotone function y on [a, b] we describe the construction
of an interpolating linear/linear rational spline S of smoothness class C1. We show
that for the linear/linear rational splines we obtain ‖S(xi) − y(xi)‖∞ = O(h4

) on
uniform mesh xi = a+ ih, i = 0, . . . , n. We prove also the superconvergence of order
h3 for the first derivative and of order h2 for the second derivative of S in certain
points. Numerical examples support the obtained theoretical results.
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1 Introduction

For a smooth function y and interpolating linear/linear rational spline S it is
known that ‖S − y‖∞ = O(h3), for the proof see, e.g., [8]. The linear/linear
rational splines of class C1 have the same accuracy as the classical quadratic
splines. In some cases, the error is less for the quadratic splines and in some
cases, the error is less for the linear/linear rational splines. For the quadratic
splines, the expansions on subintervals via the derivatives of the smooth func-
tion to interpolate could be found, e.g., in [4, 5]. They give the superconver-
gence of the spline values and its derivatives in certain points. We will study
such a problem in the case of linear/linear rational spline interpolant.

Note that, linear/linear rational splines, being strictly monotone or con-
stant everywhere, cannot interpolate nonmonotone data. For consistent data,
the linear/linear rational spline interpolant of class C1 always exists and is
unique [9]. Let us mention that O(h2) convergence rate of quadratic spline col-
location for boundary value problems is based on superconvergence property
of interpolating splines. This was discovered in [3] and developed extensively
in [7, 10]. Polynomial interpolants are used to establish convergence results
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of quasi-interpolants, see e.g., [6] and the references therein. For linear/linear
rational spline histopolation, convergence rates could be found in [2].

Let us point out that, while the interpolation problem is a linear one, the
linear/linear rational spline interpolation is, in nature, a nonlinear method
because it leads to a nonlinear system with respect to the spline parameters.
It was shown in [1] that any strict convexity preserving interpolation method
having certain regularity properties cannot be linear. Hopefully, similar result
should also hold for strict monotonicity preservation.

2 Interpolation by Linear/Linear Rational Splines

Let a = x0 < x1 < . . . < xn = b be a uniform partition of the interval [a, b]
with knots xi = a + ih, i = 0, . . . , n, h = (b − a)/n, n ∈ N. We also need
the points ξi = xi−1 + h/2, i = 1, . . . , n. Linear/linear rational spline on each
particular interval [xi−1, xi] is a function S of the form

S(x) = ai +
ci(x− ξi)

1 + di(x− ξi)
, x ∈ [xi−1, xi], (2.1)

where 1 + di(x − ξi) > 0. Using the notation S(xi) = Si, i = 0, . . . , n, and
S(ξi) = S̄i, i = 1, . . . , n, we get from (2.1)

S̄i = ai, Si−1 = ai −
hci

2− hdi
, Si = ai +

hci
2 + hdi

,

which allows to express uniquely ai, ci and di via the spline values and to have
the representation

S(x) = S̄i +
4(Si − S̄i)(S̄i − Si−1)(x− ξi)

h(Si − Si−1) + 2((S̄i − Si−1)− (Si − S̄i))(x − ξi)
, x ∈ [xi−1, xi].

(2.2)

This also gives for x ∈ [xi−1, xi]

S′(x) =
4h(Si − S̄i)(S̄i − Si−1)(Si − Si−1)

(h(Si − Si−1) + 2((S̄i − Si−1)− (Si − S̄i))(x− ξi))2
, (2.3)

S′′(x) = − 16h(Si − S̄i)(S̄i − Si−1)((S̄i − Si−1)− (Si − S̄i))

(h(Si − Si−1) + 2((S̄i − Si−1)− (Si − S̄i))(x − ξi))3
. (2.4)

According to the representation (2.2) we have 3n parameters to determine for
constructing the spline. We require for C1 continuity of S on [a, b] which
involves 2(n − 1) conditions, namely that S and S′ must be continuous at
all interior knots x1, . . . , xn−1. When the continuity of S is guaranteed by the
representation (2.2), the continuity of S′ at interior knots leads to the equations

(Si − S̄i)(Si − Si−1)

S̄i − Si−1
=

(S̄i+1 − Si)(Si+1 − Si)

Si+1 − S̄i+1
, i = 1, . . . , n− 1. (2.5)
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Given the data ȳi, i = 1, . . . , n, let us require that the interpolation conditions

S(ξi) = ȳi, i = 1, . . . , n, (2.6)

are satisfied. In addition, we impose some boundary conditions, e.g.:

S(a) = α1, S(b) = α2, (2.7)

or

S′(a) = α3, S′(b) = α4, (2.8)

and a combination with one condition from (2.7) and another from (2.8) at
different endpoints is also allowed. We will specify the choice of numbers α1,
α2, α3 and α4 in the following section.

Replacing the values S̄i, i = 1, . . . , n, from (2.6) in the internal equations
(2.5) and considering them with two boundary conditions we obtain a nonlinear
system with respect to the unknowns S0, . . . , Sn.

3 Expansions of the Interpolant

We derive our superconvergence rate results basing on the expansions of the
interpolant which will be established in this section. First, we analyze the
nonlinear system with respect to the unknowns S0, . . . , Sn.

Let us write equations (2.5) with replaced values S̄i from (2.6) in the form

ϕi(Si−1, Si, Si+1) := (Si − ȳi)(Si − Si−1)(Si+1 − ȳi+1)

− (ȳi+1 − Si)(Si+1 − Si)(ȳi − Si−1) = 0, i = 1, . . . , n− 1, (3.1)

introducing at the same time functions ϕi. Then the system consisting of the
boundary conditions (2.7) and the internal equations (3.1) can be written as



























h2(y′0)
2(S0 − α1) = 0,

(Si − ȳi)(Si − Si−1)(Si+1 − ȳi+1)

−(ȳi+1 − Si)(Si+1 − Si)(ȳi − Si−1) = 0, i = 1, . . . , n− 1,

h2(y′
n
)2(Sn − α2) = 0.

(3.2)

Suppose now that we have a function y : [a, b] → R to interpolate and ȳi = y(ξi),
i = 1, . . . , n. Denote yi = y(xi), i = 0, . . . , n, similar notation will be used in
the case of derivatives. At (3.1) the Taylor expansion gives

ϕi(Si−1, Si, Si+1) = ϕi(yi−1, yi, yi+1) +
∂ϕi

∂Si−1
(yi−1, yi, yi+1)(Si−1 − yi−1)

+
∂ϕi

∂Si

(yi−1, yi, yi+1)(Si − yi)+
∂ϕi

∂Si+1
(yi−1, yi, yi+1)(Si+1−yi+1)+

ϕ′′
i

2!
(ξλ)h̄

2,

(3.3)

Math. Model. Anal., 15(4):447–455, 2010.
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with the difference vector h̄ = (Si−1−yi−1, Si−yi, Si+1−yi+1), some λ ∈ (0, 1)
and ξλ = (yi−1, yi, yi+1) + λh̄. From (3.1) we find for i = 1, . . . , n− 1

∂ϕi

∂Si−1
= −(Si − ȳi)(Si+1 − ȳi+1) + (ȳi+1 − Si)(Si+1 − Si),

∂ϕi

∂Si

= (Si − Si−1)(Si+1 − ȳi+1) + (Si − ȳi)(Si+1 − ȳi+1)

+ (Si+1 − Si)(ȳi − Si−1) + (ȳi+1 − Si)(ȳi − Si−1),

∂ϕi

∂Si+1
= (Si − ȳi)(Si − Si−1)− (ȳi+1 − Si)(ȳi − Si−1).

Suppose in the following that y ∈ C4[a, b]. Let us expand yi−1, ȳi, ȳi+1 and
yi+1 at the point xi by Taylor formula up to the forth derivative as

yi−1 = yi − hy′
i
+
h2

2
y′′
i
− h3

6
y′′′
i
+
h4

24
yIV
i

+ o(h4),

ȳi = yi −
h

2
y′
i
+
h2

8
y′′
i
− h3

48
y′′′
i
+

h4

384
yIV
i

+ o(h4),

ȳi+1 = yi +
h

2
y′
i
+
h2

8
y′′
i
+
h3

48
y′′′
i
+

h4

384
yIV
i

+ o(h4),

yi+1 = yi + hy′
i
+
h2

2
y′′
i
+
h3

6
y′′′
i
+
h4

24
yIV
i

+ o(h4)

with the error terms O(h4+α) in the case yIV ∈ Lip α, 0 < α ≤ 1. Then direct
calculations yield

∂ϕi

∂Si−1
(yi−1, yi, yi+1) =

h2

4
y′2
i
+
h3

4
y′
i
y′′
i
+O(h4),

∂ϕi

∂Si

(yi−1, yi, yi+1) =
3

2
h2y′2

i
+O(h4), (3.4)

∂ϕi

∂Si+1
(yi−1, yi, yi+1) =

h2

4
y′2
i
− h3

4
y′
i
y′′
i
+O(h4), and

ϕi(yi−1, yi, yi+1) =
h6

64

(

(y′
i
)2yIV

i
− 4y′

i
y′′
i
y′′′
i
+ 3(y′′

i
)3
)

+ o(h6). (3.5)

The entries in the matrix ϕ′′
i

consisting of the second order partial derivatives
of ϕi are of order O(h). This with the help of ‖h̄‖∞ = O(h3) (recall that
‖S − y‖∞ = O(h3)) gives ϕ′′

i
(ξλ)h̄

2 = O(h7).

Taking now into account (3.4), (3.5) and the order of the error term in (3.3),
system (3.2) reduces to

h2(y′0)
2(S0 − α1) = 0, (3.6)

h6

64

(

(y′
i
)2yIV

i
−4y′

i
y′′
i
y′′′
i
+ 3(y′′

i
)3
)

+
(h2

4
(y′

i
)2 +

h3

4
y′
i
y′′
i
+O(h4)

)
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× (Si−1−yi−1) +
(3

2
h2(y′

i
)2 +O(h4)

)

(Si − yi)+
(h2

4
(y′

i
)2 − h3

4
y′
i
y′′
i
+O(h4)

)

× (Si+1−yi+1) + o(h6) = 0, i = 1, . . . , n− 1,

h2(y′
n
)2(Sn − α2) = 0.

It is known, see, e.g., [8, 9] that a linear/linear rational spline interpolant
exist only if y is strictly monotone or constant everywhere. Thus, we assume
that y′(x) > 0 for all x ∈ [a, b] or y′(x) < 0 for all x ∈ [a, b] which means that
y is strictly monotone. Consider (3.6) as a linear system with respect to the
unknowns Si − yi, i = 0, . . . , n. Then its matrix has the diagonal dominance in
rows for sufficiently small h. We look for the solution such that

Si = yi + h4
[

ψ(y)
]

i

+ βi, i = 0, . . . , n, (3.7)

where the continuous function ψ(y) and numbers βi will be specified later. The
continuity of ψ(y) gives [ψ(y)]i−1 = [ψ(y)]i + o(1), [ψ(y)]i+1 = [ψ(y)]i + o(1).
Replacing now (3.7) in the internal equations of (3.6) we get

h6

64

(

(y′
i
)2yIV

i
− 4y′

i
y′′
i
y′′′
i
+ 3(y′′

i
)3
)

+
(h2

4
(y′

i
)2 +

h3

4
y′
i
y′′
i
+O(h4)

)

×
(

h4[ψ(y)]i + βi−1

)

+
(3

2
h2(y′

i
)2 +O(h4)

)(

h4[ψ(y)]i + βi

)

+
(h2

4
(y′

i
)2 − h3

4
y′
i
y′′
i
+O(h4)

)(

h4[ψ(y)]i + βi+1

)

+ o(h6) = 0.

Determine the function ψ(y) so that the coefficient at h6 is equal to 0, i.e.,

1

64

(

(y′
i
)2yIV

i
− 4y′

i
y′′
i
y′′′
i
+ 3(y′′

i
)3
)

+ 2(y′
i
)2[ψ(y)]i = 0

which means that

[ψ(y)]i = − 1

128

(

yIV
i

− 4
y′′
i
y′′′
i

y′
i

+ 3
(y′′

i
)3

(y′
i
)2

)

, i = 1, . . . , n− 1. (3.8)

Extend (3.8) for i = 0 and i = n as well, then choose β0 = o(h4) and
βn = o(h4) (e.g., it may be β0 = βn = 0). This determines the values of α1

and α2. Thus, we pose the boundary conditions (2.7) in the form

S(a) = y(a)− h4

128

(

yIV (a)− 4
y′′(a)y′′′(a)

y′(a)
+ 3

(y′′(a))3

(y′(a))2

)

+ o(h4), (3.9)

S(b) = y(b)− h4

128

(

yIV (b)− 4
y′′(b)y′′′(b)

y′(b)
+ 3

(y′′(b))3

(y′(b))2

)

+ o(h4).

Now we may write (3.6) as follows






























h2(y′0)
2β0 = o(h6),

(h2

4
(y′

i
)2 +

h3

4
y′
i
y′′
i
+O(h4)

)

βi−1 +
(3

2
h2(y′

i
)2 +O(h4)

)

βi

+
(h2

4
(y′

i
)2 − h3

4
y′
i
y′′
i
+O(h4)

)

βi+1 + o(h6) = 0, i = 1, . . . , n− 1,

h2(y′
n
)2βn = o(h6).

Math. Model. Anal., 15(4):447–455, 2010.



i

i

“MMA15v34” — 2010/11/9 — 22:19 — page 452 — #6
i

i

i

i

i

i

452 E. Ideon and P. Oja

This system has the matrix form Aβ̄ = g, where β̄ = (β0, . . . , βn) and
‖g‖∞ = o(h6). Since ‖A−1‖∞ = O(h−2), we obtain

‖β̄‖∞ ≤ ‖A−1‖∞‖g‖∞ = o(h4),

where ‖A−1‖ is the matrix norm corresponding to the uniform vector norm. In
total, we have

Si = yi −
h4

128

(

yIV
i

− 4
y′′
i
y′′′
i

y′
i

+ 3
(y′′

i
)3

(y′
i
)2

)

+ o(h4), i = 0, . . . , n, (3.10)

which could be also transformed into the form

Si = yi −
h4

128

(

y
′

i

(y′′′

y′

)′

i

− 3y′′
i

(y′′

y′

)′

i

)

+ o(h4), i = 0, . . . , n.

Our next aim is to establish the expansions of interpolant S and its first
and second derivatives on the whole particular interval. First, we write the
representation (2.2) with obvious notations A and B in the form

S(x) = S̄i +
A

B
= y(x) +

A− (y(x)− S̄i)B

B
.

Then using S̄i = ȳi and Taylor expansions at ξi

Si = yi −
h4

128
ψi + o(h4)

= ȳi + ȳ′
i

h

2
+
ȳ′′
i

2

(h

2

)2

+
ȳ′′′
i

6

(h

2

)3

+
ȳIV
i

24

(h

2

)4

− h4

128
ψ̄i + o(h4),

Si−1 = yi−1 −
h4

128
ψi−1 + o(h4)

= ȳi − ȳ′
i

h

2
+
ȳ′′
i

2

(h

2

)2

− ȳ′′′
i

6

(h

2

)3

+
ȳIV
i

24

(h

2

)4

− h4

128
ψ̄i + o(h4),

y(x) = ȳi + ȳ′
i
th+

ȳ′′
i

2
(th)2 +

ȳ′′′
i

6
(th)3 +

ȳIV
i

24
(th)4 + o(h4)

in the fractional term, we arrive at the expansion for x ∈ [xi−1, xi]

S(x) = y(x) +
t(1 − 4t2)

48
h3

(

2ȳ′′′
i
− 3

(ȳ′′
i
)2

ȳ′
i

)

+
t2

48
h4

(

− (1 + 2t2)ȳIV
i

+ 6
ȳ′′
i
ȳ′′′
i

ȳ′
i

− 6(1− t2)
(ȳ′′

i
)3

(ȳ′
i
)2

)

+ o(h4), (3.11)

with x = ξi + th, t ∈ [−1/2, 1/2]. Clearly, the expansion (3.11) at x = xi or
t = 1/2 coincides with (3.10). From (2.3), proceeding similarly, we get

S′(x) = y′(x) +
1− 12t2

48
h2

(

2ȳ′′′
i
− 3

(ȳ′′
i
)2

ȳ′
i

)

− t

24
h3

(

(1 + 4t2)ȳIV
i

− 6
ȳ′′
i
ȳ′′′
i

ȳ′
i

+ 6(1− 2t2)
(ȳ′′

i
)3

(ȳ′
i
)2

)

+ o(h3), (3.12)
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and, finally, from (2.4)

S′′(x) =y′′(x) + th
(

− ȳ′′′
i
+

3

2

ȳ′′2
i

ȳ′
i

)

+
h2

24

(

− (1 + 12t2)ȳIV
i

+ 6
ȳ′′
i
ȳ′′′
i

ȳ′
i

− 6(1− 6t2)
(ȳ′′

i
)3

(ȳ′
i
)2

)

+ o(h2), (3.13)

where, as before, x = ξi + th, t ∈ [−1/2, 1/2].
Similar reasoning allows us to establish the expansions (3.10)–(3.13) in the

case of boundary conditions (2.8) provided we pose them in the form

S′(a) = y′(a)− h2

12

(

y
′′′

(a)− 3

2

(y′′(a))2

y′(a)

)

+ o(h3), (3.14)

S′(b) = y′(b)− h2

12

(

y
′′′

(b)− 3

2

(y′′(b))2

y′(b)

)

+ o(h3).

We have proved the following theorem.

Theorem 1. Let y be a strictly monotone function and y ∈ C4[a, b]. Then the

linear/linear rational spline S of smoothness class C1 satisfying interpolation

conditions (2.6) and boundary conditions (3.9) or (3.14) expands like (3.10)–
(3.13).

Remark 1. If yIV ∈ Lip α, 0 < α ≤ 1, then in previous formulae all the error
terms written as o(hk) for some k could be replaced by O(hk+α).

Basing on expansions (3.11)–(3.13) it is now immediate consequence to ob-
tain superconvergence assertions. From (3.11) we get S(xi) = y(xi) + O(h4),
i = 0, . . . , n, (3.12) yields S′(x) = y′(x) + O(h3) in points x = ξi + th, corre-
sponding to t = ±

√
3/6, and (3.13) gives S′′(ξi) = y′′(ξi)+O(h

2), i = 1, . . . , n.
Similar expansions for quadratic spline interpolants were known earlier.

They are given, e.g., in [4] in a slightly different form

S(x)=y(x)− t(1−t)(1−2t)

12
h3y′′′(x)− (1−2t)2(1 + 4t− 4t2)

128
h4yIV (x)+o(h4),

S′(x) = y′(x)− 1− 6t− 6t2

12
h2y′′′(x) − t(1− t)(1− 2t)

6
h3yIV (x) + o(h3),

S′′(x) = y′′(x) +
1− 2t

2
hy′′′(x)− 1− 6t− 6t2

6
h2yIV (x) + o(h2),

x ∈ [xi−1, xi], x = xi−1 + th, t ∈ [0, 1].

We can check directly that here the superconvergence takes place at the same
points as for linear/linear rational spline interpolants.

4 Numerical Examples

We interpolated the function y(x) = x−2 on the interval [−2,−0.2] and the
function y(x) = sinx on the interval [−1.5, 1.5] by linear/linear rational spline

Math. Model. Anal., 15(4):447–455, 2010.
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S as described in Section 2. The boundary conditions (2.7) with

α1 = y0 +
3

64
h4

1

x60
, α2 = yn +

3

64
h4

1

x6
n

for the function y(x) = x−2 and

α1 = y0 +
3

128
h4

sinx0
cos2 x0

, α2 = yn +
3

128
h4

sinxn
cos2 xn

for the function y(x) = sinx were used.

Table 1. Numerical results for y(x) = x−2, εn = S(zi)− y(zi), i = 1, 2, 3.

z1 = −1.55 z2 = −1.1 z3 = −0.65

n εn ε2n/εn εn ε2n/εn εn ε2n/εn
16 5.383 · 10−7 4.189 · 10−6 9.697 · 10−5

32 3.379 · 10−8 15.931 2.641 · 10−7 15.861 6.170 · 10−6 15.716
64 2.110 · 10−9 15.984 1.654 · 10−8 15.967 3.880 · 10−7 15.984

128 1.322 · 10−10 15.991 1.035 · 10−9 15.981 2.429 · 10−8 15.978
256 8.262 · 10−12 16.001 6.467 · 10−11 16.004 1.519 · 10−9 15.991

Table 2. Numerical results for y(x) = sinx, εn = S(zi)− y(zi), i = 1, 2.

z1 = −0.75 z2 = 0.75

n εn ε2n/εn εn ε2n/εn
16 −5.496 · 10−5 5.496 · 10−5

32 −2.272 · 10−6 24.19 2.272 · 10−6 24.19
64 −1.435 · 10−7 15.833 1.435 · 10−7 15.833

128 −8.996 · 10−9 15.952 8.996 · 10−9 15.952
256 −5.626 · 10−10 15.990 5.626 · 10−10 15.990

Table 3. Numerical results for y(x) = x−2, ε′′n = S′′(zi) − y′′(zi), i = 1, 2.

z1 = a+b

2
− h

2
z2 = a+b

2
+ h

2

n ε′′n ε′′
2n

/ε′′n ε′′n ε′′
2n

/ε′′n
16 −2.602 · 10−3 −4.789 · 10−3

32 −7.639 · 10−4 3.406 −4.037 · 10−3 4.618
64 −1.066 · 10−4 3.697 −2.408 · 10−4 4.306

128 −5.370 · 10−5 3.847 −5.798 · 10−5 4.153
256 −1.369 · 10−5 3.923 −1.422 · 10−5 4.077

The "tridiagonal" nonlinear system to determine the values of Si was solved
by Newton’s method and the iterations were stopped at ‖Sk − Sk−1‖∞ ≤
10−10, Sk being the sequence of approximations to the vector S = (S0, . . . , Sn).
The errors εn = S(zi) − y(zi) and ε′′

n
= S′′(zi) − y′′(zi) were calculated in

certain superconvergence points zi. Results of numerical tests are presented in
Tables 1–3.
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