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Abstract. In this paper, two point boundary value problems of 2mth-order non-
linear differential equations are considered. The existence of the solution and a new
iterative algorithm which is large-range convergent are proposed for the problems in
reproducing kernel space. The advantage of the approach must lie in the fact that,
on the one hand, for the arbitrary fixed initial value function, the iterative method is
convergent. On the other hand, the approximate solution and its derivatives converge
uniformly to the exact solution and its derivatives, respectively. Some examples are
displayed to demonstrate the computation efficiency of the method.
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1 Introduction

Consider the following 2m-th order two-point boundary value problems(BVPs)

y(2m)(x) = f(x, y), x ∈ (0, b) (1.1)

subject to boundary conditions

y(2l)(0) = α2l, y(2l)(b) = β2l, l = 0, 1, 2, . . . ,m− 1, (1.2)

or with the initial conditions given for the starting point

y(l)(0) = γl, l = 0, 1, 2, . . . , 2m− 1, (1.3)
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where y(x) ∈ W 2m+1
1 [0, b] for problem (1.1) – (1.2), y(x) ∈ W 2m+1

2 [0, b] for
the initial value problem (1.1), (1.3), for x ∈ [0, b], z ∈ (−∞,∞), f(x, z)
is a continuous bounded function, z = z(x), f(x, z) ∈ W 1

1 [0, b]; b, α2l, β2l,
l = 0, 1, 2, . . . ,m − 1 and γl, l = 0, 1, 2 . . . , 2m− 1 are constants; W 2m+1

1 [0, b],
W 2m+1

2 [0, b] and W 1
1 [0, b] are reproducing kernel spaces.

High-order BVPs arise in many fields. For example, the narrow convecting
layers bounded by stable layers which are believed to surround A-type stars
may be modelled by 6th-order BVPs. When an infinite horizontal layer of fluid
is heated from below and is subject to the action of rotation, instability sets
in. When the instability sets in as overstability, it is modelled by 8th-order
BVPs. Even higher-order BVPs can be involved when a uniform magnetic field
is applied across the fluid in the same direction as gravity. Ordinary convection
and overstability yield 10th-order and 12th-order BVPs, respectively. For more
details about the occurrences of high-order BVPs, see [3, 4].

Many authors have investigated the BVPs of high-order because of both
their mathematical importance and their potential for applications in hydro-
dynamic and hydromagnetic stability and so on. Agarwal [1] presented the
theorems stating the conditions for the existence and uniqueness of solutions
of such BVPs, while no numerical methods are contained therein. In [21], the
author discussed the sufficient conditions for existence of multiple solutions of
nonlinear fourth-order Emden–Fowler type equations based on the oscillation
theory by Leighton and Nehari for linear fourth-order differential equations. In
[8], T. Garbuza presents a special technique based on the analysis of oscilla-
tory behaviour of linear equations to investigation of the 6th order nonlinear
boundary value problem. Non-polynomial spline technique [2, 15], polynomial
splines of degree six [17], generalised differential quadrature rule [13] and the
spline method [16, 18] are developed for linear 4th-order, 6th-order, 8th-order
and 10th-order BVPs, respectively. Using finite-difference methods [7], compu-
tational results for special nonlinear BVPs of the 2m-th order have also been
obtained. Adomian decomposition method [14, 19, 20] is applied to construct
the numerical solution for nonlinear high-order BVPs.

Reproducing kernel theory has important applications in numerical analysis,
differential equations, probability and statistics [5, 6, 9, 10, 11, 22]. Recently,
using the reproducing kernel space method, some authors discussed nonlinear
operator equations, singular linear two-point boundary value problems, singular
nonlinear two-point periodic boundary value problems, nonlinear systems of
boundary value problems and nonlinear partial differential equations and so on
[5, 6, 9, 11, 12, 22].

In this study, the existence of the solution and a new iterative algorithm
are established for the nonlinear 2mth-order BVPs (1.1) with (1.2) or (1.3) in
reproducing kernel space. The advantage of the approach must lie in the fact
that, on the one hand, the iterative method is convergent for arbitrary initial
value function y1(x). Therefore, we get a large-range convergence iterative
method. On the other hand, the approximate solution yn(x) and the exact
solution y(x) satisfy ‖y(k)n − y(k)‖C → 0, k = 0, 1, 2, . . . , 2m as n→ ∞.

The paper is organized as follows. In Section 2, we introduce some defini-
tions of the reproducing kernel spaces and give the transformation of Eq.(1.1).
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Section 3 provides the main results, the existence of the solution to Eq.(1.1)
and a iterative method are developed for the problems in reproducing kernel
space. We verify that the approximate solution converges to the exact solution
uniformly. Furthermore, we obtain that the approximate solution yn(x) and
the exact solution y(x) satisfy ‖y(k)n − y(k)‖C → 0, k = 1, 2, . . . , 2m as n→ ∞.
Some experiments are presented in Section 4. Finally, in Section 5 we give
some conclusions.

2 Preliminaries

Let us introduce the definitions of several reproducing kernel spaces.

2.1 The reproducing kernel spaces W 2m+1
1 [0, b], W 2m+1

2 [0, b], W 1
1 [0, b]

Definition 1. W 2m+1
1 [0, b] =

{

y(x)
∣

∣ y, y(1), y(2), . . . , y(2m) are absolutely con-
tinuous real-valued functions in [0, b], y(2l)(0) = 0, y(2l)(b) = 0, l = 0, 1, 2 . . .,
m− 1, y(2m+1) ∈ L2[0, b]

}

.

W 2m+1
1 [0, b] is a Hilbert space, for y, z ∈ W 2m+1

1 [0, b], the inner product
and norm in W 2m+1

1 [0, b] are given by

< y, z >W 2m+1

1

=

∫ b

0

(y(2m)z(2m) + y(2m+1)z(2m+1)) dx, ‖y‖W 2m+1

1

=< y, y >
1
2 ,

respectively. W 2m+1
1 [0, b] is a reproducing kernel space. That is, for each fixed

x ∈ [0, b] and any y(t) ∈ W 2m+1
1 [0, b], there exists Rx(t) ∈W 2m+1

1 [0, b], t ∈ [0, b]
such that < y(t), Rx(t) >W 2m+1

1

= y(x), the reproducing kernel Rx(t) can be
presented by

Rx(t) =















4m
∑

i=1

ait
i−1 + a4m+1e

t + a4m+2e
−t, t ≤ x,

4m
∑

i=1

bit
i−1 + b4m+1e

t + b4m+2e
−t, t > x,

(2.1)

where ai, bi, i = 1, 2, . . . , 4m + 2 are functions of x and they are obtained in
Appendix.

Definition 2. W 2m+1
2 [0, b] =

{

y(x)
∣

∣ y, y(1), y(2), . . . , y(2m) are absolutely con-
tinuous real-valued functions in [0, b], y(l)(0) = 0, l = 0, 1, 2 . . . , 2m − 1,
y(2m+1) ∈ L2[0, b]

}

.

W 2m+1
2 [0, b] is a Hilbert space, for y, z ∈ W 2m+1

2 [0, b], the inner product
and norm in W 2m+1

2 [0, b] are given by

< y, z >W 2m+1

2

=

∫ b

0

(y(2m)z(2m) + y(2m+1)z(2m+1)) dx, ‖y‖W 2m+1

2

=< y, y >
1
2 ,

respectively. W 2m+1
2 [0, b] is a reproducing kernel space. That is, for each fixed

x ∈ [0, b] and any y(t) ∈ W 2m+1
2 [0, b], there exist R{1}

x (t) ∈ W 2m+1
2 [0, b], t ∈

Math. Model. Anal., 15(4):571–586, 2010.
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[0, b] such that < y(t), R
{1}
x (t) >W 2m+1

2

= y(x), the reproducing kernel Rx(t)

can be presented by

R{1}
x (t) =















4m
∑

i=1

cit
i−1 + c4m+1e

t + c4m+2e
−t, t ≤ x,

4m
∑

i=1

dit
i−1 + d4m+1e

t + d4m+2e
−t, t > x,

(2.2)

where ci, di, i = 1, 2, . . . , 4m + 2 are functions of x, which are obtained in
Appendix.

Definition 3. W 1
1 [0, b] =

{

y(x)
∣

∣ y is absolutely continuous real-valued func-
tion, y′ ∈ L2[0, b]

}

.

W 1
1 [0, b] is a Hilbert space, the inner product and norm in W 1

1 [0, b] are given
by

< y, z >W 1
1
=

∫ b

0

(yz + y(1)z(1)) dx, ‖y‖W 1
1
=< y, y >

1
2 ,

respectively, where y, z ∈ W 1
1 [0, b]. In [11], the authors have proved that

W 1
1 [0, b] is a complete reproducing kernel space and its reproducing kernel is

R{2}
x (t) =

1

2 sinh(b)
[cosh(x+ t− b) + cosh(|x− t| − b)].

Remark 1. We describe the main results for two cases: in Case (i) we discuss
Eq.(1.1) subjected to (1.2) in W 2m+1

1 [0, b]; and in Case (ii) we discuss Eq.(1.1)
subjected to (1.3) in W 2m+1

2 [0, b]. For simplicity, we present full proofs only
for Case (i), but the reader can easily verify that essentially the same proofs
work for Case (ii).

2.2 Transformation

Let’s consider Case (i) and define ŷ(x) = y(x) + u(x) such that ŷ(2l)(0) = 0,
ŷ(2l)(b) = 0, u(2l)(0) = −α2l, u(2l)(b) = −β2l, l = 0, 1, 2, . . . ,m − 1. We take

the differential operator T =
d2m

dx2m
, then after homogenization of boundary

conditions and denoting ŷ(x) by y(x), we put Eq.(1.1) with (1.2) into the
following form:











Ty = g(x, y), x ∈ [0, b],

T y = g(x, y), x ∈ (0, b),

y(2l)(b) = 0, l = 0, 1, 2 . . . ,m− 1,

(2.3)

where y(x) ∈ W 2m+1
1 [0, b], g(x, y) = f(x, y − u) − u(2m)(x), for x ∈ [0, b], z ∈

(−∞,+∞), g(x, z) is a continuous bounded function, z = z(x), g(x, z) ∈
W 1

1 [0, b]. It is clear that T : W 2m+1
1 [0, b] → W 1

1 [0, b] is a bounded linear
operator. Let ϕi(x) = Rxi

(x), ψi(x) = T ∗ϕi(x), where {xi}∞i=1 is dense in
[0, b], for y(x) ∈W 2m+1

1 [0, b],

< y(x), ϕi(x) >W 2m+1

1

= y(xi),
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T ∗ is the conjugate operator of T . Let us define the orthonormal system
{ψi(x)}∞i=1 in W 2m+1

1 [0, b] which is derived from Gram–Schmidt orthogonal-
ization process of {ψi(x)}∞i=1,

ψi(x) =

i
∑

k=1

βikψk(x), βii > 0, i = 1, 2, . . . .

Lemma 1. Assume {xi}∞i=1 is dense in [0, b], then {ψi(x)}∞i=1 is the complete

system in W 2m+1
1 [0, b] and ψi(x) = TξRx(ξ)|ξ=xi

.

Proof. One has that

ψi(x) = (T ∗ϕi)(x) =< (T ∗ϕi)(ξ), Rx(ξ) >W 2m+1

2

=< ϕi(ξ),

TξRx(ξ) >W 2m+1

1

= TξRx(ξ)|ξ=xi
.

Clearly, ψi(x) ∈W 2m+1
1 [0, b]. For any function y(x) ∈W 2m+1

1 [0, b], let us take
< y(x), ψi(x) >W 2m+1

2

= 0, i = 1, 2, . . ., which means that,

< y(x), T ∗ϕi(x) >W 2m+1

1

=< Ty(·), ϕi(·) >W 2m+1

1

= (Ty)(xi) = 0.

Since {xi}∞i=1 is dense in [0, b], hence Ty(x) = 0. It follows that y(x) ≡ 0 by
the existence of T−1. So the proof is complete. ⊓⊔

3 The Main Results

First we construct the iterative sequence yn(x). Putting an arbitrary initial
value function y1(x) ∈ W 2m+1

1 [0, b], let
{

Tvn(x) = g(x, yn−1(x)),

yn(x) = Pnvn(x),
(3.1)

where vn(x) ∈ W 2m+1
1 [0, b] is the solution of (3.1), v(2l)n (0) = 0, v(2l)n (b) = 0, l =

0, 1, 2 . . . ,m− 1 and Pn :W 2m+1
1 [0, b] → span{ψ1, ψ2, . . . ψn} is the orthogonal

projection operator. By (3.1), we obtain


































































vn(x) =
2m−1
∑

k=0

αk
1
k!x

k +

∫ x

0

. . .

∫ x

0
︸ ︷︷ ︸

2m

g(x, yn−1(x)) dx . . . dx
︸ ︷︷ ︸

2m

,

v
(1)
n (x) =

2m−2
∑

k=1

αk
1

k·k!x
k−1 +

∫ x

0

. . .

∫ x

0
︸ ︷︷ ︸

2m−1

g(x, yn−1(x)) dx . . . dx
︸ ︷︷ ︸

2m−1

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v
(2m)
n (x) = g(x, yn−1(x)),

v
(2m+1)
n (x) = ∂xg(x, yn−1(x)).

(3.2)

Math. Model. Anal., 15(4):571–586, 2010.
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where α2l−1, l = 1, 2 . . . ,m are constants that describe the boundary conditions
at odd-order derivatives defined by

α1 = v(1)(0), α3 = v(3)(0), . . . , α2m−1 = v(2m−1)(0),

and α2l, l = 0, 1, 2, . . . ,m−1 are the boundary conditions at even-order deriva-
tives defined by

α0 = v(0), α2 = v(2)(0), α4 = v(4)(0), . . . , α2m−2 = v(2m−2)(0),

which satisfy α2l = 0, l = 0, 1, 2, . . . ,m− 1.

Lemma 2. If {xi}∞i=1 is dense in [0, b], then

vn(x) =

∞
∑

i=1

i
∑

k=1

βikg(xk, yn−1(xk))ψi(x).

Proof. Since functions vn(x) ∈ W 2m+1
1 [0, b], {ψi(x)}∞i=1 make the complete

system in W 2m+1
1 [0, b], we have

vn(x) =

∞
∑

i=1

< vn(x), ψi(x) >W 2m+1

1

ψi(x) =

∞
∑

i=1

i
∑

k=1

βikψi(x)

× < vn(x), T
∗ϕk(x) >W 2m+1

1

=
∞
∑

i=1

i
∑

k=1

βik < Tvn(x), ϕk(x) >W 2m+1

1

ψi(x)

=
∞
∑

i=1

i
∑

k=1

βikg(xk, yn−1(xk))ψi(x).

The proof is complete. ⊓⊔

Taking an arbitrary initial value function y1(x) ∈W 2m+1
1 [0, b], let us define the

iterative sequence

yn(x) = Pnvn(x) =
n
∑

i=1

i
∑

k=1

βikg(xk, yn−1(xk))ψi(x), (3.3)

where Pn : W 2m+1
1 [0, b] → span {ψ1, ψ2, . . . ψn} is orthogonal projection oper-

ator.

3.1 The boundedness of sequence yn(x)

Lemma 3. Suppose that for x ∈ [0, b], z ∈ (−∞,+∞), g(x, z) is a continuous

bounded function, then ‖vn(x)‖W 2m+1

1

is bounded.
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Proof. Note that v(i)n (x) = ∂ix < vn(·), Rx(·) >W 2m+1

1

, i = 2m, 2m+ 1, then
we have

‖vn‖2W 2m+1

1

=

2m+1
∑

k=2m

∫ b

0

(v(k)n (x))2dx=

2m+1
∑

i=2m

∫ b

0

(∂ix<vn(·), Rx(·)>W 2m+1

1

)2dx

=

2m+1
∑

i=2m

∫ b

0

{

∂ix

[

∫ b

0

v(2m)
n (·)∂2m· Rx(·)d ·+

∫ b

0

v(2m+1)
n (·)∂2m+1

· Rx(·)d ·
]}2

dx

=

2m+1
∑

i=2m

∫ b

0

{

∂ix

[

∫ b

0

v(2m)
n (·)∂2m· Rx(·)d ·+v(2m)

n (·)∂2m+1
· (·)|b0

−
∫ b

0

v(2m)
n (·)∂2m+2

· Rx(·)d ·
]}2

dx =

2m+1
∑

i=2m

∫ b

0

{

∂ix

[

∫ b

0

v(2m)
n (·)∂2m· Rx(·)d·

+

∫ b

0

1

b
(v(2m)

n (b)∂2m+1
· (b)− v(2m)

n (0)∂2m+1
· (0))d·

−
∫ b

0

v(2m)
n (·)∂2m+2

· Rx(·)d ·
]}2

dx=
2m+1
∑

i=2m

∫ b

0

{

∂ix

[

∫ b

0

(v(2m)
n (·)∂2m· Rx(·)

+
1

b
(v(2m)

n (b)∂2m+1
· (b)−v(2m)

n (0)∂2m+1
· (0))− v(2m)

n (·)∂2m+2
· Rx(·))d ·

]}2

dx

≤
2m+1
∑

i=2m

b

∫ b

0

∫ b

0

[

v(2m)
n (·)∂ix∂2m· Rx(·)− v(2m)

n (·)∂ix∂2m+2
· Rx(·)

]2

d · dx

=

2m+1
∑

i=2m

b
{

∫ b

0

∫ x

0

[

v(2m)
n (·)∂ix∂2m· Rx(·)− v(2m)

n (·)∂ix∂2m+2
· Rx(·)

]2

d · dx

+

∫ b

0

∫ b

x

[

v(2m)
n (·)∂ix∂2m· Rx(·)− v(2m)

n (·)∂ix∂2m+2
· Rx(·)

]2

d · dx
}

.

In view of (2.1), we know ∂ix∂
2m
· Rx(·), ∂ix∂2m+1

· Rx(·), ∂ix∂2m+2
· Rx(·), i =

2m, 2m+1 are bounded as x 6= · in [0, b]. In terms of (3.2) and the assumptions,
we know v

(2m)
n (x) is bounded. Thus ‖vn‖W 2m+1

1

is bounded. ⊓⊔

In the following sections, Ck, k = 0, 1, 2, . . . , 2m,M,M1 are constants.

Lemma 4. Assume that for x ∈ [0, b], z ∈ (−∞,+∞), g(x, z) is a continuous

bounded function, then ‖yn‖W 2m+1

1

≤M .

Proof. From Lemma 3, it follows that ‖vn‖W 2m+1

1

≤ M. By (3.3) estimates
‖yn‖W 2m+1

1

≤ ‖vn‖W 2m+1

1

≤M hold. ⊓⊔

In the following discussions, we will prove that the solution y(x) of Eq. (3.1)
exists and ‖y(k)n − y(k)‖C → 0, k = 0, 1, 2, . . .2m as n→ ∞.

Math. Model. Anal., 15(4):571–586, 2010.
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3.2 The existence of the solution of (2.3) and convergence of yn(x)

Several Lemmas are given first.

Lemma 5. If y(x) ∈ W 2m+1
1 [0, b], then

‖y(k)‖C ≤ Ck‖y‖W 2m+1

1

, k = 0, 1, 2, . . . , 2m.

Proof. For any x, t ∈ [0, b], y(k)(x) =< y(t), ∂kxRx(t) >W 2m+1

1

. Note that
∥

∥∂kxRx(t)
∥

∥

W 2m+1

1

≤ Ck, k = 0, 1, 2, . . . , 2m, (3.4)

then

|y(k)(x)| = | < y(t), ∂kxRx(t) >W 2m+1

1

| ≤ ‖y(t)‖W 2m+1

1

‖∂kxRx(t)‖W 2m+1

1

≤ Ck‖y‖W 2m+1

1

,

thus
‖y(k)‖C ≤ Ck‖y‖W 2m+1

1

, k = 0, 1, 2, . . . , 2m.

⊓⊔

Lemma 6. Suppose the conditions of Lemma 4 hold, then ‖y(k)n ‖C ≤ M1, k =
0, 1, 2, . . .2m.

Proof. From Lemma 4, ‖yn‖W 2m+1

1

≤M . By Lemma 5, we obtain ‖y(k)n ‖C ≤
CkM , k = 0, 1, 2, . . . , 2m, thus ‖y(k)n ‖C ≤M1, k = 0, 1, 2, . . . , 2m. ⊓⊔

Lemma 7. Suppose the conditions of Lemma 4 hold, then {yn(x)}∞n=1 is a

compact set in space C[0, b].

Proof. By Lemma 4 it follows that ‖yn‖W 2m+1

1

≤M , from Lemma 6 we know
that {yn(x)}∞n=1 is a bounded set in space C[0, b]. For an arbitrary yn(x),

|yn(x+ t)− yn(x)| = | < yn(s), Rx+t(s)−Rx(s) >W 2m+1

1

| ≤ ‖yn‖W 2m+1

1

× ‖Rx+t(s)−Rx(s)‖W 2m+1

1

≤M‖∂xRx(s) |x=ξ∈[x,x+t] ‖W 2m+1

1

t ≤MC1t.

Therefore, for any ε > 0, taking δ = ε/MC1 > 0 and | t |≤ δ, we obtain
|yn(x+ t)− yn(x)| < ε, so yn(x) is equicontinuous function with respect to n.
Combining the above argument, {yn(x)}∞n=1 is a compact set in space C[0, b].
⊓⊔

Theorem 1. If {xi}∞i=1 is dense in [0, b], for x ∈ [0, b], z ∈ (−∞,+∞), g(x, z)
is continuous bounded function, z = z(x), g(x, z) ∈ W 1

1 [0, b], then there exists

a subsequence {ynp
(x)}∞p=1 of {yn(x)}∞n=1 and y(x) ∈ C2[0, b] such that

‖y(k)np
− y(k)‖C → 0 , k = 0, 1, 2, . . . , 2m as p→ ∞ (3.5)

where y(x) =
∞
∑

i=1

i
∑

k=1

βikg(xk, y(xk))ψi(x).
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Proof. By Lemma 4, ‖yn‖W 2m+1

1

≤M , we infer that {yn(x)}∞n=1 is a compact
set in space C[0, b] from Lemma 6, hence there exist y(x) ∈ C2[0, b] and a
convergent subsequence {ynp

(x)}∞p=1 of {yn(x)}∞n=1 such that

y(x) = lim
p→∞

ynp
(x) = lim

p→∞

np
∑

i=1

i
∑

k=1

βikg(xk, ynp−1(xk))ψi(x).

One gets y(x) =
∞
∑

i=1

i
∑

k=1

βikg(xk, y(xk))ψi(x) with respect to x, uniformly. And

by Lemma 6, ‖y(k)np
‖C ≤M1, k = 0, 1, 2, . . . , 2m, then there exists a subsequence

{ynpj
(x)}∞j=1 of {ynp

(x)}∞n=1 such that

‖y(k)npj

− y(k)‖C → 0 , k = 0, 1, 2, . . . , 2m as j → ∞.

Without loss of generality, we write ynpj
(x) with ynp

(x), consequently,

‖y(k)np
− y(k)‖C → 0 , k = 0, 1, 2, . . . , 2m as p→ ∞

hold. ⊓⊔

Corollary 1. If ‖yn‖W 2m+1

1

≤ M , then there exists a subsequence {ynp
(x)}∞p=1

of {yn(x)}∞n=1 and y(x) ∈ C2[0, b] such that

‖y(k)np
− y(k)‖C → 0 , k = 0, 1, 2, . . . , 2m as p→ ∞

where y(x) =
∞
∑

i=1

i
∑

k=1

βikg(xk, y(xk))ψi(x).

Next we will prove that y(x) ∈ W 2m+1
1 [0, b], y(x) is the solution of Eq.(2.3).

Lemma 8. y(x) is absolutely continuous function.

Proof. For y(x) and arbitrary αi, βi ∈ [0, b], when
n
∑

i=1

|αi − βi| < δ = ε/MC1,

we have

n
∑

i=1

∣

∣y(αi)− y(βi)
∣

∣ =

n
∑

i=1

∣

∣ lim
p→∞

ynp
(αi)− lim

p→∞
ynp

(βi)
∣

∣

n
∑

i=1

∣

∣ lim
p→∞

(ynp
(αi)

− ynp
(βi))

∣

∣ =

n
∑

i=1

∣

∣ lim
p→∞

< ynp
(η), Rαi

(η)−Rβi
(η) >W 2m+1

1

∣

∣

=

n
∑

i=1

lim
p→∞

∣

∣ < ynp
(η), Rαi

(η) −Rβi
(η) >W 2m+1

1

∣

∣

Math. Model. Anal., 15(4):571–586, 2010.
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≤
n
∑

i=1

lim
p→∞

∥

∥ynp
(η)

∥

∥

W 2m+1

1

∥

∥Rαi
(η) −Rβi

(η)
∥

∥

W 2m+1

1

≤M

n
∑

i=1

∥

∥Rαi
(η)−Rβi

(η)
∥

∥

W 2m+1

1

=M

n
∑

i=1

∥

∥∂xRx(η)
∣

∣

x=ζ∈[αi,βi]
(αi−βi)

∥

∥

W 2m+1

1

< MC1

n
∑

i=1

∣

∣αi − βi
∣

∣ < MC1δ = ε,

where C1 are given by (3.4). So y(x) is absolutely continuous function. ⊓⊔

Theorem 2. Suppose that the conditions of Theorem 1 hold, y(x) is given by

(3.5), then y(x) ∈W 2m+1
1 [0, b], y(x) is the solution of Eq. (2.3).

Proof. By Lemma 8, g(x, y(x)) is absolutely continuous, furthermore, the
derivative ∂xg(x, y(x)) ∈ L2[0, b]. In view of Definition 3, g(x, y(x)) ∈W 1

2 [0, b].
In consequence T−1g(x, y(x)) ∈W 2m+1

1 [0, b],

T−1g(x, y(x)) =

∞
∑

i=1

< T−1g(x, y(x)), ψi(x) >W 2m+1

1

ψi(x)

=

∞
∑

i=1

i
∑

k=1

βik < T−1g(x, y(x)), ψk(x) >W 2m+1

1

ψi(x)

=

∞
∑

i=1

i
∑

k=1

βik < T−1g(x, y(x)), T ∗ϕk(x) >W 2m+1

1

ψi(x)

=

∞
∑

i=1

i
∑

k=1

βik < TT−1g(x, y(x)), ϕk(x) >W 2m+1

2

ψi(x)

=

∞
∑

i=1

i
∑

k=1

βikg(xk, y(xk))ψi(x).

In terms of (3.5), we get y(x) = T−1g(x, y(x)), i.e., y(x) ∈ W 2m+1
1 [0, b]. Then

the equality Ty(x) = g(x, y(x)) holds. Hence, y(x) is the solution of Eq.(2.3).
⊓⊔

Remark 1. Under the conditions of Theorem 1, the solution of (2.3) exists and

it satisfies y(x) =
∞
∑

i=1

i
∑

k=1

βikg(xk, y(xk))ψi(x).

Corollary 2. Assume that the conditions of Theorem 1 hold. If {ynp
(x)}∞p=1 is

an arbitrary convergent subsequence of {yn(x)}∞n=1, then the limit function of
{ynp

(x)}∞p=1 must be the solution of (2.3).

Theorem 3. Suppose the solution y(x) of Eq. (2.3) exists and is unique, the

conditions of Theorem 1 hold, then

‖y(k)n − y(k)‖C → 0 , k = 0, 1, 2, . . . , 2m as n→ ∞,

where yn(x) is given by (3.3).
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Proof. Assume that {yn(x)}∞n=1 doesn’t converge to y(x), then there exists a
ε0 > 0 and a subsequence {ynp

(x)}∞p=1 of {yn(x)}∞n=1 such that ‖ynp
−y‖C≥ ε0.

On the other hand, by Lemma 4, ‖ yn ‖W 2m+1

1

≤M, further ‖ ynp
‖W 2m+1

1

≤M,

thus there exists a subsequence {ynpj
(x)}∞j=1 of {ynp

(x)}∞p=1 such that

ynpj
(x) → y∗(x) j → ∞

uniformly. From Corollary 2, y∗(x) is also the solution of (2.3). But y(x) 6=
y∗(x), this is a contradictory conclusion with the uniqueness of the solution of
Eq. (2.3). Consequently, ‖yn − y‖C → 0 as n → ∞. In the same way, we can
verify

‖y(k)n − y(k)‖C → 0 , k = 1, 2, . . . , 2m as n→ ∞.

⊓⊔

Corollary 3. If ‖ yn ‖W 2m+1

1

≤ M, then ‖y(k)n − y(k)‖C → 0, k = 0, 1, 2, . . . , 2m

as n→ ∞, where yn(x) is given by (3.3).

Remark 2. In computational experiments, it is easy to test ‖ yn ‖W 2m+1

1

≤M .

4 Numerical Results

All computations were carried out using Mathematica 5.0.

Example 1. Consider the following 6th-order boundary value problem (in
[14], Example 2)











y(6)(x) = e−xy2(x), x ∈ (0, 1),

y(0) = y′′(0) = y(4)(0) = 1,

y(1) = y′′(1) = y(4)(1) = e,

with the exact solution y(x) = ex. We use n = 15. In Table 1, our results are
compared with the results in [14]. They show that our method is superior to
the one in [14].

Table 1. Absolute errors for example 1. AE denote absolute error in our method;
AE [14] denote absolute error in [14].

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AE 10
−7 1.070 2.004 2.705 3.115 3.212 3.003 2.519 1.811 9.463E-1 0.

AE[14] 10−4 1.233 2.354 3.257 3.855 4.086 3.919 3.36 2.459 1.299 2.000E-5

From the presented results it follows that our method is superior to one in
[14].

In Table 2, we give the root-mean-square errors of y(i), i = 0, 1, 2, . . . , 6.

Math. Model. Anal., 15(4):571–586, 2010.
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Table 2. Root-mean-square errors for example 1.Note: RMS(i) denote the root-mean

square error of y(i), i = 0, 1, 2, . . . , 6.

RMS(0) RMS(1) RMS(2) RMS(3) RMS(4) RMS(5) RMS(6)

2.35E-7 6.92E-7 2.34E-6 6.87E-6 2.81E-5 4.87E-5 1.07E-3

Example 2. Consider the following 8th-order boundary value problem (in
[19], Example 4)











y(8)(x) = e−xy2(x), x ∈ (0, 1),

y(0) = y′′(0) = y(4)(0) = y(6)(0) = 1,

y(1) = y′′(1) = y(4)(1) = y(6)(1) = e,

with exact solution y(x) = ex. We use n = 15. In Table 3, our results are
compared with the results in [19].

Table 3. Absolute errors for Example 2.

x our method Error method in [19] Error1 method in [19] Error2

0.25 2.33E-8 1.00E-4 4.91E-5

0.5 3.25E-8 1.43E-4 7.04E-5

0.75 2.28E-8 9.91E-5 4.98E-5

Table 4. Root-mean-square errors for example 2. Note:RMS(i) denote the root-mean

square error of y(i), i = 0, 1, 2, . . . , 8.

RMS(0) RMS(1) RMS(2) RMS(3) RMS(4) RMS(5) RMS(6) RMS(7) RMS(8)

2.38E-8 6.98E-8 2.34E-7 6.89E-7 2.33E-6 6.84E-6 2.79E-5 4.87E-5 1.07E-3

In Table 4, we give the root-mean-square errors of y(i), i = 0, 1, 2, . . . , 8.

Example 3. Consider the following 8th-order boundary value problem (in
[19], Example 3)

{

y(8)(x) = e−xy2(x), x ∈ (0, 1),

y(i)(0) = 1, i = 0, 1, 2, . . . , 7,

with exact solution y(x) = ex. We use n = 50. In Table 5, our results are
compared with the results in [19].

In Table 6, we give the root-mean-square errors of y(i), i = 0, 1, 2, . . . , 8.

Example 4. Consider the following 10th-order boundary value problem










y(10)(x) = (x+ 1)e−y(x), x ∈ (0, 1),

y(0) = y′′(0) = y(4)(0) = y(6)(0) = y(8)(0) = 0,

y(1) = −y′′(1) = y(4)(1) = −y(6)(1) = y(8)(1) = sin(1),
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Table 5. Absolute errors for Example 3.

x our method Error method in [19] Error1 method in [19] Error2

0.25 2.0E-12 2.1E-11 1.0E-11

0.5 2.8E-10 1.0E-8 5.1E-9

0.75 4.9E-9 4.0E-7 1.9E-7

1.0 3.7E-8 5.5E-6 2.5E-6

Table 6. Root-mean-square errors for example 3. Note:RMS(i) denote the root-mean

square error of y(i), i = 0, 1, 2, . . . , 8.

RMS(0) RMS(1) RMS(2) RMS(3) RMS(4) RMS(5) RMS(6) RMS(7) RMS(8)

9.12E-9 6.97E-8 4.62E-7 2.60E-6 1.20E-5 4.33E-5 1.13E-4 1.99E-4 5.54E-5

with exact solution y(x) = sinx. We use n = 15. In Table 7, we give the
root-mean-square errors of y(i), i = 0, 1, 2, . . . , 10.

Table 7. Root-mean-square errors for example 4. RMS(i) denote the root-mean square

error of y(i), i = 0, 1, 2, . . . , 10.

RMS(0) RMS(1) RMS(2) RMS(3) RMS(4) RMS(5) RMS(6) RMS(7) RMS(8) RMS(9) RMS(10)

1.03E-9 3.04E-9 1.02E-8 3.0E-8 1.01E-7 3.03E-7 1.07E-6 3.8E-6 2.11E-5 1.07E-4 1.14E-3

5 Discussion and Conclusion

In this paper, we established the existence of the solution and a new iterative
algorithm for the high-order boundary value problems in reproducing kernel
space. The iterative method is convergent for arbitrary initial value function
y1(x), therefore, it is a large-range convergence iterative method. The approx-
imate solution yn(x) and the exact solution y(x) satisfy ‖yn − y‖C → 0 as
n → ∞. Furthermore, we verify that ‖y(k)n − y(k)‖C → 0, k = 1, 2, . . . , 2m as
n→ ∞, the numerical results illustrate the accuracy of our method.

6 Appendix

By (2.1), we have

< y(t), Rx(t) >W 2m+1

1

=

∫ b

0

y(t)(R(4m)
x (t)−R(4m+2)

x (t)) dt

+
[

2m−1
∑

i=1

(−1)iy(i−1)(t)(R(4m−i)
x (t)−R(4m+2−i)

x (t))
]∣

∣

∣

b

0

+
[

y(2m)(t)R(2m+1)
x (t)

]∣

∣

∣

b

0
.

Math. Model. Anal., 15(4):571–586, 2010.
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Since Rx(t) ∈W 2m+1
1 [0, b], it follows that

R(2l)
x (0) = 0, R(2l)

x (b) = 0, l = 0, 1, 2, . . . ,m− 1. (6.1)

If Rx(t) satisfies
R(4m)

x (t)−R(4m+2)
x (t) = δ(t− x) (6.2)

and the following differential equations:


















R
(4m−j)
x (0)−R

(4m+2−j)
x (0) = 0, j = 2, 4, . . . , 2m,

R
(4m−j)
x (b) +R

(4m+2−j)
x (b) = 0, j = 2, 4, . . . , 2m,

R
(2m+1)
x (0) = 0, R

(2m+1)
x (b) = 0,

(6.3)

then (y(t), Rx(t))W 2m+1

1

= y(x). Obviously, Rx(t) is the reproducing kernel of

W 2m+1
1 [0, b].

In the following, we will get the expression of the reproducing kernel Rx(t).
Note that characteristic equation of (6.2) is given by λ4m(λ2 − 1) = 0, and
characteristic values are λ1 = 1, λ2 = −1, λ3 = 0, where λ3 is a multiple root.
We present the reproducing kernel Rx(t) by

Rx(t) =















4m
∑

i=1

ait
i−1 + a4m+1e

t + a4m+2e
−t, t ≤ x,

4m
∑

i=1

bit
i−1 + b4m+1e

t + b4m+2e
−t, t > x.

(6.4)

On the other hand, for Rx(t) ∈ W 2m+1
1 [0, b], let Rx(t) satisfy

R(k)
x (x+ 0) = R(k)

x (x− 0), k = 0, 1, 2, . . . , 4m. (6.5)

Integrating (6.2) from x− ε to x + ε with respect to t and let ε→ 0 (we have
the jump degree of R(4m+1)

x (t) at t = x) one obtains

R(4m+1)
x (x− 0)−R(4m+1)

x (x+ 0) = 1. (6.6)

Through (6.1), (6.3), (6.5), (6.6), the unknown coefficients of (2.1) can be
obtained. Similarly, we can obtain the unknown coefficients of (2.2).
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