On Dependence of Sets of Functions on the Mean Value of their Elements

U. Raitums

University of Latvia, Institute of Mathematics and Computer Science
29 Rainis boulevard, LV-1459 Riga, Latvia
E-mail: uldis.raitums@lumii.lv

Received September 11, 2008; revised December 23, 2008; published online February 25, 2009

Abstract. The paper considers, for a given closed bounded set $M \subset \mathbb{R}^{m}$ and $K=$ $(0,1)^{n} \subset \mathbb{R}^{n}$, the set $\mathcal{M}=\left\{h \in L_{2}\left(K ; \mathbb{R}^{m}\right) \mid h(x) \in M\right.$ a.e. $\left.x \in K\right\}$ and its subsets

$$
\mathcal{M}(\hat{h})=\left\{h \in \mathcal{M} \mid \int_{K} h(x) d x=\hat{h}\right\}
$$

It is shown that, if a sequence $\left\{\hat{h}_{k}\right\} \subset c o M$ converges to an element $h_{k} \in \mathcal{M}\left(\hat{h}_{k}\right)$ there is $h_{k}^{\prime} \in \mathcal{M}\left(\hat{h}_{0}\right)$ such that $h_{k}^{\prime}-h_{k} \rightarrow 0$ as $k \rightarrow \infty$. If, in addition, the set M is finite or M is the convex hull of a finite set of elements, then the multivalued mapping $\hat{h} \rightarrow \mathcal{M}(\hat{h})$ is lower semicontinuous on coM.
Key words: multivalued mapping, subsets of functions with fixed mean value, continuous dependence.

1 Introduction

Most sets of admissible control functions in the theory of optimal control are given as sets of measurable functions with values from a given set: for a given reference domain $Q \subset \mathbb{R}^{n}$ and a given set $M \subset \mathbb{R}^{m}$ the set of admissible controls is defined as

$$
\mathcal{M}=\{h \text { is measurable in } Q \mid h(x) \in M \text { a.e. } x \in Q\} .
$$

Here n and m are arbitrary fixed positive integers.
Provided that Q is a bounded domain and M is a bounded and closed set, the set \mathcal{M} can be split as $\mathcal{M}=\bigcup_{\hat{h} \in c o M} \mathcal{M}(\hat{h})$, where

$$
\mathcal{M}(\hat{h}):=\left\{h \text { measurable, } h(x) \in M \text { a.e. } x \in Q, \quad \frac{1}{|Q|} \int_{Q} h(x) d x=\hat{h}\right\} .
$$

Here by $\operatorname{co} A$ we denote the convex hull of the set A and by $|Q|$ we denote the Lebesgue measure of the set $Q \subset \mathbb{R}^{n}$.

Such a representation of \mathcal{M} is useful when weak limits of sequences of control functions are involved, especially in procedures of relaxation via convexification, see, for instance, Warga [4]. Analogous splitting is used in the homogenization theory defining the so-called G_{θ}-closures, see, for instance, Milton [2]. The corresponding relaxation procedures often involve the evaluation of integrals (over the periodicity cell $K=(0,1)^{n}$) of the kind

$$
\begin{equation*}
I(\hat{h})=\inf _{h \in \mathcal{M}(\hat{h})} \int_{K} f(x, h(x)) d x \tag{1.1}
\end{equation*}
$$

and the investigation of continuity properties of the function $\hat{h} \rightarrow I(\hat{h})$. To do that, obviously, one needs to know certain properties of the dependence of sets $\mathcal{M}(\hat{h})$ on \hat{h}.

In Sections 2 and 3 we shall show the following results.
Theorem 1. Let $Q \subset \mathbb{R}^{n}$ be bounded Lipschitz domain and let the set $M \subset \mathbb{R}^{m}$ is bounded and closed. Then for every given sequences $\left\{\hat{h}_{k}\right\}$ and $\left\{h_{k}\right\}$ such that
(i) $\left\{\hat{h}_{k}\right\} \subset \operatorname{coM}$ and $\hat{h}_{k} \rightarrow \hat{h}_{0}$ in \mathbb{R}^{m} as $k \rightarrow \infty$;
(ii) $h_{k} \in \mathcal{M}\left(\hat{h}_{k}\right), \quad k=1, \ldots$,
there exists a sequence $\left\{h_{0 k}\right\} \subset \mathcal{M}\left(\hat{h}_{0}\right)$ such that

$$
h_{k}-h_{0 k} \rightarrow 0 \text { strongly in } L_{2}\left(Q ; \mathbb{R}^{m}\right) \text { as } k \rightarrow \infty .
$$

Theorem 2. Let $Q \subset \mathbb{R}^{n}$ be bounded Lipschitz domain and let the set $M \subset \mathbb{R}^{m}$ is finite or M is the closed convex hull of a finite set of elements. Then for every fixed sequence $\left\{\hat{h}_{k}\right\} \subset$ coM that converges in \mathbb{R}^{m} to an element \hat{h}_{0} and for every given element $h_{0} \in \mathcal{M}\left(\hat{h}_{0}\right)$ there exists a sequence $\left\{h_{k}\right\}, h_{k} \in \mathcal{M}\left(\hat{h}_{k}\right), k=$ $1,2, \ldots$, such that

$$
h_{k}-h_{0} \rightarrow 0 \text { strongly in } L_{2}\left(Q ; \mathbb{R}^{m}\right) \text { as } k \rightarrow \infty
$$

Remark 1. Obviously, from Theorem 2 it follows immediately that the multivalued mapping $\hat{h} \rightarrow \mathcal{M}(\hat{h})$ is lower semicontinuous on coM (for the definition and properties of multivalued mappings we refer to Kuratowski [1]).

Remark 2. It is easy to see that under hypotheses of Theorem 1 the function $\hat{h} \rightarrow I(\hat{h})$ defined by (1.1) is lower semicontinuous provided that f is Caratheodory function and that f has a majorant $f_{0} \in L_{1}(Q)$ (we recall that the set M is bounded). If, in addition, the hypotheses of Theorem 2 are satisfied, then the function $\hat{h} \rightarrow I(\hat{h})$ is continuous on coM.

2 Proof of Theorem 1

In this Section, we give the proof of Theorem 1. Since all reasonings below do not depend on concrete properties of the reference domain Q, then, without loosing a generality, all proofs are given for the standard case $Q=K:=(0,1)^{n}$. Since the set M is bounded and closed, then the convex hull $c o M$ of M is
closed too and all sets $\mathcal{M}(\hat{h})$ with $\hat{h} \in c o M$ are nonempty closed sets. In what follows, we shall use the notion of the relative interior riA for convex sets A from Euclidean spaces, for instance ricoM stands for the relative interior of the convex hull of M. For the definition of $r i A$ and other notations and properties for convex sets we refer to Rockafellar [3]. Let r_{0} be dimension of coM.

Step 1. Let $\hat{h}_{0} \in$ ricoM. Then there exists $d>0$ such that $\hat{h} \in$ ricoM whenever $\hat{h} \in \operatorname{coM}$ and $\left|\hat{h}-\hat{h}_{0}\right| \leq d$. Let us fix $\varepsilon>0,0<\varepsilon<d / 4$, and let $\left|\hat{h}-\hat{h}_{0}\right| \leq \varepsilon$. Then the element

$$
\hat{h}_{*}=\hat{h}+\frac{d}{\varepsilon}\left(\hat{h}_{0}-\hat{h}\right) \in \operatorname{rico} M
$$

Let $h \in \mathcal{M}(\hat{h}), h_{*} \in \mathcal{M}\left(\hat{h}_{*}\right)$ be arbitrary chosen elements. By virtue of Lyapunov's theorem on the range of vectorial measures for every $\lambda \in[0,1]$ there exists a measurable set $E_{\lambda} \subset K$ such that

$$
\left|E_{\lambda}\right|=\lambda, \quad \int_{E_{\lambda}} h(y) d y+\int_{K \backslash E_{\lambda}} h_{*}(y) d y=\lambda \hat{h}+(1-\lambda) \hat{h}_{*}
$$

For a special choice $\lambda=\lambda_{0}=1-\varepsilon / d$ we define h_{0} as

$$
h_{0}(\cdot)=\chi_{E_{\lambda_{0}}}(\cdot) h(\cdot)+\left(1-\chi_{E_{\lambda_{0}}}(\cdot)\right) h_{*}(\cdot)
$$

where χ_{E} denotes the characteristic function of the set E. By construction, $h_{0} \in \mathcal{M}\left(\hat{h}_{0}\right)$ and

$$
\int_{K}\left(h(y)-h_{0}(y)\right)^{2} d y=\int_{K \backslash E_{\lambda_{0}}}\left(h(y)-h_{0}(y)\right)^{2} d y \leq 4 c(M) \varepsilon / d
$$

where $c(M)$ depends only on M. Thus, the assertion of Theorem 1 holds whenever $\hat{h}_{0} \in$ ricoM.

Step 2. Let \hat{h}_{0} does not belong to ricoM. Because ricoM is not empty (provided that M consists of more than one element), then there exist a vector $a \in \mathbb{R}^{m}$ and a constant c such that

$$
|a|=1, \quad\left\langle a, \hat{h}_{0}\right\rangle=c<\langle a, \hat{h}\rangle \quad \text { for all } \hat{h} \in \text { ricoM }
$$

Without loosing generality, we can assume that $c=0$, otherwise we can use the transform $\hat{h} \mapsto \hat{h}-\hat{h}_{0}$.

Let $M_{1}=\{h \in M \mid\langle a, h\rangle=0\}$. Because the sets M and M_{1} are compact, then there exists a continuous function $\gamma, \gamma(t)=0$ if $t \leq 0, \gamma(t)>0$ if $t>0$, such that

$$
\begin{equation*}
\left\langle a, h-\hat{h}_{0}\right\rangle \geq \gamma\left(\operatorname{dist}\left\{h ; M_{1}\right\}\right) \text { for all } h \in M \tag{2.1}
\end{equation*}
$$

Without loosing generality, we can assume that the function γ is convex, otherwise we can pass to the bipolar $\gamma^{* *}$, which has the desired properties. By construction, for nonnegative τ there exists the inverse function $\tau \rightarrow \gamma^{-1}(\tau)$, $\gamma^{-1}(\gamma(t))=t$ for $t \geq 0$, which is continuous and strictly increasing on $\{\tau \in$

[^0]$\mathbb{R} \mid \tau \geq 0\}$. Now, from (2.1) and convexity of γ it follows that for every chosen $h \in \mathcal{M}$ there exists an element h_{*},
$$
h_{*} \in \mathcal{M}_{1}=\left\{h \in L_{2}\left(K ; \mathbb{R}^{r}\right) \mid h(y) \in M_{1} \quad \text { a.e. } y \in K\right\}
$$
such that
\[

$$
\begin{aligned}
\| h-h_{*} & \|_{L_{2}\left(K ; \mathbb{R}^{m}\right)}^{2} \leq c(m, M) \int_{K}\left|h(y)-h_{*}(y)\right| d y \\
& \leq c(m, M) \gamma^{-1}\left(\gamma\left(\int_{K}\left|h(y)-h_{*}(y)\right| d y\right)\right) \\
& \leq c(m, M) \gamma^{-1}\left(\int_{K} \gamma\left(\left|h(y)-h_{*}(y)\right|\right) d y\right) \\
& \leq c(m, M) \gamma^{-1}\left(\left|\int_{K} h(y) d y-\int_{K} h_{*}(y) d y\right|\right)
\end{aligned}
$$
\]

where $c(m, M)$ depends only on m and M. This way, for our situation with a fixed $\hat{h}_{0} \in \operatorname{co} M_{1}$, for every $\hat{h} \in \operatorname{coM}$ and arbitrary chosen $h \in \mathcal{M}(\hat{h})$ there exists a corresponding $h_{*} \in \mathcal{M}_{1}$ such that

$$
\left\|h-h_{*}\right\|_{L_{2}\left(K ; \mathbb{R}^{m}\right)}^{2} \leq c(m, M) \gamma^{-1}\left(\left|\hat{h}-\hat{h}_{0}\right|\right) .
$$

By construction,

$$
\int_{K} h_{*}(y) d y=\hat{h}_{*} \in c o M_{1}
$$

$\mathcal{M}\left(\hat{h}_{0}\right) \subset \mathcal{M}_{1}$ and the dimension of $c o M_{1}$ is less than r_{0}. From now on, we have to approximate the element $h_{*} \in \mathcal{M}\left(\hat{h}_{*}\right) \subset \mathcal{M}_{1}$ by elements from $\mathcal{M}\left(\hat{h}_{0}\right) \subset \mathcal{M}_{1}$, i.e. we have reduced the dimension r_{0} of our problem to the problem with dimension less than or equal to $r_{0}-1$.

Step 3. To conclude our reasoning by induction over the dimension r_{0} we have to prove our assertion for the case $r_{0}=1$. If $\hat{h}_{0} \in$ rico M, then we apply reasoning from Step 1. If \hat{h}_{0} does not belong to ricoM, then the set M_{1} from the Step 2 consists of only one element \hat{h}_{0} and the set \mathcal{M}_{1} consists of one constant function $h_{0}(y)=\hat{h}_{0}$ a.e. $y \in K$. For this case we can apply the same reasoning as in Step 2, what gives the statement of Theorem for $r_{0}=1$.

3 Proof of Theorem 2

In this Section, we give the proof of Theorem 2. Let $M=\left\{\bar{h}_{1}, \ldots, \bar{h}_{N}\right\} \subset \mathbb{R}^{m}$. Let H be $m \times N$ matrix with columns $\bar{h}_{1}, \ldots, \bar{h}_{N}$ respectively and let

$$
\Lambda:=\left\{\bar{\lambda} \in \mathbb{R}^{N} \mid \bar{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right), \lambda_{j} \geq 0, j=1, \ldots, N ; \lambda_{1}+\cdots+\lambda_{N}=1\right\}
$$

To a given vector-function $h \in \mathcal{M}$ (it has only N admissible values from M) we can appoint an element $\bar{\lambda}$ whose components λ_{j} represent the volume fractions
in K of the sets where the vector-function h has the value $\bar{h}_{j}, j=1, \ldots, N$, respectively. Let $E:=\left\{\bar{z} \in \mathbb{R}^{N} \mid H \bar{z}=0\right\}$.

In these notations the statement of Theorem 2 is a straight consequence of:

$$
\left\{\begin{array}{l}
\text { if } \hat{\lambda}_{0} \in \Lambda,\left\{\bar{a}_{k}\right\} \subset \mathbb{R}^{N}, \bar{a}_{k} \rightarrow 0 \text { as } k \rightarrow \infty \tag{3.1}\\
\quad \text { and }\left\{\hat{\lambda}_{0}+\bar{a}_{k}+E\right\} \bigcap \Lambda \neq \emptyset, k=1,2, \ldots, \\
\text { then there exists a sequence }\left\{\bar{\lambda}_{k}\right\} \text { such that } \\
\bar{\lambda}_{k} \rightarrow \hat{\lambda}_{0} \text { as } k \rightarrow \infty \\
\bar{\lambda}_{k} \in\left\{\hat{\lambda}_{0}+\bar{a}_{k}+E\right\} \bigcap \Lambda, k=1,2, \ldots
\end{array}\right.
$$

Indeed, first of all we have to take care only about volume fractions of sets where the functions under consideration take the corresponding values $\bar{h}_{1}, \ldots, \bar{h}_{N}$ (we always can prearrange the corresponding sets preserving their measures). Further, for $h \in \mathcal{M}$ with corresponding volume fractions $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\bar{\lambda}$ we have that $h \in \mathcal{M}(H \bar{\lambda})$, and every $\hat{h} \in c o M$ has the representation $\hat{h}=$ $H(\hat{\lambda}+E)$ with some $\hat{\lambda} \in \Lambda$. The convergence $\bar{a}_{k} \rightarrow 0$ as $k \rightarrow \infty$ in (3.1) implies the corresponding convergence $\hat{h}_{k} \rightarrow \hat{h}_{0}$ in Theorem 2, and the convergence $\bar{\lambda}_{k} \rightarrow \hat{\lambda}_{0}$ implies the corresponding convergence $h_{k} \rightarrow h_{0}$ in Theorem 2.

Let us denote $\overline{1}=(1, \ldots, 1) \in \mathbb{R}^{N}$ and let us represent E as the direct sum $E=E_{0} \oplus E_{1}$ where

$$
E_{0}=\{\bar{z} \in E \mid\langle\bar{z}, \overline{1}\rangle=0\}
$$

Here the subspace E_{1} can be equal to $\{0\}$ if $\overline{1}$ is orthogonal to E. From assumptions on \bar{a}_{k} we have the existence of $\bar{z}_{0 k} \in E_{0}$ and $\bar{z}_{1 k} \in E_{1}$ such that

$$
\begin{aligned}
& \hat{\lambda}_{0}+\bar{a}_{k}=\bar{z}_{0 k}+\bar{z}_{1 k} \in \Lambda \\
& \left\langle\bar{a}_{k}+\bar{z}_{1 k}, \overline{1}\right\rangle=0, \quad \bar{z}_{1 k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
\end{aligned}
$$

So, if necessary, using the transform $\bar{a}_{k} \rightarrow \bar{a}_{k}+\bar{z}_{1 k}$ and replacing E by E_{0}, without loosing generality, we can assume that
(i) the vector $\overline{1}$ is orthogonal to E;
(ii) $\left\langle\bar{a}_{k}, \overline{1}\right\rangle=0, k=1,2, \ldots$..

That means (since $\left\langle\hat{\lambda}_{0}, \overline{1}\right\rangle=1$) our further reasoning concerns only the hyperplane $\left\{\bar{z} \in \mathbb{R}^{N} \mid\langle\overline{1}, \bar{z}\rangle=1\right\}$. There are two possibilities:
(a) $\left(\hat{\lambda}_{0}+E\right) \bigcap r i \Lambda \neq \emptyset$;
(b) $\hat{\lambda}_{0}$ belongs to a façade Λ_{s} of Λ with the dimension $s, 0 \leq s \leq N-2$, and $\hat{\lambda}_{0}+E$ can be separated from riA.
For the case (a) there exists a $\lambda_{*} \in\left(\hat{\lambda}_{0}+E\right) \bigcap r i \Lambda$ and the elements

$$
\lambda_{k}=\hat{\lambda}_{0}+\bar{a}_{k}+\tau_{k}\left(\bar{\lambda}_{*}-\hat{\lambda}_{0}\right), \quad k=1,2, \ldots
$$

with appropriate $\tau_{k}>0, k=1,2, \ldots$, solve the problem for $k \geq k_{0}$ with some k_{0}.

For the case (b), without loosing generality, we can assume that Λ_{s} is the façade with the minimal dimension s compared to all façades, which contain $\hat{\lambda}_{0}$. Hence, after relabeling indexes we obtain

$$
\begin{aligned}
& \Lambda_{s}=\left\{\bar{\lambda} \in \Lambda \mid \bar{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right), \lambda_{s+2}=\cdots=\lambda_{N}=0\right\} \\
& \hat{\lambda}_{0}=\left(\lambda_{1}^{0}, \ldots, \lambda_{N}^{0}\right), \quad 0<\lambda_{1}^{0}, \ldots, 0<\lambda_{s+1}^{0}, \quad \lambda_{s+2}^{0}=\cdots=\lambda_{N}^{0}=0 .
\end{aligned}
$$

If

$$
\hat{\lambda}_{0}+\bar{a}_{k}+\bar{z}_{k} \in \Lambda \quad \& \quad \bar{z}_{k} \in E, k=1,2, \ldots,
$$

then from

$$
\bar{a}_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty, \quad \text { and } \quad\left\langle\bar{z}_{k}, \overline{1}\right\rangle=0, k=1,2, \ldots,
$$

it follows immediately that the sequence $\left\{\bar{z}_{k}\right\}$ is bounded.
Let us assume that the sequence $\left\{\bar{z}_{k}\right\}$ converges to an element \bar{z}_{0}. If $\bar{z}_{0}=0$, then the sequence

$$
\bar{\lambda}_{k}:=\hat{\lambda}_{0}+\bar{a}_{k}+\bar{z}_{k}, k=1,2, \ldots,
$$

solves the problem.
If $\bar{z}_{0} \neq 0$, then those entries of $\bar{z}_{0}=\left(z_{01}, \ldots, z_{0 N}\right)$, which are different from zero, are positive for $j \geq s+2$ and negative for those indexes $j^{\prime \prime}$, for which $\lambda_{j^{\prime \prime}}^{0}=1$ (if any). Therefore, there exists $d_{0}>0$ such that $\hat{\lambda}_{0}+\tau \bar{z}_{0} \in \Lambda$ provided $0 \leq \tau \leq d_{0}$.

Since $\bar{z}_{k}-\bar{z}_{0} \rightarrow 0$ as $k \rightarrow \infty$, then the elements

$$
\bar{\lambda}_{k}:=\hat{\lambda}_{0}+\tau_{k} \bar{z}_{0}+\left(\bar{z}_{k}-\bar{z}_{0}\right)+\bar{a}_{k}
$$

for $k \geq k_{0}$ and with appropriate $\tau_{k}, \tau_{k} \rightarrow 0$ as $k \rightarrow \infty$, belong to Λ. Indeed, since $\left\langle\bar{z}_{0}, \overline{1}\right\rangle=0,\left\langle\bar{a}_{k}, \overline{1}\right\rangle=0,\left\langle\bar{z}_{k}, \overline{1}\right\rangle=0, k=1,2, \ldots$, we have to check only inequalities

$$
\lambda_{k j} \geq 0, \quad j=1, \ldots, N ;, \quad k=k_{0}, k_{0}+1, \ldots
$$

(obviously, $\bar{\lambda}_{k} \rightarrow \hat{\lambda}_{0}$ as $k \rightarrow \infty$). For those indexes $\left\{j^{\prime}\right\}$, for which entries of \bar{z}_{0} are equal to zero,

$$
\lambda_{j^{\prime}}^{0}+a_{k j^{\prime}}+\left(z_{k j^{\prime}}-z_{0 j^{\prime}}\right) \geq 0, \quad k=1,2, \ldots,
$$

(by the initial assumptions on the sequence $\left\{\bar{a}_{k}\right\}$), but for the rest of indexes $\left\{j^{\prime \prime}\right\}$ either

$$
1>\lambda_{j^{\prime \prime}}^{0}>0
$$

or

$$
\lambda_{j^{\prime \prime}}^{0}=1 \quad \& \quad z_{0 j^{\prime \prime}}<0
$$

what is sufficient for the existence of τ_{k} with desired properties.
The general case of an arbitrary sequence $\left\{\bar{z}_{k}\right\}$ is treated by standard reasoning by contradiction, i.e., we assume the contrary that there exist $d>0$ and a sequence of indexes $\left\{k^{\prime}\right\}$ such that the distance from $\hat{\lambda}_{0}$ to $\left\{\hat{\lambda}_{0}+\bar{a}_{k^{\prime}}+E\right\} \cap \Lambda$
is greater than d. After that we take an arbitrary subsequence of $\left\{\bar{a}_{k^{\prime}}\right\}$, for which the corresponding sequence $\left\{\bar{z}_{k^{\prime}}\right\}$ converges. The proof of the first part of Theorem 2 is completed.

Now, let M be closed convex hull of a finite number of elements $\left\{h_{1}, \ldots, h_{N}\right\}$ and let

$$
\begin{aligned}
& S:=\left\{\sigma \in L_{2}\left(K ; \mathbb{R}^{N}\right) \mid \sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right), 0 \leq \sigma_{j}(x) \leq 1, j=1, \ldots, N\right. \\
& \left.\sum_{j=1}^{N} \sigma_{j}(x)=1 \text { a.e. } x \in K\right\} .
\end{aligned}
$$

Since the function

$$
(\sigma, x) \rightarrow\left(h(x)-\sum_{j=1}^{N} \sigma_{j} h_{j}\right)^{2}
$$

is a normal integrand on $\Lambda \times K$ (for every fixed $h \in \mathcal{M})$, then every $h \in \mathcal{M}$ has the representation

$$
h(x)=\sum_{j=1}^{N} \sigma_{j}(x) h_{j} \quad \text { a.e. } \quad x \in K
$$

with some $\sigma \in S$. In turn, a subset of piecewise constant elements is dense in S and sets $\mathcal{M}(\hat{h})$ have the same property.

This way, by using Cantor's diagonal process, we have that it is sufficient to show the existence of the approximating sequence $\left\{h_{k}\right\}$ for the case of a piecewise element $h_{0} \in \mathcal{M}\left(\hat{h}_{0}\right)$. Let $Q_{i} \subset K, i=1, \ldots, s$, are the sets where the function h_{0} is constant and takes values g_{1}, \ldots, g_{s} from M respectively. Now, we define the set $\tilde{M}:=\left\{h_{1}, \ldots, h_{N}, g_{1}, \ldots, g_{s}\right\}$ and sets

$$
\tilde{\mathcal{M}}(\hat{h}):=\left\{h \text { measurable in } K \mid h(x) \in \tilde{M} \text { a.e. } x \in K, \int_{K} h(x) d x=\hat{h}\right\} .
$$

By construction, co $\tilde{M}=M$ and $\tilde{\mathcal{M}}(\hat{h}) \subset \mathcal{M}(\hat{h}) \forall \hat{h} \in M$.
If $\left\{\hat{h}_{k}\right\} \subset M$ and $\hat{h}_{k} \rightarrow \hat{h}_{0}$ as $k \rightarrow \infty$ then also $\left\{\hat{h}_{k}\right\} \subset \operatorname{co} \tilde{M}, \hat{h}_{0} \in \operatorname{co} \tilde{M}$ and $h_{0} \in \tilde{\mathcal{M}}\left(\hat{h}_{0}\right)$. This way, the existence of the desired approximating sequence $\left\{h_{k}\right\}$ follows immediately from the proof of the first part of Theorem 2. The proof of Theorem 2 is completed.

We conclude with a simple example, which shows that the statement of Theorem 2 is not, in general, true under hypotheses of Theorem 1. Let

$$
M=\left\{(-1,0,0),(1,0,0),\left(0, t, t^{2}\right), 0 \leq t \leq 1\right\} \subset \mathbb{R}^{3}
$$

By construction,

$$
\begin{aligned}
& \mathcal{M}\left(\left(0, t, t^{2}\right)\right)=\left\{\left(h_{1}, h_{2}, h_{3}\right) \in L_{2}\left(K ; \mathbb{R}^{3}\right) \mid\right. \\
&\left.h_{1}(x)=0, h_{2}(x)=t, h_{3}(x)=t^{2} ; x \in K\right\} \quad \text { for } 0<t<1, \\
& \mathcal{M}((0,0,0))=\left\{\left(h_{1}, h_{2}, h_{3}\right) \in L_{2}\left(K ; \mathbb{R}^{3}\right) \mid h_{1}(x)=-1 \text { or } 0 \text { or } 1\right. \\
&\left.\int_{K} h_{1}(x) d x=0 ; h_{2}(x)=0, h_{3}(x)=0 ; x \in K\right\}
\end{aligned}
$$

and the statement of Theorem 2 does not hold.

Acknowledgement

This work has been partially supported by the project 05.1385 of the Latvian Council of Sciences.

References

[1] K. Kuratowski. Topology 1. Academic Press, New York London, 1966.
[2] G.W. Milton. The Theory of Composites. Cambridge University Press, Cambridge, 2002.
[3] R.T. Rockafellar. Convex Analysis. Princeton University Press,Princeton, 1970.
[4] J. Warga. Optimal Control of Differential and Functional Equations. Academic press, New York London, 1972.

[^0]: Math. Model. Anal., 14(1):91-98, 2009.

