On Dependence of Sets of Functions on the Mean Value of their Elements

U. Raitums

University of Latvia, Institute of Mathematics and Computer Science
29 Rainis boulevard, LV-1459 Riga, Latvia
E-mail: uldis.raitums@lumii.lv

Received September 11, 2008; revised December 23, 2008; published online February 25, 2009

Abstract. The paper considers, for a given closed bounded set $M \subset \mathbb{R}^m$ and $K = (0,1)^n \subset \mathbb{R}^n$, the set $\mathcal{M} = \{ h \in L_2(K;\mathbb{R}^m) \mid h(x) \in M \text{ a.e. } x \in K \}$ and its subsets

$$\mathcal{M}(\hat{h}) = \left\{ h \in \mathcal{M} \mid \int_K h(x) dx = \hat{h} \right\}.$$

It is shown that, if a sequence $\{\hat{h}_k\} \subset coM$ converges to an element $h_k \in \mathcal{M}(\hat{h}_k)$ there is $h_k' \in \mathcal{M}(\hat{h}_0)$ such that $h_k' - h_k \to 0$ as $k \to \infty$. If, in addition, the set M is finite or M is the convex hull of a finite set of elements, then the multivalued mapping $\hat{h} \mapsto \mathcal{M}(\hat{h})$ is lower semicontinuous on coM.

Key words: multivalued mapping, subsets of functions with fixed mean value, continuous dependence.

1 Introduction

Most sets of admissible control functions in the theory of optimal control are given as sets of measurable functions with values from a given set: for a given reference domain $Q \subset \mathbb{R}^n$ and a given set $M \subset \mathbb{R}^m$ the set of admissible controls is defined as

$$\mathcal{M} = \left\{ h \text{ measurable in } Q \mid h(x) \in M \text{ a.e. } x \in Q \right\}.$$

Here n and m are arbitrary fixed positive integers.

Provided that Q is a bounded domain and M is a bounded and closed set, the set \mathcal{M} can be split as $\mathcal{M} = \bigcup_{\hat{h} \in coM} \mathcal{M}(\hat{h})$, where

$$\mathcal{M}(\hat{h}) := \left\{ h \text{ measurable, } h(x) \in M \text{ a.e. } x \in Q, \quad \frac{1}{|Q|} \int_Q h(x) dx = \hat{h} \right\}.$$

Here by coA we denote the convex hull of the set A and by $|Q|$ we denote the Lebesgue measure of the set $Q \subset \mathbb{R}^n$.

Such a representation of \mathcal{M} is useful when weak limits of sequences of control functions are involved, especially in procedures of relaxation via convexification, see, for instance, Warga [4]. Analogous splitting is used in the homogenization theory defining the so-called G_θ-closures, see, for instance, Milton [2]. The corresponding relaxation procedures often involve the evaluation of integrals (over the periodicity cell $K = (0,1)^n$) of the kind

$$I(\hat{h}) = \inf_{h \in \mathcal{M}(\hat{h})} \int_K f(x,h(x)) \, dx$$

and the investigation of continuity properties of the function $\hat{h} \to I(\hat{h})$. To do that, obviously, one needs to know certain properties of the dependence of sets $\mathcal{M}(\hat{h})$ on \hat{h}.

In Sections 2 and 3 we shall show the following results.

Theorem 1. Let $Q \subset \mathbb{R}^n$ be bounded Lipschitz domain and let the set $M \subset \mathbb{R}^m$ is bounded and closed. Then for every given sequences $\{\hat{h}_k\}$ and $\{h_k\}$ such that

(i) $\{\hat{h}_k\} \subset \text{co}M$ and $\hat{h}_k \to \hat{h}_0$ in \mathbb{R}^m as $k \to \infty$;

(ii) $h_k \in \mathcal{M}(\hat{h}_k)$, $k = 1, \ldots$,

there exists a sequence $\{h_{0k}\} \subset \mathcal{M}(\hat{h}_0)$ such that

$$h_k - h_{0k} \to 0 \text{ strongly in } L_2(Q;\mathbb{R}^m) \text{ as } k \to \infty.$$

Theorem 2. Let $Q \subset \mathbb{R}^n$ be bounded Lipschitz domain and let the set $M \subset \mathbb{R}^m$ is finite or M is the closed convex hull of a finite set of elements. Then for every fixed sequence $\{\hat{h}_k\} \subset \text{co}M$ that converges in \mathbb{R}^m to an element \hat{h}_0 and for every given element $h_0 \in \mathcal{M}(\hat{h}_0)$ there exists a sequence $\{h_k\}$, $h_k \in \mathcal{M}(\hat{h}_k)$, $k = 1,2,\ldots$, such that

$$h_k - h_0 \to 0 \text{ strongly in } L_2(Q;\mathbb{R}^m) \text{ as } k \to \infty.$$

Remark 1. Obviously, from Theorem 2 it follows immediately that the multivalued mapping $\hat{h} \to \mathcal{M}(\hat{h})$ is lower semicontinuous on $\text{co}M$ (for the definition and properties of multivalued mappings we refer to Kuratowski [1]).

Remark 2. It is easy to see that under hypotheses of Theorem 1 the function $\hat{h} \to I(\hat{h})$ defined by (1.1) is lower semicontinuous provided that f is Caratheodory function and that f has a majorant $f_0 \in L_1(Q)$ (we recall that the set M is bounded). If, in addition, the hypotheses of Theorem 2 are satisfied, then the function $\hat{h} \to I(\hat{h})$ is continuous on $\text{co}M$.

2 Proof of Theorem 1

In this Section, we give the proof of Theorem 1. Since all reasonings below do not depend on concrete properties of the reference domain Q, then, without losing a generality, all proofs are given for the standard case $Q = K := (0,1)^n$. Since the set M is bounded and closed, then the convex hull $\text{co}M$ of M is
closed too and all sets \(M(\hat{h}) \) with \(\hat{h} \in coM \) are nonempty closed sets. In what follows, we shall use the notion of the relative interior \(riA \) for convex sets \(A \) from Euclidean spaces, for instance \(ricoM \) stands for the relative interior of the convex hull of \(M \). For the definition of \(riA \) and other notations and properties for convex sets we refer to Rockafellar [3]. Let \(r_0 \) be dimension of \(coM \).

Step 1. Let \(\hat{h}_0 \in ricoM \). Then there exists \(d > 0 \) such that \(\hat{h} \in ricoM \) whenever \(\hat{h} \in coM \) and \(|\hat{h} - \hat{h}_0| \leq d \). Let us fix \(\varepsilon > 0 \), \(0 < \varepsilon < d/4 \), and let \(|\hat{h} - \hat{h}_0| \leq \varepsilon \). Then the element

\[
\hat{h}_* = \hat{h} + \frac{d}{\varepsilon}(\hat{h}_0 - \hat{h}) \in ricoM.
\]

Let \(h \in M(\hat{h}) \), \(h_* \in M(\hat{h}_*) \) be arbitrary chosen elements. By virtue of Lyapunov’s theorem on the range of vectorial measures for every \(\lambda \in [0, 1] \) there exists a measurable set \(E_\lambda \subset K \) such that

\[
|E_\lambda| = \lambda, \quad \int_{E_\lambda} h(y) \, dy + \int_{K \setminus E_\lambda} h_*(y) \, dy = \lambda \hat{h} + (1 - \lambda)\hat{h}_*.
\]

For a special choice \(\lambda = \lambda_0 = 1 - \varepsilon/d \) we define \(h_0 \) as

\[
h_0(\cdot) = \chi_{E_{\lambda_0}}(\cdot)h(\cdot) + (1 - \chi_{E_{\lambda_0}}(\cdot))h_*(\cdot),
\]

where \(\chi_E \) denotes the characteristic function of the set \(E \). By construction, \(h_0 \in M(\hat{h}_0) \) and

\[
\int_K (h(y) - h_0(y))^2 \, dy = \int_{K \setminus E_{\lambda_0}} (h(y) - h_0(y))^2 \, dy \leq 4c(M)\varepsilon/d,
\]

where \(c(M) \) depends only on \(M \). Thus, the assertion of Theorem 1 holds whenever \(\hat{h}_0 \in ricoM \).

Step 2. Let \(\hat{h}_0 \) does not belong to \(ricoM \). Because \(ricoM \) is not empty (provided that \(M \) consists of more than one element), then there exist a vector \(a \in \mathbb{R}^m \) and a constant \(c \) such that

\[
|a| = 1, \quad \langle a, \hat{h}_0 \rangle = c < \langle a, \hat{h} \rangle \quad \text{for all } \hat{h} \in ricoM.
\]

Without loosing generality, we can assume that \(c = 0 \), otherwise we can use the transform \(\hat{h} \mapsto \hat{h} - h_0 \).

Let \(M_1 = \{ h \in M \mid \langle a, h \rangle = 0 \} \). Because the sets \(M \) and \(M_1 \) are compact, then there exists a continuous function \(\gamma, \gamma(t) = 0 \) if \(t \leq 0 \), \(\gamma(t) > 0 \) if \(t > 0 \), such that

\[
\langle a, h - \hat{h}_0 \rangle \geq \gamma(\text{dist}\{h; M_1\}) \quad \text{for all } h \in M. \tag{2.1}
\]

Without loosing generality, we can assume that the function \(\gamma \) is convex, otherwise we can pass to the bipolar \(\gamma^{**} \), which has the desired properties. By construction, for nonnegative \(\tau \) there exists the inverse function \(\tau \mapsto \gamma^{-1}(\tau) \), \(\gamma^{-1}(\gamma(t)) = t \) for \(t \geq 0 \), which is continuous and strictly increasing on \(\{ \tau \in \mathbb{R}^m \mid \tau \geq 0 \} \).
\(U. \) Raitums

\(\{ h \in L_2(K; \mathbb{R}^r) \mid h(y) \in M_1 \text{ a.e. } y \in K \} \), such that

\[
\| h - h_* \|^2_{L_2(K; \mathbb{R}^r)} \leq c(m, M) \gamma^{-1}(\| \hat{h} - \hat{h}_0 \|)
\]

where \(c(m, M) \) depends only on \(m \) and \(M \). This way, for our situation with a fixed \(\hat{h}_0 \in \text{co}M_1 \), for every \(\hat{h} \in \text{co}M \) and arbitrary chosen \(h \in M(\hat{h}) \) there exists a corresponding \(h_* \in M_1 \) such that

\[
\| h - h_* \|^2_{L_2(K; \mathbb{R}^r)} \leq c(m, M) \gamma^{-1}(\| \hat{h} - \hat{h}_0 \|).
\]

By construction,

\[
\int_K h_*(y) \, dy = \hat{h}_* \in \text{co}M_1,
\]

\(M(\hat{h}_0) \subset M_1 \) and the dimension of \(\text{co}M_1 \) is less than \(r_0 \). From now on, we have to approximate the element \(h_* \in M(\hat{h}_*) \subset M_1 \) by elements from \(M(\hat{h}_0) \subset M_1 \), i.e. we have reduced the dimension \(r_0 \) of our problem to the problem with dimension less than or equal to \(r_0 - 1 \).

Step 3. To conclude our reasoning by induction over the dimension \(r_0 \) we have to prove our assertion for the case \(r_0 = 1 \). If \(\hat{h}_0 \in \text{rico}M \), then we apply reasoning from Step 1. If \(\hat{h}_0 \) does not belong to \(\text{rico}M \), then the set \(M_1 \) from the Step 2 consists of only one element \(\hat{h}_0 \) and the set \(M_1 \) consists of one constant function \(h_0(y) = \hat{h}_0 \text{ a.e. } y \in K \). For this case we can apply the same reasoning as in Step 2, what gives the statement of Theorem for \(r_0 = 1 \).

3 Proof of Theorem 2

In this Section, we give the proof of Theorem 2. Let \(M = \{ \overline{h}_1, \ldots, \overline{h}_N \} \subset \mathbb{R}^m \). Let \(H \) be \(m \times N \) matrix with columns \(\overline{h}_1, \ldots, \overline{h}_N \) respectively and let

\[
\Lambda := \left\{ \overline{\lambda} \in \mathbb{R}^N \mid \overline{\lambda} = (\lambda_1, \ldots, \lambda_N), \lambda_j \geq 0, j = 1, \ldots, N; \lambda_1 + \cdots + \lambda_N = 1 \right\}.
\]

To a given vector-function \(h \in M \) (it has only \(N \) admissible values from \(M \)) we can appoint an element \(\overline{\lambda} \) whose components \(\lambda_j \) represent the volume fractions
in K of the sets where the vector-function h has the value $\mathbf{1}_j$, $j = 1, \ldots, N$, respectively. Let $E := \{ \mathbf{r} \in \mathbb{R}^N | H\mathbf{r} = 0 \}$.

In these notations the statement of Theorem 2 is a straight consequence of:

$$
\begin{align*}
\text{if } \lambda_0 \in A, \{ \overline{\mathbf{v}}_k \} &\subset \mathbb{R}^N, \overline{\mathbf{v}}_k \to 0 \text{ as } k \to \infty \\
\text{and } \{ \lambda_0 + \overline{\mathbf{v}}_k + E \} &\cap A \neq \emptyset, k = 1, 2, \ldots, \\
\text{then there exists a sequence } \{ \lambda_k \} \text{ such that } \\
\lambda_k &\to \lambda_0 \text{ as } k \to \infty, \\
\lambda_k &\in \{ \lambda_0 + \overline{\mathbf{v}}_k + E \} \cap A, k = 1, 2, \ldots.
\end{align*}
$$

(3.1)

Indeed, first of all we have to take care only about volume fractions of sets where the functions under consideration take the corresponding values $\mathbf{1}_j, \ldots, \mathbf{1}_N$ (we always can prearrange the corresponding sets preserving their measures).

Further, for $h \in \mathcal{M}$ with corresponding volume fractions $(\lambda_1, \ldots, \lambda_N) = \mathbf{\lambda}$ we have that $h \in \mathcal{M}(H\mathbf{\lambda})$, and every $h \in \text{co}M$ has the representation $\hat{h} = H(\lambda + E)$ with some $\lambda \in A$. The convergence $\overline{\mathbf{v}}_k \to 0$ as $k \to \infty$ in (3.1) implies the corresponding convergence $\lambda_k \to \lambda_0$ in Theorem 2, and the convergence $\lambda_k \to \lambda_0$ implies the corresponding convergence $h_k \to h_0$ in Theorem 2.

Let us denote $\mathbf{1} = (1, \ldots, 1) \in \mathbb{R}^N$ and let us represent E as the direct sum $E = E_0 \oplus E_1$ where

$$
E_0 = \{ \mathbf{r} \in E | \mathbf{r} \cdot \mathbf{1} = 0 \}.
$$

Here the subspace E_1 can be equal to $\{ 0 \}$ if $\mathbf{1}$ is orthogonal to E. From assumptions on $\overline{\mathbf{v}}_k$ we have the existence of $\overline{\mathbf{v}}_{0k} \in E_0$ and $\overline{\mathbf{v}}_{1k} \in E_1$ such that

$$
\lambda_0 + \overline{\mathbf{v}}_k = \overline{\mathbf{v}}_{0k} + \overline{\mathbf{v}}_{1k} \in A, \\
\overline{\mathbf{v}}_k + \overline{\mathbf{v}}_{1k} = 0, \overline{\mathbf{v}}_{1k} \to 0 \text{ as } k \to \infty.
$$

So, if necessary, using the transform $\overline{\mathbf{v}}_k \to \overline{\mathbf{v}}_k + \overline{\mathbf{v}}_{1k}$ and replacing E by E_0, without losing generality, we can assume that

(i) the vector $\mathbf{1}$ is orthogonal to E;

(ii) $\langle \overline{\mathbf{v}}_k, \mathbf{1} \rangle = 0$, $k = 1, 2, \ldots$.

That means (since $\langle \lambda_0, \mathbf{1} \rangle = 1$) our further reasoning concerns only the hyper-plane $\{ \mathbf{r} \in \mathbb{R}^N | \mathbf{r} \cdot \mathbf{1} = 1 \}$. There are two possibilities:

(a) $\langle \lambda_0 + E \rangle \cap riA \neq \emptyset$;

(b) λ_0 belongs to a façade A_s of A with the dimension s, $0 \leq s \leq N - 2$, and $\lambda_0 + E$ can be separated from riA.

For the case (a) there exists a $\lambda_* \in (\lambda_0 + E) \cap riA$ and the elements

$$
\lambda_k = \lambda_0 + \overline{\mathbf{v}}_k + \tau_k(\mathbf{1}_* - \lambda_0), \quad k = 1, 2, \ldots,
$$

with appropriate $\tau_k > 0$, $k = 1, 2, \ldots$, solve the problem for $k \geq k_0$ with some k_0.

For the case (b), without losing generality, we can assume that \(A_s \) is the façade with the minimal dimension \(s \) compared to all façades, which contain \(\hat{\lambda}_0 \). Hence, after relabeling indexes we obtain

\[
A_s = \{ \mathbf{X} \in A \mid \mathbf{X} = (\lambda_1, \ldots, \lambda_N), \lambda_{s+2} = \cdots = \lambda_N = 0 \},
\]

\[
\hat{\lambda}_0 = (\lambda_1^0, \ldots, \lambda_N^0), \quad 0 < \lambda_1^0, \ldots, 0 < \lambda_{s+2}^0, \quad \lambda_{s+2}^0 = \cdots = \lambda_N^0 = 0.
\]

If

\[
\hat{\lambda}_0 + z_k + \overline{z}_k \in A \quad \& \quad \overline{z}_k \in E, \quad k = 1, 2, \ldots,
\]

then from

\[
\overline{a}_k \to 0 \quad \text{as} \quad k \to \infty, \quad \text{and} \quad \langle \overline{z}_k, \mathbf{1} \rangle = 0, k = 1, 2, \ldots,
\]

it follows immediately that the sequence \(\{\overline{z}_k\} \) is bounded.

Let us assume that the sequence \(\{\overline{z}_k\} \) converges to an element \(\overline{z}_0 \). If \(\overline{z}_0 = 0 \), then the sequence \(\overline{\lambda}_k := \hat{\lambda}_0 + \overline{a}_k + \overline{z}_k, \quad k = 1, 2, \ldots \)

solves the problem.

If \(\overline{z}_0 \neq 0 \), then those entries of \(\overline{z}_0 = (z_{01}, \ldots, z_{0N}) \), which are different from zero, are positive for \(j \geq s + 2 \) and negative for those indexes \(j' \), for which \(\lambda_j^{0'} = 1 \) (if any). Therefore, there exists \(d_0 > 0 \) such that \(\hat{\lambda}_0 + \tau \overline{z}_0 \in A \) provided \(0 \leq \tau \leq d_0 \).

Since \(\overline{z}_k - \overline{z}_0 \to 0 \) as \(k \to \infty \), then the elements

\[
\overline{\lambda}_k := \hat{\lambda}_0 + \tau_k \overline{z}_0 + (\overline{z}_k - \overline{z}_0) + \overline{a}_k
\]

for \(k \geq k_0 \) and with appropriate \(\tau_k \), \(\tau_k \to 0 \) as \(k \to \infty \), belong to \(A \). Indeed, since \(\langle \overline{z}_0, \mathbf{1} \rangle = 0, \langle \overline{a}_k, \mathbf{1} \rangle = 0, \langle \overline{z}_k, \mathbf{1} \rangle = 0, \quad k = 1, 2, \ldots \), we have to check only inequalities

\[
\lambda_{kj} \geq 0, \quad j = 1, \ldots, N; \quad k = k_0, k_0 + 1, \ldots
\]

(obviously, \(\overline{\lambda}_k \to \hat{\lambda}_0 \) as \(k \to \infty \)). For those indexes \(\{j'\} \), for which entries of \(\overline{z}_0 \) are equal to zero,

\[
\lambda_j^{0'} + a_{kj'} + (z_{kj'} - z_{0j'}) \geq 0, \quad k = 1, 2, \ldots,
\]

(by the initial assumptions on the sequence \(\{\overline{z}_k\} \)), but for the rest of indexes \(\{j''\} \) either

\[
1 > \lambda_j^{0''} > 0
\]

or

\[
\lambda_j^{0''} = 1 \quad \& \quad z_{0j''} < 0
\]

what is sufficient for the existence of \(\tau_k \) with desired properties.

The general case of an arbitrary sequence \(\{\overline{z}_k\} \) is treated by standard reasoning by contradiction, i.e., we assume the contrary that there exist \(d > 0 \) and a sequence of indexes \(\{k'\} \) such that the distance from \(\hat{\lambda}_0 \) to \(\{\hat{\lambda}_0 + \overline{a}_{k'} + E\} \cap A \)....
is completed. After that we take an arbitrary subsequence of \(\{\tilde{h}_k\} \), for which the corresponding sequence \(\{T_k\} \) converges. The proof of the first part of Theorem 2 is completed.

Now, let \(M \) be closed convex hull of a finite number of elements \(\{h_1, \ldots, h_N\} \) and let

\[
S := \{\sigma \in L_2(K;\mathbb{R}^N) \mid \sigma = (\sigma_1, \ldots, \sigma_N), 0 \leq \sigma_j(x) \leq 1, j = 1, \ldots, N; \sum_{j=1}^N \sigma_j(x) = 1 \ a.e.\ x \in K\}.
\]

Since the function

\[
(\sigma, x) \rightarrow (h(x) - \sum_{j=1}^N \sigma_j h_j)^2
\]

is a normal integrand on \(\Lambda \times K \) (for every fixed \(h \in \mathcal{M} \)), then every \(h \in \mathcal{M} \) has the representation

\[
h(x) = \sum_{j=1}^N \sigma_j(x)h_j \ a.e. \ x \in K
\]

with some \(\sigma \in S \). In turn, a subset of piecewise constant elements is dense in \(S \) and sets \(\mathcal{M}(\hat{h}) \) have the same property.

This way, by using Cantor’s diagonal process, we have that it is sufficient to show the existence of the approximating sequence \(\{h_k\} \) for the case of a piecewise element \(h_0 \in \mathcal{M}(\hat{h}_0) \). Let \(Q_i \subset K, i = 1, \ldots, s \), are the sets where the function \(h_0 \) is constant and takes values \(g_1, \ldots, g_s \) from \(M \) respectively. Now, we define the set \(\hat{M} := \{h_1, \ldots, h_N, g_1, \ldots, g_s\} \) and sets

\[
\hat{\mathcal{M}}(\hat{h}) := \{h \text{ measurable in } K \mid h(x) \in \hat{M} \ a.e. \ x \in K, \int_K h(x)dx = \hat{h}\}.
\]

By construction, \(\text{co}\hat{M} = M \) and \(\hat{\mathcal{M}}(\hat{h}) \subset \mathcal{M}(\hat{h}) \forall \hat{h} \in M \).

If \(\{h_k\} \subset M \) and \(h_k \to \hat{h}_0 \) as \(k \to \infty \) then also \(\{\hat{h}_k\} \subset \text{co}\hat{M} \), \(\hat{h}_0 \in \text{co}\hat{M} \) and \(h_0 \in \mathcal{M}(\hat{h}_0) \). This way, the existence of the desired approximating sequence \(\{h_k\} \) follows immediately from the proof of the first part of Theorem 2. The proof of Theorem 2 is completed.

We conclude with a simple example, which shows that the statement of Theorem 2 is not, in general, true under hypotheses of Theorem 1. Let

\[
M = \{(-1, 0, 0), (1, 0, 0), (0, t, t^2), 0 \leq t \leq 1\} \subset \mathbb{R}^3.
\]

By construction,

\[
\mathcal{M}((0, t, t^2)) = \{(h_1, h_2, h_3) \in L_2(K;\mathbb{R}^3) \mid h_1(x) = 0, h_2(x) = t, h_3(x) = t^2; x \in K\} \text{ for } 0 < t < 1,
\]

\[
\mathcal{M}((0, 0, 0)) = \{(h_1, h_2, h_3) \in L_2(K;\mathbb{R}^3) \mid h_1(x) = -1 \text{ or } 0 \text{ or } 1, \int_K h_1(x)dx = 0; h_2(x) = 0, h_3(x) = 0; x \in K\},
\]

Dependence of Sets of Functions

and the statement of Theorem 2 does not hold.

Acknowledgement

This work has been partially supported by the project 05.1385 of the Latvian Council of Sciences.

References