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Abstract. Multidimensional scaling is a technique for exploratory analysis of multi-
dimensional data. The essential part of the technique is minimization of a multimodal
function with unfavorable properties like invariants and non-differentiability. In this
paper a two-level optimization based on combinatorial optimization and systems of
linear equations is proposed exploiting piecewise quadratic structure of the objec-
tive function with city-block distances. The approach is tested experimentally and
improvement directions are identified.
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1 Introduction

Multidimensional scaling (MDS) is a technique for exploratory analysis of mul-
tidimensional data widely usable in different applications [4, 6]. Pairwise dis-
similarities among n objects are given by the matrix (δij), i, j = 1, . . . , n. A
set of points in an embedding metric space is considered as an image of the
set of objects. Normally, an m-dimensional vector space is used, and xi ∈ R

m,
i = 1, . . . , n, should be found whose inter-point distances fit the given dis-
similarities. Images of the considered objects can be found minimizing a fit
criterion [22], e.g. the most frequently used least squares STRESS function:

S(x) =

n
∑

i=1

n
∑

j=1

wij (d (xi,xj) − δij)
2
,

where x = (x1, . . . ,xn), xi = (xi1, xi2, . . . , xim). It is supposed that the weights
are positive: wij > 0, i, j = 1, . . . , n; d(xi,xj) denotes the distance between the
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points xi and xj . Usually Minkowski distances are used:

dr(xi,xj) =
(

m
∑

k=1

|xik − xjk|
r
)1/r

.

The equation defines Euclidean distances when r = 2, and city-block distances
when r = 1. The most frequently used distances are Euclidean, but multi-
dimensional scaling with other Minkowski distances in the embedding space
can be even more informative [1]. In the present paper the problem with the
STRESS criterion and city-block distances in the embedding space are consid-
ered.

STRESS normally has many local minima. It is invariant with respect to
the translation and mirroring. It can be non-differentiable even at a minimum
point [18]; the case of city-block metric is different from the other cases of
Minkowski metric where positiveness of distances at a local minimum point
imply differentiability of STRESS [7, 9]. However STRESS with city-block
distances is piecewise quadratic, and such a structure can be exploited for
tailoring of ad hoc global optimization algorithms.

Global optimization algorithms for multidimensional scaling are reviewed
with particular emphasis on parallel computing in [27]. A heuristic algorithm
based on simulated annealing for two-dimensional city-block scaling was pro-
posed in [5]. Each coordinate axis is partitioned by uniformly spaced points,
and a simulated annealing algorithm is used to search the lattice defined by
these points aiming to minimize one of two types of STRESS either the sum
of squares or the sum of corresponding absolute values. The solution found is
locally improved by quadratic programming. A two stages approach for city-
block MDS was proposed in [11]. The least square regression is used to obtain a
local minimum of Stress function in the first stage. Simulated annealing is used
in the second stage of the method. A multivariate randomly alternating sim-
ulated annealing procedure with permutation and translation phases has been
applied to develop an algorithm for multidimensional scaling in any Minkowski
metric in [14].

A two-level minimization method for the two-dimensional embedding space
was proposed in [18] where a problem of combinatorial optimization is tackled
by evolutionary search at the upper level, and a problem of quadratic pro-
gramming is tackled at the lower level. The parallel version of the algorithm is
proposed and investigated in [16]. Quantitatively the precision of the algorithm
was estimated using global minima found by means of the developed parallel
version of explicit enumeration algorithm in [17]. Efficiency of the parallel
version of the algorithm on computational grids is investigated in [13]. The
generalized method for arbitrary dimensionality of the embedding space is de-
veloped and experimentally compared with other approaches in [19]. A branch
and bound algorithm for the upper level combinatorial problem is proposed
in [21].

Dependence of visualization error on the dimensionality of embedding space
is investigated in [26]. Visualization of geometrical multidimensional data in
three-dimensional space is investigated in [15] and of empirical multidimen-
sional data in [20]. The images in three-dimensional embedding space normally
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show the structural properties of sets of considered objects with acceptable ac-
curacy, and widening of applications of stereo screens makes three-dimensional
visualization very attractive.

In this paper a new two-level approach for multidimensional scaling is pre-
sented based on combinatorial optimization and systems of linear equations.
In the next section multidimensional scaling with city-block distances based
on quadratic programming is presented. In Sect. 3 the approach based on sys-
tems of linear equations is proposed. Experimental investigation is described
in Sect. 4. Although the number of feasible solutions of the upper level combi-
natorial problem is larger than in the case of two-level optimization based on
quadratic programming, the lower level problems are simpler. The conclusions
are drawn in the last section.

2 Multidimensional Scaling with City-Block Distances
Based on Quadratic Programming

STRESS with city-block distances d1(xi,xj) can be redefined as

S(x) =

n
∑

i=1

n
∑

j=1

wij

(

m
∑

k=1

|xik − xjk| − δij

)2

.

Let A(P) denotes a set such that

A(P) =
{

x| xik ≤ xjk for pki < pkj , i, j = 1, . . . , n, k = 1, . . . , m
}

,

where P = (p1, . . . ,pm), pk = (pk1, pk2, . . . , pkn) is a permutation of 1, . . . , n;
For x ∈ A(P),

S(x) =
n
∑

i=1

n
∑

j=1

wij

(

m
∑

k=1

(xik − xjk) zkij − δij

)2

,

where

zkij =

{

1, pki > pkj ,

−1, pki < pkj .

Since function S(x) is quadratic over polyhedron x ∈ A(P) the minimiza-
tion problem

min
x∈A(P)

S(x)

is a quadratic programming problem. It is equivalent to (see [26])

min
[

−

m
∑

k=1

n
∑

i=1

xik

n
∑

j=1

wijδijzkij

+
1

2

m
∑

k=1

m
∑

l=1

n
∑

i=1

(

xikxil

n
∑

t=1,t6=i

witzkitzlit −

n
∑

j=1,j 6=i

xikxjlwijzkijzlij

)]

,
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s.t.

n
∑

i=1

xik = 0, k = 1, . . . , m,

x{j|pkj=i+1},k − x{j|pkj=i},k ≥ 0, k = 1, . . . , m, i = 1, . . . , n − 1.

Taking into account the structure of the minimization problem a two-level
minimization algorithm can be applied [18]:

1. To solve a combinatorial problem at the upper level;

2. To solve a quadratic programming problem at the lower level:

min
P

S(P),

s.t. S(P) = min
x∈A(P)

S(x) ∼ min

(

−cP
Tx +

1

2
xT QPx

)

, s.t.
Ex = 0,

APx ≥ 0.

For the lower level problem a standard quadratic programming method can
be applied. The upper level problem is solved with guarantee using explicit
enumeration of all feasible solutions or using the branch and bound method [21].
Genetic algorithm is applied for larger problems [18, 19].

A minimum point of a quadratic programming problem is not necessary a
local minimizer of the initial problem of minimization of STRESS, if it is on
the boundary of polyhedron. Local search may be applied [18]:

• go to the neighbour polyhedron on the opposite side of the active inequal-
ity constrains;

• perform quadratic programming;

• repeat while better values are found and some inequality constrains are
active.

Although such a heuristic local search improves performance of hybrid opti-
mization algorithm, it does not guarantee that the found minimum point is a
local minimizer of minimization of STRESS. Therefore it cannot be used to
count the number of local minimizers.

3 Multidimensional Scaling with City-Block Distances
Based on Systems of Linear Equations

Let us define a different decomposition of optimization problem which is more
convenient to derive a two-level minimization problem with combinatorial prob-
lem at the upper level and a system of linear equations at the lower level. Let
us change the variables to

ylk = x{j|pkj=l+1},k − x{j|pkj=l},k, k = 1, . . . , m, l = 1, . . . , nk,

where nk < n is the number of different values of kth coordinate minus one.
Here pki = pkj may be allowed even when i 6= j. In the case pk is a permutation
of 1, . . . , n, this is not allowed and nk = n − 1.



Multidimensional scaling based on systems of linear equations 263

Polyhedron x ∈ A(P) can be defined by ylk ≥ 0, k = 1, . . . , n, l = 1, . . . , nk.
Interior of the polyhedron can be defined by ylk > 0. For x ∈ A(P), STRESS
with city-block distances can be rewritten in the following form:

S(x) =

n
∑

i=1

n
∑

j=1

wij

(

m
∑

k=1

nk
∑

l=1

ylkzlkij − δij

)2

,

where

zlkij =

{

1, min(pki, pkj) ≤ l < max(pki, pkj),

0, otherwise.

The quadratic function S(x) can be written in the following form:

S(x)=
n
∑

i=1

n
∑

j=1

wij

(

m
∑

k=1

nk
∑

l=1

ylkzlkij − δij

)2

=
n
∑

i=1

n
∑

j=1

wijδ
2
ij

−2

n
∑

i=1

n
∑

j=1

wijδij

m
∑

k=1

nk
∑

l=1

ylkzlkij+

n
∑

i=1

n
∑

j=1

wij

(

m
∑

k=1

nk
∑

l=1

ylkzlkij

)2

.

The first summand is a constant, and need not be taken into account in
minimization. The second summand is a linear function which can be rewritten
as follows

−2
n
∑

i=1

n
∑

j=1

wijδij

m
∑

k=1

nk
∑

l=1

ylkzlkij = −2
m
∑

k=1

nk
∑

l=1

ylk

n
∑

i=1

n
∑

j=1

wijδijzlkij .

Similarly the third summand can be written as a quadratic function

n
∑

i=1

n
∑

j=1

wij

(

m
∑

k=1

nk
∑

l=1

ylkzlkij

)2

=

n
∑

i=1

n
∑

j=1

wij

m
∑

k=1

nk
∑

l=1

m
∑

u=1

nu
∑

v=1

ylkyvuzlkijzvuij

=

m
∑

k=1

nk
∑

l=1

m
∑

u=1

nu
∑

v=1

ylkyvu

n
∑

i=1

n
∑

j=1

wijzlkijzvuij .

Therefore minx∈A(P) S(x) is equivalent to

min
(

−2

m
∑

k=1

nk
∑

l=1

ylk

n
∑

i=1

n
∑

j=1

wijδijzlkij

+
m
∑

k=1

nk
∑

l=1

m
∑

u=1

nk
∑

v=1

ylkyvu

n
∑

i=1

n
∑

j=1

wijzlkijzvuij

)

,

s.t. ylk ≥ 0, k = 1, . . . , m, l = 1, . . . , nk.

The coordinate values of image points can be found from the corresponding
minimum point of the constrained quadratic problem:

x∗
ik =

pki−1
∑

l=1

y∗
lk.

Math. Model. Anal., 14(2):259–270, 2009.
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Therefore similarly as in the previous section, a two-level minimization prob-
lem with combinatorial problem at the upper level and a quadratic program-
ming problem at the lower level can be defined:

min
P

S(P),

s.t. S(P) = min
x∈A(P)

S(x) ∼ min
(

− cP
Ty +

1

2
yT QPy

)

, s.t. y ≥ 0,

where

clk = 2

n
∑

i=1

n
∑

j=1

wijδijzlkij , Qlk vu = 2

n
∑

i=1

n
∑

j=1

wijzlkijzvuij .

It can be seen that the linear equality and inequality constraints have been
avoided comparing with the decomposition presented in the previous section
and only the bound constraints y ≥ 0 have been left. Such constraints are
checked and managed easier. Moreover the number of variables is at least by
m smaller.

Since QP is positive definite, objective function of quadratic problem is con-
vex and has a unique minimizer. Therefore a standard quadratic programming
method can be applied for the lower level problem.

The upper level function is defined over the set of m-tuple of permutations of
1, . . . , n representing sequences of coordinate values of image points. The num-
ber of feasible solutions of the upper level combinatorial problem is (n!)m. A
solution of MDS with city-block distances is invariant with respect to mirroring
when changing direction of coordinate axes or exchanging of coordinates [21].
The feasible set can be reduced taking into account these symmetries. The
number of feasible solutions can be reduced to (n!/2)m refusing mirrored solu-
tions changing direction of each coordinate axis. It can be further reduced to
approximately (n!/2)m/m! refusing mirrored solutions with exchanged coordi-
nates.

In the case of m = 1 and n = 3 all possible permutations are “123”, “132”,
“231”, “213”, “312” and “321”. Here every numeral represents a value of p1i.
To refuse mirrored solutions with changed direction of coordinate axes, per-
mutations with pk1 > pk2 can be forbidden as for example “123” and “321”
are equivalent. In this case allowed permutations are “123”, “132” and “231”.
In the case of m = 2 and n = 3 allowed permutations would be “123/123”,
“123/132”, “123/231”, “132/123”, “132/132”, “132/231”, “231/123”, “231/132”
and “231/231”. Here every numeral represents pki and “/” separates coordi-
nates. To refuse mirrored solutions with exchanged coordinates some restric-
tions on permutations may be set. Let us define the order for permutations of
1, 2, 3 as “123” ≺ “132” ≺ “231”. A permutation pk cannot precede pl for k > l
(l < k ⇒ pl � pk). Therefore tuples of permutations “132/123”, “231/123” and
“231/132” are not allowed, as they represent symmetric solutions to “123/132”,
“123/231” and “132/231” respectively. Therefore in this case allowed permuta-
tions are “123/123”, “123/132”, “123/231”, “132/132”, “132/231” and “231/231”.

If the minimum point of STRESS is not on the boundary of polyhedron
x ∈ A(P) then it can be found solving a system of linear equations searching
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where the gradient of the quadratic function is zero. If it is on the boundary of
polyhedron then the gradient is zero at the point which is not in the polyhedron.
However it is possible to define A(P′) (corresponding to either polyhedron A(P)
or its faces and edges):

A(P′) =

{

x

∣

∣

∣

∣

∣

xik < xjk for p′ki < p′kj ,

xik = xjk for p′ki = p′kj ,
i, j = 1, . . . , n, k = 1, . . . , m

}

.

Here p′ki may be equal to p′kj even if i 6= j, and therefore they can define poly-
hedrons A(P′) which are faces and edges of polyhedron A(P). If p′ki = p′kj for
i 6= j, then xik = xjk and one of these variables is eliminated from the function.
It is possible to find the minimum points of STRESS solving systems of linear
equations searching where the gradient of the reduced quadratic function is
zero in polyhedrons A(P′).

Two-level problem with quadratic programming at the lower level can be
redefined as a two-level minimization problem with combinatorial problem at
the upper level and a system of linear equations at the lower level:

min
P′

S(P′),

s.t. S(P′) = min
x∈A(P′)

S(x) ∼ yT QP′ = cP′

T , s.t. y > 0.

If the solution of system of linear equations is not in polyhedron A(P′), then the
lower level problem is not feasible. This can be easily checked testing if y∗ > 0,
which is computationally cheaper than to check linear inequality constraints if
decomposition presented in the previous section was used.

In the case of m = 1 and n = 3 possible sequences for P′ are “123”, “122”,
“132”, “121”, “231”, “112”, “111”, “221”, “213”, “212”, “312”, “211”, “321”. To refuse
mirrored solutions with changed direction of coordinate axes, similarly to the
case of permutations P, sequences with pk1 > pk2 and pk1 = pk2&pk1 > pk3 can
be forbidden as for example “112” and “221” are equivalent as well as “123” and
“321”. In this case allowed permutations are “123”, “122”, “132”, “121”, “231”,
“112” and “111”.

The upper level problem may be solved with guarantee using explicit enu-
meration of all feasible solutions or a branch and bound algorithm similar
to [21, 25]. A branch and bound template [2, 3] may be used for implementa-
tion. Metaheuristic algorithms may be applied when problems are too large to
be solved with guarantee.

4 Experimental Investigation

The primal goal of the experimental investigation is to check if the proposed
approach is correct. Explicit enumeration for the upper level combinatorial
problems is used. However it is also interesting to compare performance of the
proposed approach with the approach based on quadratic programming. The
number of lower level problems solved is used for comparison.

At this stage of the research computational time is not used for comparison.
This is because a system of linear equations is solved using LU decomposition

Math. Model. Anal., 14(2):259–270, 2009.
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and then the bound constraints are checked. Such an approach is enough for
testing the correctness, but requires approximately the same computational
time as solution of quadratic programming problem by a standard algorithm.
It can be expected that iterative algorithms for solution of bound constrained
system of linear equations may be faster as they can be stopped immediately
when it is found that the solution cannot be feasible. In the case of quadratic
programming problem the smallest value of quadratic function at the boundary
of the feasible region should still be found. Investigation of algorithms for
solution of bound constrained system of linear equations as well as quadratic
programming problem is one of the directions of future research.

The accuracy of fit evaluated via minimum of S(x) depends on n and
δij , i, j = 1, . . . , n. To reduce this undesirable impact, a relative error is used
in the presentation of the results:

f(x) =

√

√

√

√S(x)

/

n
∑

i=1

n
∑

j=1

wijδ2
ij .

Several sets of multidimensional points corresponding to well understood
geometric objects have been used for experimental investigation: the sets of
vertices of multidimensional simplices and cubes [24]. Below we use shorthand
‘simplex’ and ‘cube’ for the sets of their vertices.

A frequently used test problem for MDS algorithms is based on experimental
testing of several soft drinks [8]. 38 students have tested ten different brands
of soft drinks. Each pair was judged on its dissimilarity on a 9 point scale (1 –
very similar, 9 – completely different). The accumulated dissimilarities have
been used as a practical data set in our experiments. This problem is referred
as ‘cola’ problem in the results below, n = 10 in this problem.

Problems of analysis of pharmacological binding affinity data [23] have been
used as other practical data sets. Binding affinity data is represented through
a matrix, one dimension formed by different ligands tested in a series of ex-
periments while the other dimension represents different proteins. Dissimilar-
ities of proteins are computed as city-block distances between vectors of the
log10-transformed binding affinities representing properties of the proteins. Dis-
similarities of ligands are computed as city-block distances between vectors of
the log10-transformed binding affinities representing ligands. ‘ruusk’ represents
binding affinity data of [12] analyzed as properties of three human and five ze-
brafish α2-adrenoceptor proteins, n = 8; ‘hwa’ represents binding affinity data
of [10] analyzed as properties of ligands, n = 9.

The results of experimental investigation are shown in Table 1. All values
of relative errors f∗ corresponding to minima of STRESS coincide for both
approaches – the same solutions of the problems have been found. The numbers
of systems of linear equations (NSLE) are quite larger than the numbers of
quadratic programming problems (NQPP) what is not surprising. The ratio
of the numbers increases exponentially depending on n and m. This means
that such an approach based on systems of linear equations may be faster
than one based on quadratic programming problems only if solution of bound
constrained system of linear equations is by at least the number of variables
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Table 1. Results of explicit enumeration.

m n f∗ NQPP NSLE
unit standard cubes empirical

simplices simplices data sets

1 3 0.0000 0.3333 3 7
1 4 0.3651 0.4082 0.4082 12 38
1 5 0.4140 0.4472 60 271
1 6 0.4554 0.4714 360 2342
1 7 0.4745 0.4879 2520 23647
1 8 0.4917 0.5000 0.4787 ruusk 0.2975 20160 272918
1 9 0.5018 0.5092 hwa 0.0107 181440 3543631
1 10 0.5113 0.5164 cola 0.3642 1814400 51123782
1 11 0.5176 0.5222 19958400 811316287

2 3 0.0000 0.0000 6 28
2 4 0.0000 0.0000 0.0000 78 741
2 5 0.0000 0.1907 1830 36856
2 6 0.1869 0.2309 64980 2743653
2 7 0.2247 0.2621 3176460 279602128

times faster than solution of quadratic programming problem.

If the lower level problem is feasible, the solution of system of linear equa-
tions is in polyhedron A(P′), therefore the minimum point of STRESS is in
polyhedron and there is no need to find the minimum point on the faces and
edges of this polyhedron. Therefore if the system defined by “123/123” has
solution with y > 0, it is not necessary to solve systems defined by “123/122”,
“123/112”, “122/122”, “122/112”, “112/112”, “123/111”, “111/111”. The numbers
of feasible systems of linear equations (NFSLE) are shown in Table 2. All lower
level problems are feasible for the problems of standard simplices when m = 1.
This means that in this case all possible polyhedrons A(P) contain minima
points and therefore STRESS function has n! minima points. The numbers of
feasible lower level problems are smaller for other data sets and for the case of
m 6= 1, but the numbers are still quite large. Moreover, even if only y12 > 0
solving the system of linear equations defined by “123/123”, it is not necessary
to evaluate the system defined by “123/112”. This encourages development of
an algorithm which takes into account the results of the solution of lower level
problems. Not only the number of required to solve systems would be reduced if
this will be taken into account, but the number of feasible lower level problems
might be used to count the number of minima points of STRESS function.

It is proved in [9] that the distances between image points are positive at a
local minimum point of STRESS. Therefore it is possible to avoid coincidence
of image points. This may be performed avoiding for example systems defined
by “112” and “112/112”. This would also reduce the number of lower level
problems and make the approach more attractive, but further investigation
should be performed.

Math. Model. Anal., 14(2):259–270, 2009.
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Table 2. The numbers of feasible lower level problems.

m n NSLE NFSLE
unit standard cubes empirical

simplices simplices data sets

1 3 7 7 7
1 4 38 38 38 38
1 5 271 219 271
1 6 2342 1907 2342
1 7 23647 17026 23647
1 8 272918 186599 272918 221975 ruusk 210195
1 9 3543631 2378067 3543631 hwa 1350181
1 10 51123782 34412855 51123782 cola 49208660
1 11 811316287 519221622 811316287

2 3 28 21 25
2 4 741 380 426 421
2 5 36856 11139 20670
2 6 2743653 606634 1414761
2 7 279602128 44663090 118027269

5 Conclusions

Two-level optimization for multidimensional scaling with city-block distances
based on combinatorial optimization and systems of linear equations is pro-
posed. The approach exploits piecewise quadratic structure of the objective
function. The lower level problems are bound constrained systems of linear
equations.

For investigation of the approach, the upper level combinatorial problem
is solved with guarantee using explicit enumeration of all feasible solutions.
Development of a branch and bound as well as metaheuristic algorithms for
the upper level combinatorial problem is a direction for future research.

The approach has been tested solving geometrical and empirical data sets.
The numbers of lower level problems are larger than in the case of similar
approach based on combinatorial optimization and quadratic programming.
However, lower level problems of systems of linear equations are simpler than
quadratic programming problems.

The numbers of lower level problems can be reduced significantly taking
into account results of their solutions. This is the primal direction for future
research. Investigation of algorithms for solution of bound constrained sys-
tem of linear equations as well as quadratic programming problem is another
direction for future research.
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[2] M. Baravykaitė and R. Čiegis. An implementation of a parallel general-
ized branch and bound template. Math. Model. Anal., 12(3):277–289, 2007.
(doi:10.3846/1392-6292.2007.12.277-289)
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