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Abstract. This paper presents an iterative method based on a self-adjoint and m-
accretive splitting for the numerical treatment of the steady state neutron transport
equation. Theoretical analysis shows that this method converges unconditionally to
the unique solution of the transport equation. The convergence of the method is
numerically illustrated and compared with the standard Source Iteration method and
multigrid method on sample problems in slab geometry and in two dimensional space.
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1 Introduction

Iterative methods are intensively used for the solution of the transport equa-
tion [1, 2, 6, 9, 10, 11, 14, 15, 17, 18, 19, 20]. The standard method is the
source iteration method based on a decoupling between the differential and
integral parts of the transport operator. Based on the natural splitting of the
integral part of transport operator, methods such as Jacobi, Gauss-Seidel [18]
and Successive over-relaxation (SOR) iteration have been successfully applied
to transport problem. Using the same splitting, an adaptation to the infinite
dimensional case of the minimal residual iteration method [1, 2] has been pro-
posed for the solution of the transport equation in slab geometry and in two
dimensional space. This method has proved its efficiency and it competes with
the SOR method.

In this work, focus is given on iterative methods for the numerical treatment
of the single group steady state neutron transport equation in slab geometry
and bounded convex domain of R

n (n = 2, 3). We introduce a two-step itera-
tion method linked to a Self-adjoint and m-Accretive splitting of the transport
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operator. We investigate the convergence of this iterative method. Theoreti-
cal analysis shows that iterations converge unconditionally to the solution of
the transport equation. An upper bound for the contraction factor of the it-
eration is derived. It is solely dependent on the spectrum of the Self-adjoint
part of the transport operator. The convergence of the method is numerically
illustrated and compared with the standard Source Iteration method, a spatial
multigrid method and Krylov subspace methods such as Induced Dimension
Reduction (IDR) [16], BiCGStab [7, 8] and a preconditioned GMRES methods
[3] on sample problems in slab geometry and in two dimensional space.

The paper is organized as follows. In Section 2, we set the problem and
present the splitting of the transport operator. Section 3 is devoted to the
presentation and the convergence analysis of the new iterative method. Section
4 deals with an implementation of the method. The discretization and the
numerical results obtained from example problems in slab geometry and two
dimensional space are presented in Section 5. Some concluding remarks are
given in Section 6.

2 Mathematical Setting and Splitting Method

2.1 Basic definition

Let us consider a Hilbert space H with inner product (·, ·)H and the associated
norm ‖ · ‖H. Let X be an unbounded linear operator on H with domain D(X).
Let I denotes the identity operator on H .

Definition 1. An operator X : D(X) ⊂ H → H is said to be m-accretive if
∀u ∈ D(X), (Xu, u)H ≥ 0 and ∀q ∈ H, there exists u ∈ D(X) such that
Xu+ u = q.

We have the following results [5, 9]:

Theorem 1. Assume that X is a m-accretive operator on H. Then:

1. D(X) is dense in H.

2. The operator X is closed.

3. ∀α > 0, (I + αX) is bijective from D(X) to H, the operator (I + αX)−1

is bounded and ‖(I + αX)−1‖H ≤ 1.

It follows from Theorem 1 that if X is a m-accretive operator, then for any
positive constant α it follows that the operator (αI + X) is positive definite
and ‖(αI +X)−1‖H ≤ 1/α. Thus (αI +X)−1 is bounded on H .

2.2 Mathematical Setting

The general single group, steady state first order neutron transport equation
is given by:

Ω · ∇xψ(x,Ω) + σ(x)ψ(x,Ω) =

∫

S2

κ(x,Ω,Ω′)ψ(x,Ω) dΩ′ + q(x,Ω), (2.1)
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SAS Method for Transport Equation 273

where σ(x) is the total cross section; κ(x,Ω,Ω′) is a positive kernel specifying
the scattering of particles; q(x,Ω) is a known particles source and ψ(x,Ω)
represents the angular flux to be determined for all point x = (x1, x2, x3) in a
bounded convex region D ⊂ R3 with a sufficiently smooth boundary ∂D and
all possible travel directions Ω = (θ, ϕ) on the unit sphere S2. The boundary
conditions prescribing the inflow of particles into the region D reads:

ψ(x,Ω) = u0(x,Ω), ∀(x,Ω) ∈ ∂D−, (2.2)

where ∂D− = {(x,Ω) ∈ ∂D × S2, Ω · ~n(x) < 0}, ~n(x) being the outer unit

normal to D at point x ∈ ∂D. When
∂ψ(x)

∂x3
= 0, the problem (2.1)–(2.2)

reduces to a 2D-problem in space. In that case, the third component of the
inner product Ω · ∇xψ is ignored.

In the case of slab geometry it is assumed that

∂ψ

∂x1
= 0,

∂ψ

∂x2
= 0.

Defining µ = cos(θ), where θ denotes the angle between Ω and the z−axis,
the angular flux becomes ψ(x,Ω) ≡ ψ(z, µ) and problem (2.1)–(2.2) reduces to
[9, 11, 13]























µ
∂ψ

∂z
+ σ(z)ψ −

∫ 1

−1

κ(z, µ, µ′)ψ(z, µ′) dµ′ = q(z, µ),

ψ(zl, µ) = gl(µ), for µ > 0,

ψ(zr, µ) = gr(µ), for µ < 0.

(2.3)

In this case, we set D = (zl, zr) and S2 = [−1, 1]. Without a loss of generality,
we assume in the following that vacuum boundary conditions are valid, i.e.
u0(x,Ω) ≡ 0 in (2.2) and gl(µ) ≡ gr(µ) ≡ 0 in (2.3).

Let Q = D × S2. We define the spaces

W 2(Q) =
{

ψ ∈ L2(Q), Ω · ∇xψ ∈ L2(Q)
}

,

W0 =
{

ψ ∈W 2(Q), ψ(x,Ω) = 0, ∀(x,Ω) ∈ ∂D−

}

.

The space W 2(Q) is equipped with the norm

‖ψ‖2
W 2 = ‖ψ‖2

+ ‖Ω · ∇xψ‖2

where ‖ · ‖ denotes the usual L2(Q) norm. The functions of W 2(Q) have traces
on ∂D− in L2(∂D × S2) [9]. Let























Kψ(x,Ω) =

∫

S2

κ(x,Ω,Ω′)ψ(x,Ω′) dΩ′,

Aψ(x,Ω) = Ω · ∇xψ(x,Ω),

Σψ(x,Ω) = σ(x)ψ(x,Ω),

Math. Model. Anal., 14(3):271–289, 2009.
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and T = A+Σ −K.
In the operator form, the equation (2.1) may be written as

Tψ(x,Ω) = q(x,Ω).

We have D(K) = D(Σ) = L2(Ω), where D(B) denotes the domain of operator
B. It follows that D(T ) = D(A) = W0.

Proceeding as in [1, 2], we make the following assumptions:

(A1) σ ∈ L∞(D), ∃σ0 > 0 such that σ(x) ≥ σ0 a.e. on D.

(A2) κ(x,Ω,Ω′) = κ(x,Ω′, Ω) and κ is positive.

(A3) ∃c ∈ [0, 1),

∫

S2

κ(x,Ω,Ω′) dΩ′ ≤ σ0c a.e. on Q.

The above assumptions guarantee the following results [2, 9, 13] .

Theorem 2. The operators T , K and A verify the following properties:

1. The operator T is positive definite.

2. The operators K and Σ −K are self-adjoint and positive definite.

3. The operator A is m-accretive.

It then follows from Theorem 2 statement (1) that the solution of problem
(2.1)–(2.2) exists and is unique in W0, and from Theorem 2 statements (2), (3)
that the operator T admits a self adjoint and m-accretive splitting.

2.3 The Splitting Methods

The standard splitting of the transport operator consists of a decoupling be-
tween the differential and the integral parts as follows −T = K − L, where
L = A + Σ. This splitting leads to the source iteration method: for a given
ψ0 ∈ D(T ), solve

{

Lψ(n+1) = Kψn + q

ψ(n+1) ∈ D(T ).

This method becomes extremely slow in the critical case. Several acceleration
techniques of the convergence of the source iteration method such as Diffusion
Synthetic Acceleration (DSA) [19] and multigrid algorithms have been intro-
duced and studied [6, 10].

Let us consider now another natural splitting of the transport operator
T = (A+S), where S = Σ−K. Therefore for any positive constant α, we have
the following two-step splitting:

{

T = (αI + S) − (αI −A)

T = (αI +A) − (αI − S).
(2.4)
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SAS Method for Transport Equation 275

3 Iterative Method

We present in this section an iterative method for the solution of problem (2.1)–
(2.2). It relies on the splitting (2.4) and gives a two-step iteration algorithm.

3.1 SA Splitting Iteration

Let’s take a constant α > 0. Given an initial guess ψ(0) ∈ D(T ), for k = 0, 1, . . .
until {ψ(k)} converges, calculate

{

(αI + S)ψ(k+ 1
2 ) = (αI −A)ψ(k) + q,

(αI +A)ψ(k+1) = (αI − S)ψ(k+ 1
2 ) + q.

(3.1)

Remark 1. We have the following observations:

1. Since the operator S is bounded, self-adjoint and positive definite, the
operator αI + S is bounded, self-adjoint and positive definite for α > 0.
Then it follows that (αI+S)−1 exists, it is bounded and self-adjoint. We
also have that αI − S is a bounded self-adjoint operator.

2. From the m-accretive property of the operator A, we deduce that for
α > 0, the operator αI + A is invertible from D(T ) to L2(Ω) and its
inverse (αI +A)−1 is a bounded operator.

From equation (3.1), we deduce that ψ(k+1) satisfies

(αI +A)ψ(k+1) = M(α)(αI + A)ψ(k) +N(α)q,

whereM(α) = S(α)A(α) andN(α) = 2α(αI+S)−1 with S(α) = (αI−S)(αI+
S)−1 and A(α) = (αI −A)(αI +A)−1. Therefore, the exact solution ψ∗ of the
problem (2.1)–(2.2) satisfies

‖ψ(k+1) − ψ∗‖(A+αI) ≤ ‖M(α)‖‖ψ(k) − ψ∗‖(A+αI),

where ‖ψ‖(A+αI) = ‖(αI + A)ψ‖, ψ ∈ W0.

Theorem 3. Let α be a positive constant. The functional ρA(α) defined on W0

by ρA(α)(u) = ‖(αI+A)u‖ is a norm on D(T ) equivalent to ‖ · ‖W 2. The norm
ρA(α) is denoted by ‖ · ‖(A+αI).

Proof. Let α be a positive constant. It can be easily seen from the linearity
of the operator (αI + A) and the properties of the norm ‖ · ‖ that ∀u, v ∈ W0

and any constant β we have

ρA(α)(u+ v) ≤ ρA(α)(u) + ρA(α)(v) and ρA(α)(βu) = |β|ρA(α)(u).

Moreover, since A is m-accretive, αI +A is positive definite and ρA(α)(u) = 0
if and and only if u = 0. Then it follows that ρA(α) is a norm on D(T ).

Let u ∈W0. We have

(

ρA(α)(u)
)2

= α2‖u‖2 + ‖Au‖2 + 2α(u,Au).

Math. Model. Anal., 14(3):271–289, 2009.
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Since (Au, u) ≥ 0 (A is m-accretive) and (Au, u) ≤ ‖u‖2 + ‖Au‖2

2
, we have

min{α2, 1}‖u‖2
W 2 ≤

(

ρA(α)(u)
)2 ≤ (α + 1)2‖u‖2

W 2.

It follows that, the norms ‖ · ‖W 2 and ρA(α) are equivalent in W0. ⊓⊔

Since ‖ ·‖(A+αI) is a norm in W0, it is well known that the iteration method
(3.1) converges (in the sense of the norm ‖ · ‖(A+αI)) if the operator M(α)
satisfies ‖M(α)‖ < 1. We have the following Lemma.

Lemma 1. Let α be a positive constant. If the operator X is m-accretive in a
Hilbert space H with the inner product (·, ·)H and the associate norm ‖ · ‖H,
then the operator X(α) defined by

X(α) = (αI −X)(αI +X)−1

satisfies ‖X(α)‖H ≤ 1.

Proof. Let α > 0. If X is m-accretive, then (αI +X) is bijective from D(X)
to H . The operator (αI+X)−1 is bounded and, for ψ ∈ D(X), (Xψ,ψ)H ≥ 0.
Moreover, we have

‖(αI −X)ψ‖2
H − ‖(αI +X)ψ‖2

H = −4α(Xψ,ψ)H ≤ 0.

Taking ψ = (αI +X)−1ϕ, (ϕ ∈ H), we obtain

∥

∥(αI −X)(αI +X)−1ϕ
∥

∥

2

H
= ‖X(α)ϕ‖2

H ≤ ‖ϕ‖2
H .

It follows that ‖X(α)‖ ≤ 1. ⊓⊔

Theorem 4. [Convergence of the SAS iteration method.] Let α be a positive
constant. The norm ‖M(α)‖ of the operator M(α) is bounded by

β(α) = sup
λ∈σ(S)

∣

∣

∣

∣

α− λ

α+ λ

∣

∣

∣

∣

,

where σ(S) is the spectrum of the operator S. Therefore it holds that

‖(M(α)‖ ≤ β(α) < 1, ∀α > 0,

and the SAS iteration converges to the unique solution ψ* ∈ D(T ) of the prob-
lem (2.1)–(2.2). The optimal parameter ᾱ which minimizes the bound β(α) is
given by (see, [12]) ᾱ =

√
λminλmax and

β(ᾱ) = (
√

λmax −
√

λmin)/(
√

λmax +
√

λmin),

where λmin and λmax denote respectively the lower and the upper bounds of the
spectrum of the operator S.
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Proof. For α > 0, A(α) and S(α) are bounded operators from L2(Q) to D(T )
and L2(Q) respectively. We have

‖M(α)‖ ≤ ‖S(α)‖ ‖A(α)‖ .

Since S is a bounded, self-adjoint operator in L2(Q), we have

‖S(α)‖ = ‖(αI − S)(αI + S)−1‖ = sup
λ∈σ(S)

∣

∣

∣

∣

α− λ

α+ λ

∣

∣

∣

∣

= β(α).

It holds from the positivity of α and λ that β(α) < 1. The proof of the theorem
is achieved if the norm of operator A(α) verifies ‖A(α)‖ ≤ 1. The operator
A is m-accretive in the Hilbert space L2(Q). It follows from Lemma 1 that
‖A(α)‖ ≤ 1. Therefore, ‖M(α)‖ ≤ β(α) < 1. ⊓⊔

From the equivalence between the norms ‖ · ‖W 2 and ‖ · ‖(A+αI) we get the
convergence with respect to the norm ‖ · ‖W 2 in D(T ). Additionally, since

‖u(k+1) − u∗‖ ≤ ‖u(k+1) − u∗‖W 2 , k = 0, 1, 2, · · · ,

we have
lim

k→+∞
‖u(k) − u∗‖ = lim

k→+∞
‖u(k) − u∗‖W 2 = 0.

Thus the sequence u(k) converges in D(T ) with respect to the norm ‖ · ‖.
The results of Theorem 4 show that β(α) is an upper bound of the contrac-

tion factor of the SAS iteration in the sense of the norm ‖.‖(A+αI) in D(T ). It

follows from assumption (A1), (A2) and (A3) that [9, 13]: ‖K‖ ≤ σ0c and

(Su, u) ≥ σ0(1 − c)‖u‖2, ∀u ∈ L2(Q).

Since S is self-adjoint, bounded and positive definite, S−1 is self-adjoint, boun-
ded and positive definite on the Hilbert space L2(Q). It holds that [4]:

1

λmax
≤ ‖S−1‖ = sup

‖u‖6=0

‖u‖
‖Su‖ ≤ 1

σ0(1 − c)
.

It follows that λmin ≥ σ0(1 − c) and

σ(S) ⊂ [σ0(1 − c), σ1 + σ0c],

where σ1 = sup
x∈D

|σ(x)|. We then have

β(α) ≤ sup
λ∈[σ0(1−c),σ1+σ0c]

∣

∣

∣

∣

λ− α

λ+ α

∣

∣

∣

∣

< 1.

Each step of the SAS iterative method is constituted of two-half steps which
require finding solutions of linear equations with operators (αI+S) and (αI+
A). Exact solutions of these equations are generally not available. These
linear equations can be solved approximately using appropriate methods with
respect to the properties of each operators. This results in the following inexact
Self-adjoint and m-Accretive splitting (ISAS) iteration for solving the linear
equation (2.1)–(2.2).

Math. Model. Anal., 14(3):271–289, 2009.
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3.2 ISAS Iteration Method

Given an initial guess ψ̄(0) ∈ D(T ). For k = 0, 1, 2, . . . until {ψ̄(k)} converges,

solve ψ̄(k+ 1
2 ) approximately from

(αI + S)ψ̄(k+ 1
2 ) ≈ (αI −A)ψ̄(k) + q

by employing an inner iteration (e.g the Conjugate Gradient method) with ψ̄(k)

as the initial guess, then solve ψ̄(k+1) approximately from

(αI +A)ψ̄(k+1) ≈ (αI − S)ψ̄(k+ 1
2 ) + q,

where α is a given positive constant. We now set

M1 = αI + S, M2 = αI +A, N1 = αI −A, N2 = αI − S.

Theorem 5. [Convergence of the ISAS iteration method.] If the iterative se-
quence {ψ̄(k)} is defined as follows

ψ̄(k+ 1
2 ) = ψ̄(k) + ϕ̄(k), with M1ϕ̄

(k) = φ̄(k) + p̄(k), (3.2)

satisfying
∥

∥p̄(k)
∥

∥ ≤ ǫk
∥

∥φ̄(k)
∥

∥, where φ̄(k) = q − T ψ̄(k), and

ψ̄(k+1) = ψ̄(k+ 1
2 ) + ϕ̄(k+ 1

2 ), with M2ϕ̄
(k+ 1

2 ) = φ̄(k+ 1
2 ) + τ̄ (k+ 1

2 ), (3.3)

satisfying
∥

∥τ̄ (k+ 1
2 )

∥

∥ ≤ ηk

∥

∥φ̄(k)
∥

∥, where φ̄(k+ 1
2 ) = q − T ψ̄(k+ 1

2 ), then {ψ̄(k)} is
given of the form

ψ̄(k+1) = M−1
2 N2M

−1
1 N1ψ̄

(k) +M−1
2 (I +N2M

−1
1 )q

+M−1
2 (N2M

−1
1 p̄(k) + τ̄ (k+1/2)).

Moreover, if ψ∗ ∈ D(T ) is the exact solution of the equation (2.1)–(2.2), then
we have for k = 0, 1, 2, . . .:

∥

∥

∥
M2(ψ̄

(k+1) − ψ∗)
∥

∥

∥
≤ (β + µθ(µǫk + ηk))

∥

∥

∥
M2(ψ̄

(k) − ψ∗)
∥

∥

∥
,

where

β =
∥

∥N2M
−1
1 N1M

−1
2

∥

∥ ≤ β(α), µ =
∥

∥N2M
−1
1

∥

∥ , θ =
∥

∥TM−1
2

∥

∥ .

In particular, if β(α)+ θ(µǫmax + ηmax) < 1, then the iterative sequence {ψ̄(k)}
converges to ψ∗∈D(T ), where ǫmax=max

k
{ǫk} and ηmax = max

k
{ηk}.

Proof. From (3.2), we have

ψ̄(k+ 1
2 ) = ψ̄(k) +M−1

1 (φ̄(k) + p̄(k)) = (I −M−1
1 T )ψ̄(k) +M−1

1 q +M−1
1 p̄(k)

= M−1
1 N1ψ̄

(k) +M−1
1 q +M−1

1 p̄(k).



i

i

“MMA14v23” — 2009/7/20 — 9:47 — page 279 — #9
i

i

i

i

i

i

SAS Method for Transport Equation 279

Similarly, from (3.3) we have

ψ̄(k+1)=M−1
2 N2ψ̄

(k+ 1
2 ) +M−1

2 q +M−1
2 τ̄ (k+ 1

2 ) (3.4)

=M−1
2 N2(M

−1
1 N1ψ̄

(k) +M−1
1 q +M−1

1 p̄(k)) +M−1
2 q +M−1

2 τ̄ (k+ 1
2 )

=M−1
2 N2M

−1
1 N1ψ̄

(k)+M−1
2 (N2M

−1
1 +I)q+M−1

2 (N2M
−1
1 p̄(k)+τ̄ (k+ 1

2 )).

The exact solution ψ∗ of equation (2.1)-(2.2) satisfies

ψ∗ = M−1
2 N2M

−1
1 N1ψ

∗ +M−1
2 (N2M

−1
1 + I)q. (3.5)

By subtracting (3.5) from (3.4), we have

ψ̄(k+1)−ψ∗ = M−1
2 N2M

−1
1 N1(ψ̄

(k) −ψ∗)+M−1
2 (N2M

−1
1 p̄(k) + τ̄ (k+ 1

2 )). (3.6)

Multiplying (3.6) by M2 and taking norms on both sides, we obtain

∥

∥M2(ψ̄
(k+1) − ψ∗)

∥

∥

≤
∥

∥N2M
−1
1 N1M

−1
2 M2(ψ̄

(k) − ψ∗)
∥

∥ +
∥

∥N2M
−1
1

∥

∥

∥

∥p̄(k)
∥

∥ +
∥

∥τ̄ (k+1/2)
∥

∥

≤
∥

∥N2M
−1
1 N1M

−1
2

∥

∥

∥

∥M2(ψ̄
(k) − ψ∗)

∥

∥ +
∥

∥N2M
−1
1

∥

∥

∥

∥p̄(k)
∥

∥ +
∥

∥τ̄ (k+1/2)
∥

∥.

Noticing that

∥

∥φ̄(k)
∥

∥ =
∥

∥b− T ψ̄(k)
∥

∥ =
∥

∥T (ψ∗ − ψ̄(k))
∥

∥ ≤
∥

∥TM−1
2

∥

∥

∥

∥M2(ψ
∗ − ψ̄(k))

∥

∥,

by the definition of the sequences {p̄(k)} and {τ (k+ 1
2 )} we have

∥

∥p̄(k)
∥

∥ ≤ ǫk
∥

∥φ̄(k)
∥

∥ ≤ ǫk
∥

∥TM−1
2

∥

∥

∥

∥M2(ψ
∗ − ψ̄(k))

∥

∥,
∥

∥τ̄ (k+ 1
2 )

∥

∥ ≤ ηk

∥

∥φ̄(k
∥

∥ ≤ ηk

∥

∥TM−1
2

∥

∥

∥

∥M2(ψ
∗ − ψ̄(k))

∥

∥.

Through substitution, we finally obtain

∥

∥M2(ψ̄
(k+1) − ψ∗)

∥

∥ ≤
∥

∥N2M
−1
1 N1M

−1
2

∥

∥

∥

∥M2(ψ̄
(k)−ψ∗)

∥

∥

+ǫk
∥

∥N2M
−1
1

∥

∥

∥

∥TM−1
2

∥

∥

∥

∥M2(ψ
∗−ψ̄(k))

∥

∥ + ηk

∥

∥TM−1
2

∥

∥

∥

∥M2(ψ̄
(k) − ψ̄∗)

∥

∥

≤ (β + θ(µǫk + ηk))
∥

∥M2(ψ̄
(k) − ψ∗)

∥

∥.

⊓⊔

Remark 2. If the first (resp., the second) inner equation of (3.1) can be solved
exactly, then the sequence ǫk (resp., ηk) is equal to zero and the convergence
rate of the ISAS iteration is given by R = β(α) + θηmax (resp., R = β(α) +
µθǫmax). It then follows that the convergence rate of the ISAS iterations is
reduced to the one of SAS iteration when the two inner equations of (3.1) are
exactly solved.

Theorem 6. In the case of isotropic scattering where the integral operator is
defined by

Kψ = σ(x)cPψ,

Math. Model. Anal., 14(3):271–289, 2009.
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with

Pψ =
1

|S2|

∫

S2

ψ(x,Ω′)dΩ′, |S2| =

∫

S2

dΩ′;

the inverse of the operator (αI + S) is given by:

(αI + S)−1 =
1

σ(x)(1 − c) + α
P +

1

σ(x) + α
(I − P ). (3.7)

Proof. The operator (αI + S) can be written as (αI + S) = λ(P + ǫ(I − P )),
where λ = σ(x)(1 − c) + α and ǫ = (σ(x) + α)/λ. Since P 2 = P , one has

(P + ǫ(I − P ))
(

P +
1

ǫ
(I − P )

)

= I.

It then follows that (αI + S)−1 = (P + (I − P ) /ǫ) /λ. ⊓⊔

Therefore, in the case of isotropic scattering, the first subproblem of the
system (3.1) can be solved explicitly. Moreover, the two-step iteration method
defined by (3.1) can be reduced to the following iteration: for a given ψ(0) ∈W0,
compute

(αI +A)ψ(k+1) = B
[

(αI −A)ψ(k) + q
]

+ q, for k = 0, 1, . . . ,

where

B =

(

α− σ(1 − c)

α+ σ(1 − c)
− α− σ

α+ σ

)

P +
α− σ

α+ σ
I.

4 An Implementation of the ISAS Method

The SAS iteration (3.1), can be written as : Given an initial guess ϕ(0) ∈ L2(Ω),
for k = 0, 1, . . . until {ϕ(k)} converges, calculate







(αI + S)ϕ
(k+ 1

2
)

= (αI −A)(αI +A)−1ϕ(k) + q,

ϕ(k+1) = (αI − S)ϕ(k+ 1
2 ) + q,

(4.1)

where

ϕ(k) = (αI +A)ψ(k), ϕ
(k+ 1

2
)

= ψ
(k+ 1

2
)

.

At each step k of the iteration method (4.1), we have to solve a linear equation

A(α)F = q(α), (4.2)

where A(α) = (αI + S) and q(α) = (αI −A)(αI +A)−1ϕ(k) + q. The solution
of equation (4.2) is then used to compute ϕ(k+1). An infinite dimensional
adaptation of the Conjugate Gradient method is employed to solve the equation
(4.2). We have the following algorithm for the ISAS method:

Let ψ(0) ∈ D(T ), R(0) = q − Tψ(0), q(α) = (αI −A)ψ(0) + q.
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While ‖R(k)‖ > ǫ do
begin

solve A(α)F = q(α) by CG method;

compute ϕ(k+1) = (αI − S)F + q ;

compute q(α) = (αI −A)(αI +A)−1ϕ(k+1);

compute R(k+1) = q − (I − (αI − S)(αI +A)−1)ϕ(k+1) ;

end

In the previous algorithms, we have to make clear how the right hand side
q(α) is computed, since it contains the inverse operator (αI + A)−1. Let ϕ ∈
L2(Q), we describe in the following how to compute φ = (αI−A)(αI+A)−1ϕ.
We have

φ = (αI −A)f, (4.3)

where f verifies the linear equation

(αI +A)f = ϕ, f ∈ D(T ). (4.4)

Once f is calculated, the product (4.3) can be easily computed. The differential
equation (4.4) can be solved numerically. The discrete solution of (4.4) can
be approximated by preconditioned Krylov methods such as the BiCGStab
algorithm with Gauss-Seidel preconditioner which was applied and investigated
for simulation of convection dominated flows and heat conduction problems
with nonlinear convection flows through boundaries of the domain [7, 8]. In
the case of one and two dimensional spaces, where DSN schemes are used, the
direct sweeping algorithm [9] is advised since it solve the problem in O(N)
operations, N being the size of the problem.

5 Discretization and Numerical Results

Here, we investigate the numerical simulations for one dimensional slab geom-
etry and two dimensional case.

5.1 One Dimensional Case

For the discretization of the problem (4.4), we introduce a finite set of J discrete
angular directions {µk}J

l=1 ∈ [−1, 1], which are nonzero and symmetric about
the origin. Using the discrete directions µl (l = 1, 2, . . . , J), the semi-discrete
formulation of the problem (4.4) can be stated as follows:







µl∂fl

∂x
+ αfl = ϕk, in (a, b),

f(a, µl) = f(b,−µl) = 0, µl > 0,
(5.1)

where fl(x) = f(x, µl), l = 1, 2, . . . , J .
The fully discrete form of the problem (4.4) is obtained by discretizing

the equation (5.1). The numerical grid of the spatial domain is defined by:
Dh = {xi, 0 ≤ i ≤ N}, where x0 = a, xi = xi−1 + (∆x)i (0 < i < N), xN = b
and h = max

0<i≤N
(∆x)i. The cell center grid points are xi+ 1

2
= (xi+1 + xi)/2 and

(∆x)i+ 1
2

= xi+1 − xi = hi.

Math. Model. Anal., 14(3):271–289, 2009.
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Using the difference method based on the control volume approach and cell
averaging, a fully discrete form of the transport problem (4.4) can be written
as follows:







al,ifl,i+1 + bl,iff,i = ϕl,i+ 1
2
, 0 ≤ i ≤ N − 1, fl,0 = 0, for µl > 0,

bl,ifl,i+1 + al,ifl,i = ϕl,i+ 1
2
, 0 ≤ i ≤ N − 1, fl,N = 0, for µl < 0,

(5.2)

where al,i = |µ
l
|/hi + α/2 and bl,i = −|µ

l
|/hi + α/2. The matrices of the

discrete systems (5.2) are sparse. These systems are solved by using the direct
forward substitution for µl > 0 and the backward substitution for µl < 0, since
their matrices are of triangular form.

5.2 Two Dimensional Case

For the solution of (4.4) we introduce a finite set of J discrete angular directions
ΩJ = {ωi = (µi, ηi, ξi)}i=J

i=1 ⊂ S1, which are nonzero and symmetric about the
origin. Using the discrete directions of the set ΩJ , the semi-discrete formulation
of the problem (4.4) reads:







µl
∂fl

∂x
+ ηl

∂fl

∂y
+ αfl = ϕl, in D ×ΩJ ,

fl(x) = 0, in ∂D− ×ΩJ ,

where we denote fl(x, y) = f(x, y, µl, ηl) (1 ≤ l ≤ J).
We assume that D is the rectangular domain defined by D = (a, b)× (c, d).

The numerical grid is defined by:

Dh = {(xi, yj), 0 ≤ i ≤ N, 0 ≤ i ≤M} ,
where x0 = a, xi = xi−1 + (∆x)i, xN = b, y0 = c, yj = yj−1 + (∆y)j ,
yM = d and h = maxij ((∆x)i, (∆y)j). The cell center grid points are defined
as: xi+ 1

2
= (xi+1 − xi)/2, yj+ 1

2
= (yj+1 − yj)/2, (∆x)i+ 1

2
= xi+1 − xi and

(∆y)j+ 1
2

= yj+1 − yj . Denoting by fij the approximation of the function f at

the node (xi, yj), the value of f at the cell center is approximated by:

fi+ 1
2 j+ 1

2
=
fij + fi+1j + fij+1 + fi+1j+1

4
.

Using the centered difference method for the approximation of derivative, a
fully discrete form of problem (4.4) reads :

µl

fl,i+1j+ 1
2
− fl,ij+ 1

2

(∆x)i+ 1
2

+ ηl

fl,i+ 1
2 j+1 − fl,i+ 1

2 j

(∆y)i+ 1
2

+ αfl,i+ 1
2 j+ 1

2
= ϕl,i+ 1

2 j+ 1
2
. (5.3)

Using the relations fij+ 1
2

= (fij + fij+1)/2 and fi+ 1
2 j = (fij + fi+1j)/2, system

(5.3) can be written as:

al,ijfl,ij + bl,ijfl,ij+1 + cl,ijfl,i+1j + dl,ijfl,i+1j+1 = ϕl,i+ 1
2 j+ 1

2
, (5.4)

where al,ij=(−θl,i−βl,j+α/4), bl,ij=(−θl,i+βl,j+α/4), cl,ij= (θl,i−βl,j+α/4),
dl,ij = (θl,i + βl,j + α/4) with θl,i = 0.5µl/(∆x)i+ 1

2
and βl,j = 0.5ηl/(∆y)j+ 1

2
.

The system (5.4) is explicitly solved using the sweeping method.
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Stability result. Let α be a positive constant. We have ‖(A+ αI)−1‖ ≤ 1
α

and the solution f of equation (4.4) verifies ‖f‖ ≤ ‖ϕ‖/α. It follows using piece-
wise bilinear approximation in space and piecewise constant approximation in
angle, that the solution {fl,i+1/2j+1/2} of (5.3) satisfies

|fh|h ≤ 1

α
|ϕh|h,

where | · |h is the following discrete analogue of the norm ‖ · ‖:

|fh|2h =
N−1
∑

i=0

M−1
∑

j=0

J
∑

l=1

(∆x)i+ 1
2
(∆y)i+ 1

2
Wlf

2
l,i+1/2j+1/2

with Wl being the weight associated to the angular node (µl, ηl) ∈ ΩJ . Thus
the discrete scheme (5.3) is stable. Moreover this scheme is of the second order
of accuracy and it is non monotonic. The monotonicity of the scheme can be
achieved in the limit case where h→ 0 [9].

5.3 Numerical Results

We took particular data for which an exact solution of problem (2.1) is known
in each case. For the iterative methods tested here, the iterations are stopped
when the relative error ‖U − Uexate‖2/‖Uexate‖2 is less than a prescribed ε > 0.

Let Ns and Na denote the total number of spatial grid points an discrete
angular directions respectively. At each iteration of the SAS method, we have
the following computational cost in one and two dimensional space isotropic
cases:

• The cost of the sweeping algorithm is O(NsNa) floating point operations
(specifically 4NsNa for 1-D and 8NsNa for 2-D).

• The solution of equation (4.2) using (3.7) needs O(NsNa) floating point
operations.

• Updating the right hand side took O(NsNa) floating point operations.
The overall computational cost at each iteration is O(NsNa).

In the anisotropic case, the computational cost of each iteration is given by
O(nCGNsN

2
a ), where nCG is the number of iterations necessary for the con-

vergence of CG algorithm. It decreases with the number of SAS iteration. In
both cases, there is no need in matrix storage.

Slab geometry case. Let take a = 0, b = 1. For x ∈ (0, 1) and µ, µ′ ∈ [−1, 1]
we set σ(x) = σ, κ(x, µ, µ′) = σc/2 and

q(x, µ) =

{

µ2 + σµx− σc/4, µ > 0,
µ2 + σµ(x− 1) − σc/4, µ < 0.

The exact solution of this problem is given by:

ψ(x, µ) =

{

µx, µ > 0,
µ(x− 1), µ < 0.

Math. Model. Anal., 14(3):271–289, 2009.
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In the numerical tests we take N = 10 and J = 10. We study the behaviour
of the SAS method with respect to parameters α, c and σ. The theoretical
number of SAS iterations is minimal for αt = σ(1−c). The SAS algorithm was
applied for several values of c and σ. For fixed c and σ, the numerical optimal
value of α can be localized in the interval [σ(1 − c), σ(1 − c/2)]. We take

α =











σ(1 − 19c/32), 0 < c < 0.9,

σ(1 − 23c/32), 0.9 ≤ c < 0.97,

1, 0.97 ≤ c ≤ 1.

We compare the number of iterations and the CPU time of the standard Source
Iteration (SI) method and the SAS method. There are two sets of tests: one
for a fixed value of c, another for a fixed σ.
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Figure 1. Comparison at fixed σ = 50 of Source Iteration and SAS in slab geometry for
values of c close to 1 (ǫ = 1E − 06): (left) Number of iterations; (right) CPU time.

As shown in Figure 1 – Figure 3, the SAS method converges faster than
the standard SI method, particularly for large values of σ and c close to 1. For
c = 0.99, we compare the σ dependence of the iterative methods used here. We
can see on Figure 2 that the number of iterations of the SAS method is the
same as that of the ISAS method using the Conjugate Gradient (ISAS(CG))
method for the first inner equation. It can also be seen that the computing
times of SAS and ISAS(CG) are roughly the same and are less than that of
the SI method. This observation remains true for very large values of σ (see,
Figure 3).

Two dimensional case. Let D = (0, 1) × (0, 1). For x = (x1, x2) ∈ D and
Ω = (µ, η) ∈ B(0, 1) = {Ω ∈ R

2, ‖Ω‖2 < 1}, we set σ(x) = σ, κ(x,Ω,Ω′) = σc
π ,

q(x, µ) =















µx2 + ηx1 + σx1x2 − σc/4, µ > 0, η > 0,
−µx2 + η(1 − x1) + σ(1 − x1)x2 − σc/4, µ < 0, η > 0,
−µ(1 − x2) − η(1 − x1) + σ(1 − x1)(1 − x2) − σc/4, µ, η < 0,
µ(1 − x2) − ηx1 + σx1(1 − x2) − σc/4, µ > 0, η < 0.
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Figure 2. Comparison at fixed c=0.99 of Source Iteration, SAS and ISAS(CG) in slab
geometry (ǫ = 1E − 06): (left) Number of iterations; (right) CPU time.
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Figure 3. Comparison at fixed c = 0.98 of Source Iteration, SAS and ISAS(CG) in slab
geometry for large values of σ (ǫ = 1E − 06): (left) Number of iterations; (right) CPU time.

The exact solution of this test problem is given by:

ψ(x, µ) =

{

x1x2, µ > 0, η > 0, (1 − x1)x2, µ < 0, η > 0,
(1 − x1)(1 − x2), µ < 0, η < 0, x1(1 − x2), µ > 0, η < 0.

For the numerical tests, we take ∆x = ∆y = 1
10 and J = 100. We perform

the same set of tests as in the case of slab geometry, using the previous values
of α for SAS iteration. For c = 0.98, we compare the σ dependence of the
methods tested here. It can be seen (see, Figure 4) that SAS method is more
efficient than the SI method, even for large values of σ (see, Figure 5).

We also compare the c dependence of the two iteration methods for σ = 50,
with c near to 1 (see, Figure 6). We can see that the SAS algorithm is still more
efficient. We plot in Figure 7 the convergence rate of the two methods at c = 0.5
and c = 1 for several values of σ. We can see that SAS algorithm converges for
c = 1, even for very large values of σ. As in the case of slab geometry, the SAS
algorithm is more efficient than the SI algorithm, particularly for the critical
cases (c close to 1 and/or large σ).

Math. Model. Anal., 14(3):271–289, 2009.
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Figure 4. Comparison of the SI and SAS methods in 2D case at fixed c = 0.98 (ǫ = 1E−5):
(left) number of iterations; (right) CPU time.

4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

550

600

log(σ)

iter
atio

ns

Comparison of Iterations number at fixed  c = 0.98

4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

22

log(σ)

tim
e (s

)
Comparison of the CPU time at fixed c = 0.98

SAS
SI

SAS
SI

Figure 5. Comparison of the SI and SAS methods in 2D case at fixed c = 0.98, for large σ

(ǫ = 1E − 5): (left) number of iterations; (right) CPU time.

Additionally, we present in Table 1 comparative numerical results (number
of iteration and CPU time) of SAS and IDR(s) (s denoting the dimension of the
Krylov subspace), SSOR preconditioned GMRES (fgmres), BiCGStab iterative
algorithm with Gauss-Seidel preconditioner (Bicgstab) and a spatial multigrid
method (MG). For this set of tests, we take ∆x = ∆y = 1

8 and J = 100. The
matrix G of the resulting discrete system has 2562500 non zeros entries. The
iterations are stopped when the relative error ‖B −GU‖2/‖B‖2 is less than
1E − 05, where B denotes the right hand side of the discrete system. The
convergence behaviour (relative residual as function of iteration) of the SAS,

Table 1. Iterations number and CPU time in s (in bracket) at σ = 100.

MG SAS IDR(4) IDR(16) Bicgstab fgmres

c = 0.5 23(107.87) 7(0.95) 87(5.28) 82(2.29) 41(11.28) 32(5.01)
c = 0.98 > 200 33(4.32) 125(7.56) 106(7.15) 77(20.97) 95(15.34)
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Figure 6. Comparison of the SI and SAS methods in 2D case at fixed σ = 50, for c ≈ 1

(ǫ = 1E − 05): (left) number of iterations; (right) CPU time.
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Figure 7. Comparison of the convergence rate in 2D case at fixed c of SI and SAS iteration
for several values of σ: (left) c = 0.5 and (right) c = 1.

MG and FGMRES are plotted in Figure 8 and Figure 9 for the cases c = 0.5
and c = 0.98 respectively. It can be observed that the SAS method is efficient
in both cases as compared to the other methods tested here.

6 Conclusion

Throughout this work, it comes that the iterative methods based on a Self-
adjoint and m-Accretive splitting of the transport operator presented, converge
unconditionally to the solution of the transport equation. The previous numer-
ical results show the feasibility and the effectiveness of the SAS iteration. It
appears that the SAS iteration is efficient compared to the standard Source
Iteration. The method converges for critical cases (c close to 1 and/or large
σ) and it can be easily implemented in 1D and 2D dimensions. It is impor-
tant to mention that the theoretical proof of the convergence of the method is
independent of the discretization.

Math. Model. Anal., 14(3):271–289, 2009.
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Figure 8. Convergence of the SAS, fgm-
res and MG (c = 0.5) methods at fixed
σ = 100.
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and MG (c = 0.98) methods at fixed σ =
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