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Abstract. In this paper, we consider an iterative method for equilibrium problems,
fixed point problems and variational inequality problems in the framework of Banach
space. The results presented in this paper improve and extend the corresponding
results announced by many others.
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1 Introduction and Preliminaries

Let E be a real Banach space with the norm ‖ · ‖ and C be a nonempty closed
convex subset of E. Let J be the normalized duality mapping from E into 2E∗

given by

Jx =
{

x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖
}

, ∀x ∈ E,

where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing
between E and E∗. It is well known that if E∗ is uniformly convex, then J is
uniformly continuous on bounded subsets of E. Moreover, if E is a reflexive
and strictly convex Banach space with a strictly convex dual, then J−1 is single
valued, one-to-one, surjective, and it is the duality mapping from E into E∗

and thus JJ−1 = IE∗ and J−1J = IE , see [9, 27] for more details.
Recall that a mapping A : C → E∗ is said to be monotone

〈x − y, Ax − Ay〉 ≥ 0, ∀x, y ∈ C.

∗ This work was supported by the Korea Research Foundation Grant funded by the Korean
Government (KRF-2008-313-C00050)

http://dx.doi.org/10.3846/1392-6292.2009.14.335-351
http://www.vgtu.lt/mma/
mailto:yjcho@gsnu.ac.kr
mailto:qxlxajh@163.com;smkang@nongae.gsnu.ac.kr


i

i

“MMA14v27” — 2009/7/20 — 10:17 — page 336 — #2
i

i

i

i

i

i
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Recall that a mapping A : C → E∗ is said to be α-inverse-strongly monotone
if there exists a positive real number α such that

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C.

Recall also that a monotone mapping A is said to be maximal if its graph
G(A) = {(x, f) : f ∈ Ax} is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping A is maximal iff for
(x, f) ∈ E × E∗ 〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(A) implies f ∈ Ax.

Let Q be a natural map from E into E∗∗. Then the topology for E∗ induced
by the topologizing family Q(E) is the weak∗ topology of E∗. An operator A
from C into E∗ is said to be hemi-continuous if for all x, y ∈ C, the mapping
f of [0, 1] into E defined by f(t) = A(tx + (1 − t)y) is continuous with respect
to the weak∗ topology of E∗.

Next, we consider the following variational inequality problem for the mono-
tone mapping A : C → E∗: find an u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.1)

We denoted by V I(C, A) the set of solutions of the variational inequality prob-
lem (1.1). From Takahashi [27], we have the following statement.

Remark 1. Let C be a nonempty convex subset of a Banach space E and let A
be a monotone and hemi-continuous operator from C into E∗ with C = D(A).
Then the set V I(C, A) is closed and convex. Further, if C is compact, then
V I(C, A) is nonempty.

Problem (1.1) is connected with the convex minimization problem, the com-
plementarity problem, see [11, 17, 27] for more details.

Let f be a bifunction from C × C to R, where R denotes the set of real
numbers. The equilibrium problem is to find p ∈ C such that

f(p, y) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by EP (f). Given a mapping T : C →
E∗, let f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then p ∈ EP (f) if and only if
〈Tp, y − p〉 ≥ 0 for all y ∈ C, i.e. p is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics can be reduced
to (1.2). Some methods have been proposed to solve the equilibrium problem,
see, for instance, [4, 10, 16].

For solving the equilibrium problem for a bifunction f : C × C → R, we
may assume that f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C we have lim
t→0+0

f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semi-continuous.
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Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be smooth if the
limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(Γ )

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit
(Γ ) is attained uniformly for x, y ∈ U . The norm of E is said to be Fréchet
differentiable if, for any x ∈ U , the limit (Γ ) is attained uniformly for all y ∈ U .
The modulus of smoothness of E is defined by

ρ(τ) = sup
{1

2
(‖x + y‖ + ‖x − y‖) − 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ

}

,

where ρ : [0,∞) → [0,∞) is a function. It is known that E is uniformly smooth
if and only if lim

τ→0
ρ(τ)/τ = 0. If E is uniformly smooth, then J is uniformly

norm-to-norm continuous on each bounded subset of E.

The modulus of convexity of E is the function δ : (0, 2] → [0, 1] defined by

δ(ǫ) = inf
{

1 −
∥

∥

∥

x + y

2

∥

∥

∥
: ‖x‖ = ‖y‖ = 1, ‖x − y‖ = ǫ

}

.

E is said to be uniformly convex if and only if δ(ǫ) > 0 for all 0 < ǫ ≤ 2. Let
p > 1, then E is said to be p-uniformly convex if there exists a constant c > 0
such that δ(ǫ) ≥ cǫp for all ǫ ∈ [0, 2]. Observe that every p-uniformly convex
space is uniformly convex. It is well known (see for example [29]) that

Lp(lp) or W p
m is

{

p − uniformly convex if p ≥ 2;

2 − uniformly convex if 1 < p ≤ 2.

Next, assume that E is a smooth Banach space. Consider the functional
defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E. (1.3)

Observe that in a Hilbert space H , functional (1.3) reduces to φ(x, y) = ‖x −
y‖2, x, y ∈ H. Alber [1] recently introduced a generalized projection operator
ΠC in a real Banach space which is an analogue of the metric projection in
Hilbert spaces. The generalized projection ΠC : E → C is a map that assigns
to an arbitrary point x ∈ E the minimum point of the functional φ(x, y) in C.
That is, ΠCx = x̄, where x̄ is the solution to the minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x). (1.4)

Existence and uniqueness of the operator ΠC follows from the properties of the
functional φ(x, y) and strict monotonicity of the mapping J (see, for example,
[1, 2, 9, 14, 27]). In Hilbert spaces, ΠC = PC . It is obvious from the definition
of function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2, ∀x, y ∈ E. (1.5)

Math. Model. Anal., 14(3):335–351, 2009.
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Remark 2. If E is a reflexive, strictly convex and smooth Banach space, then
for x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient to show that if
φ(x, y) = 0 then x = y. From (1.5), we have ‖x‖ = ‖y‖. This implies that
〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J, one has Jx = Jy. Therefore,
we have x = y; see [9, 27] for more details.

Let C be a closed convex subset of E, T a mapping from C into itself. A
point p in C is said to be an asymptotic fixed point of T [21] if C contains a
sequence {xn} which converges weakly to p such that lim

n→∞
‖xn − Txn‖ = 0.

A point p in C is said to be a strongly asymptotic fixed point of T [30] if C
contains a sequence {xn} which converges strongly to p such that

lim
n→∞

‖xn − Txn‖ = 0.

In this paper, F (T ) denotes the set of strongly asymptotic fixed points of

the mapping T , F̃ (T ) denotes the set of asymptotic fixed points of the mapping
T and F (T ) denotes the set of fixed point of the mapping T , respectively.

Definition 1. Recall that a mapping T from C into itself is said to be rela-
tively nonexpansive [5, 6, 8, 15] if

(i) F̃ (T ) = F (T ) 6= ∅;

(ii) φ(p, Tx) ≤ φ(p, x) ∀x ∈ C, p ∈ F (T ).

The asymptotic behaviour of a relatively nonexpansive mapping was studied
in [3, 5].

Definition 2. Recall that a mapping T from C into itself is said to be rela-
tively weak nonexpansive [30] if

(i) F (T ) = F (T ) 6= ∅;

(ii) φ(p, Tx) ≤ φ(p, x) ∀x ∈ C, p ∈ F (T ).

Definition 3. Recall that T is said to be φ-nonexpansive [19] if

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

Definition 4. Recall that T is said to be quasi-φ-nonexpansive [19] if

F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀ x ∈ C, p ∈ F (T ).

Remark 3. The class of quasi-φ-nonexpansive mappings is more general than
the class of relatively weak nonexpansive mappings and the class of relatively

nonexpansive mappings which require strong restrictions: F (T ) = F̃ (T ) and
F (T ) = F (T ).

We have the following implications A =⇒ B =⇒ C, where A denotes the
class of relatively nonexpansive mappings, B denotes the class of relatively
weak nonexpansive mappings and C denotes the class of quasi-φ-nonexpansive
mappings, respectively.

Next, we give some examples of quasi-φ-nonexpansive mappings.



i

i

“MMA14v27” — 2009/7/20 — 10:17 — page 339 — #5
i

i

i

i

i

i

Convergence Analysis on Hybrid Projection Algorithms 339

Example 1. (Qin et al. [19]). Let E be a uniformly smooth and strictly convex
Banach space and A ⊂ E × E∗ is a maximal monotone mapping such that
its zero set A−10 is nonempty. Then, Jr = (J + rA)−1J is a closed quasi-φ-
nonexpansive mapping from E onto D(A) and F (Jr) = A−10.

Example 2. (Qin et al. [19]). Let ΠC be the generalized projection from a
smooth, strictly convex, and reflexive Banach space E onto a nonempty closed
convex subset C of E. Then, ΠC is a closed quasi-φ-nonexpansive mapping
from E onto C with F (ΠC) = C.

Recently, many authors studied variational inequality problems, fixed point
problems and equilibrium problems by hybrid projection algorithms in the
framework of Hilbert spaces and Banach spaces, respectively; see, for instance,
[7, 12, 13, 18, 19, 20, 23, 25, 26, 28, 30] and the references given therein.

In 2004, Iiduka, Takahashi and Toyoda [12] introduced the following hybrid
projection algorithm in a real Hilbert space:































x1 = x ∈ C chosen arbitrarily,

yn = PC(xn − λnAxn),

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = ΠCn+1x0, ∀n ≥ 1,

where A : C → H is inverse-strongly monotone mapping. They proved that
the sequence {xn} generated by above iterative algorithm converges strongly
to PV I(C,A)(x) provided that V I(C, A) 6= ∅, where PV I(C,A) is the metric pro-
jection from C onto V I(C, A).

In [13], Iiduka and Takashi obtained an analogue result in the framework
of Banach spaces. To be more precise, they proved the following result.

Theorem 1. Let E be a 2-uniformly convex and uniformly smooth Banach
space and let A be an operator from E into E∗ which satisfies the conditions

(1) A is inverse-strongly monotone,

(2) A−1(0) 6= ∅.
If {λn} is chosen so that λn ∈ [a, c2α/2] for some a with 0 < a ≤ c2α/2, then
the sequence {xn} generated by the following process































x1 = x ∈ C,

yn = J−1(Jxn − λnAxn),

Xn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)},
Yn = {z ∈ E : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠXn∩Yn

x, ∀n ≥ 1,

converges strongly to ΠA−1(0)x, where 1/c is the 2-uniformly convex constant
of E and ΠA−1(0) is the generalized projection from E onto A−1(0).

Math. Model. Anal., 14(3):335–351, 2009.
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Recently, Zegeye and Shahzad [30] improved Theorem 1 by considering the
following hybrid projection algorithm:







































x0 ∈ K chosen arbitrarily,

yn = ΠC [J−1(Jxn − λnAxn)], zn = Tyn,

H0 = {v ∈ K : φ(v, z0) ≤ φ(v, y0) ≤ φ(v, x0)},
Hn = {v ∈ Hn−1 ∩ Wn−1 : φ(v, zn) ≤ φ(v, yn) ≤ φ(v, xn)},
W0 = K, Wn = {v ∈ Wn−1 ∩ Hn−1 : 〈xn − v, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn

x0, ∀n ≥ 1.

To be more precise, they obtained the following result.

Theorem 2. Let E be a real uniformly smooth and 2-uniformly convex Banach
space with dual E∗. Let K be a nonempty, closed and convex subset of E. Let
A : K → E∗ be a γ-inverse strongly monotone mapping and T : K → K be a
relatively weak nonexpansive mapping such that V I(K, A)∩F (T ) 6= ∅. Assume
that ‖Ax‖ ≤ ‖Ax − Ap‖ for all x ∈ K and p ∈ V I(K, A). Let

0 < a0 ≤ αn ≤ b0 = γc2/2,

where c is some constant. Then the sequence {xn} generated by above hybrid
projection algorithm converges strongly to ΠF (T )∩V I(K,A)x0, where the operator
ΠF (T )∩V I(K,A) is the generalized projection from E onto F (T ) ∩ V I(K, A).

Very recently, Qin, Cho and Kang [19] studied the so-called equilibrium
problem for a bifunction f in a Banach space which includes Takahashi and
Zembayashi [28] as a special case, see [28] for more details. More precisely, they
proved the following result.

Theorem 3. Let C be a nonempty and closed convex subset of a uniformly
convex and uniformly smooth Banach space E. Let f be a bifunction from
C × C to R satisfying (A1)–(A4) and let T, S : C → C be two closed quasi-φ-
nonexpansive mappings such that F (T ) ∩ F (S) ∩ EP (f) 6= ∅. Let {xn} be a
sequence generated by the following manner:







































x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ΠC1x0,

yn = J−1(αnJxn + βnJTxn + γnJSxn),

un ∈ C such that f(un, y) + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 1,

where J is the duality mapping on E. Assume that {αn}, {βn} and {γn} are
three sequences in [0, 1] satisfying the restrictions:

(a) αn + βn + γn = 1;

(b) lim inf
n→∞

αnβn > 0, lim inf
n→∞

αnγn > 0;



i

i

“MMA14v27” — 2009/7/20 — 10:17 — page 341 — #7
i

i

i

i

i

i

Convergence Analysis on Hybrid Projection Algorithms 341

(c) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠF (T )∩F (S)∩EP (f)x0.

In this paper, motivated and inspired by the research going on in this di-
rection, we introduce a more general hybrid projection algorithm (see below)
to find a common element of the set of solutions of equilibrium problem (1.2),
the set of solutions of variational inequality problems (1.1) and the set of fixed
points of a quasi-φ-nonexpansive mapping in the framework Banach spaces.
The results presented in this paper mainly improve the results of [13] and [30].

In order to prove our main results, we also need the following lemmas.

Lemma 1. [14] Let E be a uniformly convex and smooth Banach space and let
{xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or
{yn} is bounded, then xn − yn → 0.

Lemma 2. [1] Let C be a nonempty closed convex subset of a smooth Banach
space E and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 3. [1] Let E be a reflexive, strictly convex and smooth Banach space,
let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma 4. [19] Let E be a uniformly convex and smooth Banach space, let C
be a closed convex subset of E, and let T be a closed and quasi-φ-nonexpansive
mapping from C into itself. Then F (T ) is a closed convex subset of C.

Lemma 5. [4] Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction from C ×C to R satisfying
(A1)–(A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 6. Let C be a closed convex subset of a uniformly smooth, strictly
convex, and reflexive Banach space E, and let f be a bifunction from C ×C to
R satisfying (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C
as follows:

Trx =
{

z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉, ∀y ∈ C

}

.

Then the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., ∀x, y ∈ E,

〈Trx − Tr, JTrx − JTry〉 ≤ 〈Trx − Tr, Jx − Jy〉;

Math. Model. Anal., 14(3):335–351, 2009.



i

i

“MMA14v27” — 2009/7/20 — 10:17 — page 342 — #8
i

i

i

i

i

i

342 X. Qin, Y. J. Cho and S. M. Kang

(3) F (Tr) = EP (f);

(4) EP (f) is closed and convex;

(5) Tr is quasi-φ-nonexpansive.

Proof. It follows from Lemma 5 that Tr is well-defined. From Lemma 2.8 of
Takahashi and Zembayashi [28], we see that (1)–(4) hold. From [28], we also
see that Tr is relatively nonexpansive. From definition of quasi-φ-nonexpansive
mappings, we see that Tr is quasi-φ-nonexpansive. This completes the proof.
⊓⊔

Lemma 7. [28] Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction from C ×C to R satisfying
(A1)–(A4), and let r > 0. Then

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x), ∀x ∈ E, q ∈ F (Tr).

Lemma 8. [3] Let E be a 2-uniformly convex Banach space. Then we have

‖x − y‖ ≤ 2

c2
‖Jx − Jy‖, ∀x, y ∈ E, (1.6)

where J is the normalized duality mapping of E and 0 < c ≤ 1.

We denote by NC(x) the normal cone for C at a point x ∈ C, that is
NC(x) := {x∗ ∈ E∗ : 〈x − y, x∗〉 ≥ 0, ∀y ∈ C}. The following lemma is
important for our main results.

Lemma 9. [22] Let C be a nonempty closed convex subset of a Banach space
E and let A be a monotone and hemi-continuous operator of C into E. Let
Q ⊂ E × E∗ be an operator defined as follows:

Qx :=

{

Ax + NCx, if x ∈ C,

∅, if x /∈ C.

Then Q is maximal monotone and Q−1(0) = V I(C, A).

Albert [1] studied the following functional V : E × E∗ → R defined by

V (x, x∗) = ‖x‖∗ − 2〈x, x∗〉 + ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗.

From the definition of the functional V , we see that V (x, x∗) = φ(x, J−1x∗).

Lemma 10. [1] Let E be a reflexive, strictly convex and smooth Banach space
with E∗ as its dual. Then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.
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2 Main Results

Theorem 4. Let C be a nonempty and closed convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let f be a bifunction from C×C
to R satisfying (A1)–(A4), A an α-inverse-strongly monotone mapping from C
into E∗ and T : C → C a closed quasi-φ-nonexpansive mapping. Assume that
Ω = F (T ) ∩ EP (f) ∩ V I(C, A) 6= ∅. Let {xn} be a sequence generated by the
following manner:















































x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = ΠC [J−1(Jxn − λnAxn)], zn = Tyn,

un ∈ C such that f(un, y) + 1
rn

〈y − un, Jun − Jzn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, zn) ≤ φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 0,

where J is the duality mapping on E and {rn} is a positive number sequence
such that {rn} ⊂ [a,∞) for some a > 0. Assume that ‖Ax‖ ≤ ‖Ax − Ap‖ for
all x ∈ C and p ∈ V I(C, A) and 0 < β ≤ λn ≤ c2α/2, for all n ≥ 1, where c is
the constant defined by (1.6). Then {xn} converges strongly to ΠΩx0.

Proof. From Remark 1, Lemma 4 and Lemma 6, we see that Ω is closed and
convex. First, we show that Cn is closed and convex for all n ≥ 1. It is obvious
that C1 = C is closed and convex. Suppose that Ck is closed and convex for
some k ∈ N, where N denotes the set of positive integers. Since

φ(v, uk) ≤ φ(v, zk) ⇐⇒ 2〈v, Jzk − Juk〉 ≤ ‖zk‖2 − ‖uk‖2, (2.1)

we have that Dk+1 := {v ∈ Ck : φ(v, uk) ≤ φ(v, zk)} is closed and convex. It is
easy to see that Dk+1 is closed. Next, we show that Dk+1 is convex. Indeed,
for any v1, v2 ∈ Dk+1, we see that v1 and v2 ∈ Ck and satisfy (2.1). That is,

2〈v1, Jzk − Juk〉 ≤ ‖zk‖2 − ‖uk‖2 (2.2)

and

2〈v2, Jzk − Juk〉 ≤ ‖zk‖2 − ‖uk‖2. (2.3)

For any t ∈ (0.1), multiplying (2.2) by t and adding to (2.3) multiplied by 1− t
yields

2〈tv1 + (1 − t)v2, Jzk − Juk〉 ≤ ‖zk‖2 − ‖uk‖2. (2.4)

Sin Ck is closed and convex by assumption, we have that tv1 + (1− t)v2 ∈ Ck,
which combines with (2.4) shows that tv1 +(1− t)v2 ∈ Dk+1. This proves that
Dk+1 is closed and convex. From

φ(v, zk) ≤ φ(v, yk) ⇐⇒ 2〈v, Jyk − Jzk〉 ≤ ‖yk‖2 − ‖zk‖2,

Math. Model. Anal., 14(3):335–351, 2009.
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we also have that Ek+1 := {v ∈ Ck : φ(v, zk) ≤ φ(v, yk)} is closed and convex.
In a similar way, we can prove that Fk+1 := {v ∈ Ck : φ(v, yk) ≤ φ(v, xk)} is
closed and convex. Noticing that

Ck+1 = Dk+1 ∩ Ek+1 ∩ Fk+1,

we see that Ck+1 is closed and convex. Then, for all n ≥ 1, Cn is closed and
convex. This shows that ΠCn+1x0 is well defined. Notice that un = Trn

zn for
all n ≥ 1. From Lemma 6, one has that Trn

is quasi-φ-nonexpansive mapping
for each n ≥ 1.

Next, we prove that F ⊂ Cn for all n ≥ 1. F ⊂ C1 = C is obvious. Suppose
F ⊂ Ck for some k ∈ N. Then, for ∀w ∈ F ⊂ Ck, from Lemma 8, Lemma 10
and the condition 0 < λn ≤ c2α/2 for all n ≥ 1, one has

φ(w, uk) = φ(w, Trk
zk) ≤ φ(w, zk)=φ(w, Tyk)≤φ(w, ΠC [J−1(Jxk−λkAxk)])

≤ φ(w, J−1(Jxk − λkAxk)) = V (w, Jxk − λkAxk)

≤ V (w, Jxk − λkAxk + λkAxk) − 2〈J−1(Jxk − λkAxk) − w, λkAxk〉
≤ φ(w, xk) − 2λk〈J−1(Jxk − λkAxk) − xk, Axk〉

− 2λk〈xk − w, Axk − Aw〉 − 2λk〈xk − w, Aw〉
≤ φ(w, xk) − 2λk〈J−1(Jxk − λkAxk) − J−1Jxk, Axk〉 − 2λkα‖Axk − Aw‖2

≤ φ(w, xk) + 2λk‖J−1(Jxk − λkAxk) − J−1Jxk‖‖Axk‖ − 2λkα‖Axk − Aw‖2

≤ φ(w, xk) +
4

c2
λ2

k‖Axk − Aw‖2 − 2λkα‖Axk − Aw‖2 ≤ φ(w, xk), (2.5)

which shows that w ∈ Ck+1. This implies that F ⊂ Cn for all n ≥ 1. From
xn = ΠCn

x0, one sees

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn. (2.6)

Since F ⊂ Cn for all n ≥ 1, we arrive at

〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ F. (2.7)

From Lemma 3, one has

φ(xn, x0) = φ(ΠCn
x0, x0) ≤ φ(w, x0) − φ(w, xn) ≤ φ(w, x0),

for each w ∈ F ⊂ Cn and for all n ≥ 1. Therefore, the sequence φ(xn, x0) is
bounded.

On the other hand, noticing that xn = ΠCn
x0 and xn+1 = ΠCn+1x0 ∈

Cn+1 ⊂ Cn, one has

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1.

Therefore, {φ(xn, x0)} is nondecreasing. It follows that the limit of {φ(xn, x0)}
exists. By the construction of Cn, one has that Cm ⊂ Cn and xm = ΠCm

x0 ∈
Cn for any positive integer m ≥ n. It follows that

φ(xm, xn) = φ(xm, ΠCn
x0) ≤ φ(xm, x0) − φ(ΠCn

x0, x0)

= φ(xm, x0) − φ(xn, x0). (2.8)
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Letting m, n → ∞ in (2.8), one has φ(xm, xn) → 0. It follows from Lemma 1
that xm − xn → 0 as m, n → ∞ Hence, {xn} is a Cauchy sequence. Since E is
a Banach space and C is closed and convex, one can assume that

xn → p ∈ C, (n → ∞). (2.9)

Next, we show that p ∈ F (T ). By taking m = n + 1 in (2.8), one arrives at

lim
n→∞

φ(xn+1, xn) = 0. (2.10)

From Lemma 1, one has

lim
n→∞

‖xn+1 − xn‖ = 0. (2.11)

Noticing that xn+1 ∈ Cn+1, we obtain

φ(xn+1, un) ≤ φ(xn+1, zn) ≤ φ(xn+1, yn) ≤ φ(xn+1, xn).

It follows from (2.10) that

lim
n→∞

φ(xn+1, un) = lim
n→∞

φ(xn+1, zn) = lim
n→∞

φ(xn+1, yn) = 0.

From Lemma 1, one has

lim
n→∞

‖xn+1 − un‖ = lim
n→∞

‖xn+1 − zn‖ = lim
n→∞

‖xn+1 − yn‖ = 0. (2.12)

Notice that
‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖.

It follows from (2.11) and (2.12) that

lim
n→∞

‖xn − yn‖ = 0. (2.13)

It follows from (2.9) that

yn → p, as n → ∞. (2.14)

On the other hand, one has

‖Tyn − yn‖ ≤ ‖Tyn − xn+1‖ + ‖xn+1 − yn‖ = ‖zn − xn+1‖ + ‖xn+1 − yn‖.

From (2.12), one arrives at

lim
n→∞

‖Tyn − yn‖ = 0

and it is easy to get p ∈ F (T ) from the closedness of T .
Next, we show that p ∈ V I(C, A). Let Q be the maximal monotone operator

defined by Lemma 9:

Qx :=

{

Ax + NCx, if x ∈ C,

∅, if x /∈ C.

Math. Model. Anal., 14(3):335–351, 2009.
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For any given (x, x′) ∈ G(Q), we see that x′ − Ax ∈ NCx. Since yn ∈ C, by
the definition of NCx, we have

〈x − yn, x′ − Ax〉 ≥ 0.

On the other hand, from yn = ΠC [J−1(Jxn−λnAxn)] and Lemma 2, we obtain
that

〈x − yn, Jyn − (Jxn − λnAxn)〉 ≥ 0,

from which it follows that

〈x − yn,
Jyn − Jxn

λn
+ Axn〉 ≥ 0.

Therefore, we have

〈x − yn, x′〉
≥ 〈x − yn, Ax〉

≥ 〈x − yn, Ax〉 − 〈x − yn,
Jyn − Jxn

λn
+ Axn〉

= 〈x − yn, Ax − Ayn〉 + 〈x − yn, Ayn − Axn〉 − 〈x − yn,
Jyn − Jxn

λn
〉

≥ 〈x − yn, Ayn − Axn〉 − 〈x − yn,
Jyn − Jxn

λn
〉. (2.15)

Since A is α-inverse strongly monotone, we have

‖Ayn − Axn‖ ≤ 1

α
‖yn − xn‖.

Thanks to (2.13), we obtain

lim
n→∞

‖Ayn − Axn‖ = 0.

From (2.15), we arrive at 〈x − p, x′〉 ≥ 0 . Since A is maximal monotone, we
obtain that p ∈ A−1(0) and hence p ∈ V I(C, A).

Next, we show p ∈ EF (f). Notice that

‖un − xn‖ ≤ ‖un − xn+1‖ + ‖xn+1 − xn‖.

It follows from (2.11) and (2.12) that

lim
n→∞

‖un − xn‖ = 0. (2.16)

Since J is uniformly norm-to-norm continuous on bounded sets, one obtains

lim
n→∞

‖Jun − Jxn‖ = 0. (2.17)

Noticing un = Trn
zn and Lemma 7, for each w ∈ F , one has

φ(un, zn) = φ(Trn
zn, zn) ≤ φ(w, zn) − φ(w, Trn

zn)

≤ φ(w, xn) − φ(w, un) = 2〈w, Jun − Jxn〉 + ‖xn‖2 − ‖un‖2

≤ 2‖w‖‖Jun − Jxn‖ + (‖xn‖ + ‖un‖)‖xn − un‖.
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From (2.16), (2.17) and Lemma 1, one arrives at

‖un − zn‖ → 0, (n → ∞). (2.18)

From the assumption rn ≥ a, one sees

lim
n→∞

‖Jun − Jzn‖
rn

= 0. (2.19)

Since un = Trn
zn, one obtains

f(un, y) +
1

rn
〈y − un, Jun − Jzn〉 ≥ 0, ∀y ∈ C.

From the (A2), one arrives at

‖y−un‖
‖Jun − Jzn‖

rn
≥ 〈y−un,

Jun − Jzn

rn
〉 ≥ −f(un, y) ≥ f(y, un), ∀y ∈ C.

By taking the limit as n → ∞ in above inequality and from (A4) and (2.19),
one has

f(y, p) ≤ 0, ∀y ∈ C.

For 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)p. Noticing that y, p ∈ C, one
obtains yt ∈ C, which yields that f(yt, p) ≤ 0. It follows from (A1) that

0 = f(yt, yt) ≤ tf(yt, y) + (1 − t)f(yt, p) ≤ tf(yt, y).

That is, f(yt, y) ≥ 0. Let t ↓ 0, from (A3), we obtain f(p, y) ≥ 0, for ∀y ∈ C.
This implies that p ∈ EP (f). This shows that p ∈ F.

Finally, we prove that p = ΠF x0. By taking limit in (2.7), one has

〈p − w, Jx0 − Jp〉 ≥ 0, ∀w ∈ F.

At this point, in view of Lemma 2, one sees that p = ΠF x0. This completes
the proof. ⊓⊔

Remark 4. The highlight of Theorem 4 is as follows:

(a) We consider a more general nonlinear mapping, i.e. quasi-φ-nonexpansive
mapping. To be more precise, we relax the strong restrictions F (T ) =

F̃ (T ) and F (T ) = F (T ) on the mapping T ; see [5, 6, 14, 30] for more
details;

(b) We remove the redundant iterative step ”Yn” in [13] and ”Wn” in [30];

(c) We consider three hot problems of fixed point problems, variational in-
equality problems and equilibrium problems. In [30], the authors only
studied fixed point problems and variational inequality problems. In [13],
the authors only consider variational inequality problems.

As some applications of Theorem 4, we have the following results.

Math. Model. Anal., 14(3):335–351, 2009.
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Corollary 1. Let C be a nonempty and closed convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let A an α-inverse-strongly
monotone mapping from C into E∗ and T : C → C be a closed quasi-φ-nonex-
pansive mapping. Assume that F (T ) ∩ V I(C, A) 6= ∅. Let {xn} be a sequence
generated by the following manner:







































x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = ΠC [J−1(Jxn − λnAxn)], zn = Tyn,

Cn+1 = {v ∈ Cn : φ(v, zn) ≤ φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 0,

where J is the duality mapping on E. Assume that ‖Ax‖ ≤ ‖Ax − Ap‖ for

all x ∈ C and p ∈ V I(C, A) and 0 < λn ≤ c2α
2 , for all n ≥ 1, where c is the

constant defined by (1.6). Then {xn} converges strongly to ΠF (T )∩V I(C,A)x0.

Remark 5. Corollary , which includes the results of Iiduka and Takahashi [13] as
a special case, mainly improves and extends the corresponding result announced
by Zegeye and Shahzad [30] in the following sense:

(1) Improve the mapping T from the relatively weak nonexpansive mapping
to the quasi-φ-nonexpansive mapping. To be more precise, we relax the
strong restriction F (T ) = F (T ).

(2) From computation point of view, we remove the iterative step ”Wn”; see
[30] for more details.

In the framework of Hilbert spaces, the following result can be deduced
from Corollary 5 immediately.

Corollary 2. Let C be a nonempty and closed convex subset of a real Hilbert
space H . Let A an α-inverse-strongly monotone mapping from C into H .
Assume that V I(C, A) 6= ∅. Let {xn} be a sequence generated by:







































x0 ∈ H chosen arbitrarily,

C1 = C,

x1 = PC1x0,

yn = PC(xn − λnAxn),

Cn+1 = {v ∈ Cn : ‖v − yn‖ ≤ ‖v − xn‖},
xn+1 = PCn+1x0, ∀n ≥ 0,

where PCn+1 is the metric projection from C onto Cn+1. Assume that ‖Ax‖ ≤
‖Ax−Ap‖ for all x ∈ C and p ∈ V I(C, A) and 0 < λn ≤ α, for all n ≥ 1. Then
{xn} converges strongly to PV I(C,A)x0.

Remark 6. Corollary 2 is an improvement of the corresponding results an-
nounced by Iiduka et al. [12]. We remove the redundant iterative ”Qn” in
their iterative algorithms.
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Corollary 3. Let C be a nonempty and closed convex subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let f be a bifunction from
C × C to R satisfying (A1)–(A4), A an α-inverse-strongly monotone mapping
from C into E∗. Assume that EP (f) ∩ V I(C, A) 6= ∅. Let {xn} be a sequence
generated by the following algorithm:















































x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = ΠC [J−1(Jxn − λnAxn)],

un ∈ C such that f(un, y) + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 0,

where J is the duality mapping on E and {rn} is a positive number sequence
such that {rn} ⊂ [a,∞) for some a > 0. Assume that ‖Ax‖ ≤ ‖Ax − Ap‖ for

all x ∈ C and p ∈ V I(C, A) and 0 < λn ≤ c2α
2 for all n ≥ 1, where c is the

constant defined by (1.6). Then {xn} converges strongly to ΠEP (f)∩V I(C,A)x0.

Proof. By taking T = I, the identity mapping, in Theorem 4, we can conclude
the desired conclusion easily. ⊓⊔

In Hilbert spaces, Corollary 3 reduces to the following result.

Corollary 4. Let C be a nonempty and closed convex subset of a Hilbert space
H . Let f be a bifunction from C×C to R satisfying (A1)–(A4), A an α-inverse-
strongly monotone mapping from C into H . Assume that EP (f)∩V I(C, A) 6=
∅. Let {xn} be a sequence generated by the following algorithm:















































x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = PC1x0,

yn = PC(xn − λnAxn),

un ∈ C such that f(un, y) + 1
rn

〈y − un, un − yn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {v ∈ Cn : ‖v − un‖ ≤ ‖v − yn‖ ≤ ‖v − xn‖},
xn+1 = PCn+1x0, ∀n ≥ 0,

where {rn} is a positive number sequence such that {rn} ⊂ [a,∞) for some
a > 0. Assume that ‖Ax‖ ≤ ‖Ax − Ap‖ for all x ∈ C and p ∈ V I(C, A) and
0 < λn ≤ α, for all n ≥ 1. Then {xn} converges strongly to PEP (f)∩V I(C,A)x0.
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