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Abstract. Application of the Haar wavelet approach for solving stiff differential
equations is discussed. Solution of singular perturbation problems is also considered.
Efficiency of the recommended method is demonstrated by means of four numerical
examples, mostly taken from well-known textbooks.
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1 Introduction

In the past two decades, stiff differential equations have been studied exten-
sively and various methods for their solutions have been proposed. While the
intuitive meaning of stiffness is clear to all specialists, a unique mathematical
definition is lacking.

As a rule stiffness occurs in differential equations where there are two or
more different time scales of the independent variables on which the dependent
variables are changing. In the case of linear problems the stiffness is caused
by eigenvalues of big negative values. To measure the degree of stiffness the
following stiffness ratio SR = max |λ|/ min |λ| is introduced: when SR < 20
the problem is not stiff, up to SR ≈ 1000 the problem is classified as stiff, and
when SR ≥ 100000, the problem is very stiff. Stiff ODEs are called extremely
stable if there is at least one eigenvalue with a large negative real part [2].

In the case of nonlinear problems the problem is more complicated since
stiffness is a global problem and cannot be reduced to the solution structure in
the neighbourhood of single points.

If we apply for the solution of stiff differential equations explicit solvers
(e.q. MATLAB solvers ODE45, ODE23s) the solution may be oscillating or
diverge, where oscillations of the solution are a result of the failure of the
solution algorithm. For avoiding these oscillations implicit solvers or explicit
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solvers with a very small step size must be used. All this complicates the
numerical work, besides small steps introduce too many round-off errors and
cause numerical instabilities. Depending on the nature of stiffness different
methods of solution should be used.

A detailed analysis of the methods for solving stiff ordinary differential
equations can be found in the well known text-book [7] by Hairer and Wanner
(here also an extensive list of publications is added). We would like to turn
attention also to the paper [4] by Enright et al. in which different numerical
methods have been tested for solving 25 systems of stiff equations. From the
recent literature we refer here [1, 5, 6, 8, 12, 16, 18].

Of interest are also singular perturbation problems, where the differential
equations contain a small parameter ε so that for ε → 0 one of the equations
loses its highest derivative [7]. In the limit case ε = 0 we get the so called
differential algebraic system, which has been also investigated in many papers
(see, e.g. [3, 5, 21]).

We are interested in solving stiff equations by the wavelet method. Hsiao [9,
10, 11] has proposed for solving linear and nonlinear differential equations the
so called single-term Haar wavelet method (in fact it is a method of piecewise
constant approximation). The method is very simple and effective, but its
exactness in the region of rapid changes may turn out to be insufficient (see,
Fig. 1 in [9]).

From recently published papers let us cite [19, 20]. In the these papers
the numerical solutions of stiff differential equations, especially the Robertson
problem, by using wavelet-based methods are investigated.

The main goal of the paper is to develop further Hsiao’s results and demon-
strate that the multi-term Haar wavelets are a powerful tool for solving stiff
problems. The paper is organized as follows. In Section 2 the Haar wavelet
method is shortly referred. In Section 3 this method is applied for solving
linear stiff ODEs. Nonlinear problems are discussed in Section 4. Section
5 is devoted to solution of the Robertson’s problem. Singular perturbation
problems are considered in Section 6. In Section 7 some recommendations for
further research are given.

2 Haar Wavelet Method

Let us consider the interval x ∈ [A, B], where A and B are given constants. We
shall define the quantity M = 2J , where J is the maximal level of resolution.
The interval [A, B] is divided into 2M subintervals of equal length; the length of
each subinterval is ∆x = (B −A)/(2M). Next two parameters are introduced:
the dilatation parameter j = 0, 1, . . . , J and the translation parameter k =
0, 1, . . . , m − 1 (here the notation m = 2j is introduced). The wavelet number
i is identified as i = m + k + 1.

The i-th Haar wavelet is defined as

hi(x) =







1 for x ∈ [ξ1(i), ξ2(i)],

−1 for x ∈ [ξ2(i), ξ3(i)],

0 elsewhere,

(2.1)
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where
ξ1(i) = A + 2kµ∆x , ξ2(i) = A + (2k + 1)µ∆x,

ξ3(i) = A + 2(k + 1)µ∆x, µ = M/m.

The case i = 1 corresponds to the scaling function: h1(x) = 1 for x ∈ [A, B]
and h1(x) = 0 elsewhere.

If we want to solve a n-th order ODE we need the integrals

pν,i(x) =

x∫

A

x∫

A

. . .

x∫

A
︸ ︷︷ ︸

ν−times

hi(t) dtν =
1

(ν − 1)!

x∫

A

(x − t)ν−1hi(t) dt,

ν = 1, 2, . . . , n , i = 1, 2, . . . , 2M.

The case ν = 0 corresponds to function hi(t). Taking into account (2.1), these
integrals can be calculated analytically; by doing it we obtain

pα,i(x) =







0 for x < ξ1(i),
1

α!
[x − ξ1(i)]

α for x ∈ [ξ1(i), ξ2(i)],

1

α!
{[x − ξ1(i)]

α − 2[x − ξ2(i)]
α} for x ∈ [ξ2(i), ξ3(i)],

1

α!
{[x − ξ1(i)]

α − 2[x − ξ2(i)]
α + [x − ξ3(i)]

α]} for x > ξ3(i).

(2.2)
These formulas hold for i > 1. In the case i = 1 we have ξ1 = A , ξ2 = ξ3 = B
and

pα,1(x) =
1

α!
(x − A)α.

In the present paper the collocation method for solving the ODEs is applied.
The collocation points are xl = 0.5[x̃l−1 + x̃l], l = 1, 2, . . . , 2M : the symbol
x̃l denotes the l-th grid point x̃l = A + l∆x, l = 1, 2, . . . , 2M . Eqs. (2.1),
(2.2) are discretized by replacing x → xl. It is convenient to introduce the
Haar matrices H(i, l) = hi(xl), Pν(i, l) = pν,i(xl). In the following sections
computer simulations are carried out with the aid of the Matlab programs for
which the matrix representation is effective.

3 Linear Problems

If we have to solve a n-th order linear ODE we seek the solution in the form

y(n)(xl) =
2M∑

i=1

aihi(xl) = aH. (3.1)

Lower order derivatives (and the function y(x)) are obtained through in-
tegrations of (3.1). All these ingredients are incorporated into (3.1) which is
discretized by the collocation method. In this way we get a system of equations
from which the wavelet coefficients ai are calculated.

Math. Model. Anal., 14(4):467–481, 2009.
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We investigate the accuracy of such algorithms. First, let us consider the
case where exact solution yex(x) of the problem is known. We define in the
collocation points the error function v(l) = y(xl) − yex(xl). Next the norm

‖v‖p =
( 2M∑

l=1

| v(l) |p
)1/p

is introduced. The following two error estimates are applied (J denotes the
resolution level):

(i) local estimate δJ =
∥
∥
∥

v

yex

∥
∥
∥
∞

= max
l

∣
∣
∣

y(xl)

yex(xl)
− 1

∣
∣
∣,

(ii) global estimate σJ = ‖v‖2/(2M).

Error estimates in the case when the exact solution is not known is consid-
ered further on in Sections 4–6.

Example 1. Press et al. [17] investigated the system







y′ = 998y + 1998z, x ∈ [0, 1],

z′ = −999y − 1999z, y(0) = 1, z(0) = 0.
(3.2)

We reduce (3.2) to the second order ODE

y′′ + 1001y′ + 1000y = 0, x ∈ [0, 1], (3.3)

y(0) = 1, y′(0) = 0.

The exact solution of (3.3) is

yex =
1

999

(

1000e−x − e−1000x
)

. (3.4)

The eigenvalues of (3.3) are λ1 = −1, λ2 = −1000; since |λ2| ≫ |λ1|
the system (3.2) is stiff. It is demonstrated in [17] that explicit methods of
integration bring to oscillations and the solution is unstable.

Now let us solve (3.3) by the Haar wavelet method. The solution is sought
in the form

y′′ = aH,

y′ = aP1 + y′

0E,

y = aP1 + y′

0x + y0E.

(3.5)

Here E = (1, 1, . . . , 1) and all quantities are calculated in the collocation points.
Substituting (3.5) into (3.3) we get the matrix equation

a
(

H + 1001P1 + 1000P2

)

= −1000E

from which the wavelet coefficients ai are calculated. The solution of the prob-
lem y = y(x) is found from (3.5)3.
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Computer simulations gave the following error estimates

δ3 = 4.5e − 4, σ3 = 2.8e − 5,

δ4 = 1.7e − 4, σ4 = 5.3e − 6,

δ5 = 4.1e − 5, σ5 = 6.5e − 7.

It follows from here that high precision of the results is guaranteed already for
a small number of collocation points (e.g. if J = 3 we have only 16 points).

Example 2. Mahmood et al. [16] solved by the Adomian decomposition method
the linear initial value problem







y′

1 = −20y1 − 0.25y2 − 19.75y3, y1(0) = 1

y′

2 = 20y1 − 20.25y2 + 0.25y3, y2(0) = 0

y′

3 = 20y1 − 19.75y2 − 0.25y3, y3(0) = −1

(3.6)

which has an exact solution

y1ex = 1
2

[
e−0,5t + e−20t(cos 20t + sin 20t)

]
,

y2ex = 1
2

[
e−0,5t − e−20t(cos 20t − sin 20t)

]
,

y3ex = − 1
2

[
e−0,5t + e−20t(cos 20t− sin 20t)

]
.

(3.7)

The solution (3.7) is plotted in Fig. 1.
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Figure 1. Solution of the system (3.6).
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This problem was as well solved by Guzel and Bayram [6] who applied the
power series method. Hojjati et al. [8] solved (3.4) with the aid of a predictor-
corrector method, based on backward differentiation.

The wavelet solution is sought in the form

y′

1 = aH, y1 = aP1 + E

y′

2 = bH, y2 = bP1

y′

3 = cH, y3 = cP1 − E.

(3.8)

Substituting (3.8) into the system (3.6) we obtain the matrix system

a(H + 20P1) + 0.25bP1 + 19.75cP1 = −0.25E,

−20aP1 + b(H + 20.25P1) − 0.25cP1 = 19.75E,

−20aP1 + 19.75bP1 + c(H + 0.25P1) = 20.25E.

(3.9)

Solving (3.9) we calculate the vectors a, b, c, the solution of the problem y1(x),
y2(x), y3(x) is obtained from (3.8).

Computations for J = 5 (with 64 collocation points) were carried out and
the results were compared with the exact solution (3.5). The following error
estimates were obtained:

δ5(y1) = 2.0e − 5, σ5(y1) = 3.1e − 7,

δ5(y2) = 4.4e − 5, σ5(y2) = 6.9e − 7,

δ5(y3) = 1.6e − 3, σ5(y3) = 2.5e − 5.

4 Nonlinear Problems

Consider the equation

y(n) = f(x, y, y′, . . . , y(n−1)) , x ∈ [A, B] (4.1)

with initial conditions y(i)(A) = yi
0, i = 0, 1, . . . , 2M − 1. Here f is a nonlinear

function.
The wavelet solution of the problem is sought in the form (3.1). Calculating

again lower order derivatives by integration, replacing these results into (4.1)
and satisfying these equations in the collocation points we get a nonlinear
system

F (xl, a1, . . . , a2M ) = 0, l = 1, 2, . . . , 2M, (4.2)

from which the wavelet coefficients ai are calculated.
The system (4.2) is solved by the Newton method. If some initial guess

for these coefficients ãi is known, then the corrected values of the wavelet
coefficients are computed as

a = ã + λ∆a,

here ∆a = −F/∂F
∂a and λ is a coefficient, which is selected to guarantee the

decrease of ‖F‖∞ (in the case of the exact solution we have ‖F (a)‖∞ = 0).
This Newton step is repeated until ‖F‖∞ is sufficiently close to zero.
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It is well known that the Newton method converges only when the initial
guess is sufficiently good. To find such an initial estimate may be rather diffi-
cult. We have applied the following approach. We begin with a small number
of collocation points (1, 2 or 4 points) for which the solution of (4.2) is more

simple. Let us assume that we have found the solutions a
(0)
i for some level of

resolution J . The wavelet coefficients at the next level J + 1 are estimated as

ãi =







a
(0)
i , for i = 1, 2, . . . , 2M,

0, for i = 2M + 1, 2M + 2, . . . , 4M.

Such an estimation is motivated by the fact that higher order coefficients of
the sequence ai are usually small (compare e.g. Fig. 2). These estimates are
corrected by the Newton method and after that we can step over to the next
level of resolution. Other possibilities for the initial guess of the wavelet coef-
ficients are considered in Sections 5–6. For further details about this approach
consult [13].
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Figure 2. Solution of (4.3) for J = 4 (a) first phase x ∈ [0, 20]; (b) wavelet coefficients a(i)
for this phase; (c) second phase x ∈ [20, 200]; (d) wavelet coefficients for the second phase.

Example 3. Consider the initial value problem

y′ = −
y2

1 + x
, y(0) = 1, x ∈ [0, 200], (4.3)

Math. Model. Anal., 14(4):467–481, 2009.
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which has the exact solution y = 1/(1 + ln(1 + x)). This problem is classified
by Hsiao [10] as a problem of "strong instability". Hsiao’s solution is based on
the single-term Haar wavelet method.

Let us solve (4.3) with the aid of multi-term Haar wavelets. At the begin-
ning, the solution y(x) rapidly decreases and then calms down. Therefore it is
reasonable to solve the problem in two stages: first consider the phase of rapid
decrease x ∈ [0, δ] and after that find solution for x ∈ [δ, 200]. In the following
calculations the value δ = 20 was chosen. In both regions we take

y′ = aH, y = aP1 + yinE. (4.4)

The function (4.2) and its gradient get the form

F (x) = aH + y/(E + x),
∂F

∂a
= H + 2y · P1/(E + x).

Here x = (x1, x2, . . . , x2M ) and the point denotes element-by-element multipli-
cation:

(y.2)l = y(l)2, (y · P1)i.l = y(l)P1(i, l).

In the first phase x ∈ [0, 20] we have yin = 1. For the initial solution we take
a0 ≡ 0. This value is corrected by the Newton method. By increasing step by
step the resolution level J the solution is made more and more exact. Computer
simulation for J = 5 gave the error estimates δ5 = 6.9e − 3, σ5 = 6.0e − 5.
The value y(20) = 0.2475 was calculated, it is taken for the initial value yin

for the second stage x ∈ [20, 200]. It is assumed a0 ≡ 0 and this value is again
corrected by the Newton method. Here the number of collocation points may
be smaller since already δ3 = 8.5e − 3, σ3 = 1.6e − 4. The wavelet solution
y = y(x) and the wavelet coefficients ai, i = 1, 2, . . . , 2M are plotted in Fig. 2.
It follows from this figure that the number of significant wavelet coefficients is
rather small.

5 Robertson’s Problem

In 1966 Robertson investigated a chemical system containing fast and slow
motions at the same time. By modelling this system he got the following
mathematical model







y′

1 = −0.04y1 + 104y2y3, y1(0) = 1,

y′

2 = 0.04y1 − 104y2y3 − 3 · 107y2
2 , y2(0) = 0,

y′

3 = 3 · 107y2
2 , y3(0) = 0.

(5.1)

The eigenvalues of (5.1) are given in [1]: λ1 = 0, λ2 = −0.405, λ3 = −2189.6
and the third one produces the stiffness.

The system (5.1) has been investigated in several papers; it is often taken as
a benchmark for numerical methods. A detailed analysis about it can be found
in the text-book [7]. It is shown that explicit methods give oscillating solutions
(see Fig. 1.3 in [7]). Stability was guaranteed in the case of implicit methods
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(in [7] the Runge-Kutta codes DOPRI 5 and RADAU 5 were applied). In [11]
the system (5.1) is integrated by the single term Haar wavelet method and in
[14] the Adomian decomposition method was used. Solution obtained by the
ODE45 code is plotted in Fig. 3. Small oscillations of the curve y2 indicate
instability of the solution.
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Figure 3. Solution of the Robertson’s problem (4.4) obtained with the aid of the program
ODE45.

Qualitative analysis of (5.1) indicates that the component y2 rapidly reaches
its maximal value for which y′

2 = 0 and 3·107y2
2 ≈ 0.04, consequently max(y2) ≈

3.65e − 5; after that the function y2 decreases very slowly. Due to this fact
it is again expedient to solve (5.1) separately for the regions x ∈ [0, δ] and
x ∈ [δ, xmax]. The wavelet solution is sought in the form

y′

1 = aH, y′

2 = bH, y′

3 = cH,

y1 = y1(0)E + aP1, y2 = y2(0)E + bP1, y3 = y3(0)E + cP1.
(5.2)

Next the vectors F1, F2, F3 are introduced

F1 = y′

1 + 0.04y1 − 104y2.y3,

F2 = y′

2 − 0.04y1 + 104y2.y3 + 3 · 107y2.
2, F3 = y′

3 − 3 · 109y2.
2.

On account of (5.2) these vectors are functions of the wavelet coefficients a, b, c.
We have to find such values a, b, c for which F1 = F2 = F3 = 0. This can be
realized according to the following procedure.

(i) We assume that some initial estimates ỹ1, ỹ2, ỹ3 are known. From (5.2)
we calculate the estimates ã, b̃, c̃ and also ỹ′

1, ỹ′

2, ỹ′

3.

Math. Model. Anal., 14(4):467–481, 2009.
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(ii) Evaluate F2.

(iii) Since a rapid growth takes place for the function y2, we shall vary only
the coefficients b (a and c are fixed) and calculate the gradient

∂F2

∂b
= H + 104y3 · P1 + 6 · 107y2 · P1. (5.3)

(iv) Using the Newton method next approximation for b is calculated:

b = b̃ − λF2

(∂F2

∂b

)
−1

.

For the coefficient λ the value which minimizes ‖F2‖ is taken.

(v) Calculate from (5.1)3 and (5.2) the corrected values for c, y3, y′

3.

(vi) Calculate from (5.1)1 and (5.2) the corrected values for a, y1, y′

1.

(vii) Evaluate ‖F1‖∞, ‖F2‖∞, ‖F3‖∞; if these norms are not sufficiently near
to zero repeat the steps (ii)–(vii).

Computer simulations were carried out for δ = 0.005, xmax = 0.3. In the
first phase x ∈ [0, δ] the argument x is very small and we can develop the
function y1, y2, y3 into power series. Taking into account only the first terms
of this series we find

ỹ1 = E − 0.04x, ỹ2 = 0.04E − 1.6 · 104x.3, ỹ3 = 1.6 · 104x.3.

According to (5.2) we obtain

ã = −0.04E/H, b̃ = −4.8 · 104x.2/H, c̃ = −b̃.

In order to correct these values the Newton iteration steps are done. Restricting
ourselves to two iterations we get for J = 5:

y1(δ) = 0.9998, y2(δ) = 3.648e− 5, y3(δ) = 1.626e− 5.

These values were taken as initial values for the second phase x ∈ [0.005, 0.3].
In this phase the functions y1, y3 decrease very slowly, therefore we take

ỹ1 = y1(δ)E, ỹ2 = y2(δ)E.

Calculating ỹ3 from (5.1)3 we find

ỹ3 = y3(δ)E + 3 · 107y2(δ)
2x.

Correcting once again the values by the Newton method we find

y1(0.3) = 0.9888, y2(0.3) = 3.446e− 5, y3(0.3) = 1.138e− 4.

Carrying out the calculations by the ODE45 code we get

y1(0.3) = 0.9987, y2(0.3) = 3.444e− 5, y3(0.3) = 1.129e− 4.
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These results are in accordance with our results.

It is interesting to note that in the second phase only the first wavelet coef-
ficients are significant. To demonstrate this, the first three wavelet coefficients
are written down:

a : −0.0376, −0.0011, −0.0006, . . .

105b : −0.6851, −0.0183, −0.0092, . . .

c : 0.0377, 0.0011, 0.0006, . . .

.

All the other coefficients are considerably smaller.

6 Singular Perturbation Problems

A singular perturbation problem of Index 1 is defined as [7]







y′ = f(y, z), y(x0) = y0,

εz′ = g(y, z), z(x0) = z0.
(6.1)

If ε is small, then the second equation of (5.3) is stiff. In the case ε = 0 we get
a differential–algebraic equation, when a differential equation is combined with
an algebraic equation. Eqs. (6.1) for ε = 0 are called also the reduced system. It
is usually much easier to analyze the reduced system than the primary system.

Consider the phase space (y, z). The slope of the phase curves is

dz

dy
=

g(y, z)

εf(y, z)
.

We assume that the initial point (y0, z0) is not placed on the curve g(y, z) = 0
and ε ≪ 1; in this case the phase curve is very steep. We are mainly interested
in the case where the phase point (y, z) moves towards the curve g(y, z) = 0
and reaches it at some instant x = δ. Now z′(δ) = 0 and the following motion
proceeds along the curve g(y, z) = 0. Numerical difficulties can appear in the
first phase of motion x ≤ δ, since for ε ≪ 1 the second equation of (6.1) is stiff.

Example 4. Consider the van der Pol equation

εz′′ +
(

z2 − 1
)

z′ + z = 0,

which can be rewritten in the form [7]







y′ = −z, y(x0) = y0,

εz′ = y − z3/3 + z, z(x0) = z0.
(6.2)

Boundary condition for z′ can be calculated from (6.2)2:

εz′(x0) =
(

y0 − z3
0/3 + z0

)

. (6.3)

Math. Model. Anal., 14(4):467–481, 2009.
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The reduced problem ε = 0 can be easily solved:

ln |z| − 0.5z2 = x + c.

Computer simulations were carried out for ε = 0.001, y0 = 0.5, z0 = 1.
According to (6.3) we have z′0 = 7000/6. Since z′ > 0 the phase point (y, z)
moves toward the phase curve

y = z3/3 − z (6.4)

and reaches it at some instant x = δ.
Numerical results obtained by the MATLAB program ODE23s and with

the aid of the piecewise constant approximation method (PCA) are plotted in
Fig. 4. It follows from this figure that at this number of calculation points the
PCA solution is unstable.
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Figure 4. Solution of the van der Pol equation (6.1); (a)–(b) functions y(x), z(x), dashed
lines denote the PCA solutions; (c) phase curve according to the PCA solutions; (d) phase
curve for the wavelet solution.

Now let us present the Haar wavelet solution. Again it is suitable to consider
separately two phases of motion: (i) the phase of rapid changes x ∈ [0, δ] and
(ii) motion along the curve (6.4) for x ∈ [δ, xfin]. In the following calculations
it was taken δ = 0.003, xfin = 0.02.

In the first phase the solution is sought in the form

z′′ = aH, z′ = aP1 + z′0E, z = aP2 + z′0x + z0E.
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Next the 2M -dimensional vector F is defined:

F (a) = εz′′ +
(

z.2 − E
)

.z′ + z;

its gradient is given by

∂F

∂a
= εH +

(

z.2 − E
)

.P1 +
(

E + 2z.z′
)

.P2.

The corrected estimate for wavelet coefficients is given as

a = ã − λF
(∂F

∂a

)
−1

.

Computer simulations were carried out for J = 4, for the initial approx-
imation the value ã ≡ 0 was taken and three Newton iteration steps were
made. For the final result we got ‖F‖∞ = 0.0026, y(δ) = 0.4938, z(δ) = 1.940,
z′(δ) = 0.9224.

In the second phase x ∈ [δ, xfin] we assume

z′ = bH, z = bP1 + z(δ)E.

Now the function
G(b) =

(

z.2 − E
)

.z′ + z (6.5)

is to be minimized. The gradient of (6.5) is given by

∂G

∂b
=

(

z.2 − E
)

.H +
(

E + 2z.z′
)

.P1.

Again we assume b̃ ≡ 0; after two Newton steps we find ‖G‖∞ = 8.5e − 5,
y(0.02) = 0.4629, z(0.02) = 1.928. This is in a good accordance with the
ODE23s solution which gives y(0.02) = 0.4618, z(0.02) = 1.928.

As to the wavelet coefficients then the first coefficient is b1 = −0.7058; all
other coefficients are very small (less than 0.27% from b1). This is due to the
quasi-linearity of the function z(x).

7 Conclusions

The examples of this paper demonstrate that in solving stiff systems the Haar
wavelet method can successfully compete with the other efficient methods. The
main benefits of the Haar approach are simplicity (already a small number
of grid points guarantees the necessary accuracy) and universality (the same
approach is applicable for a wide class of differential and integral equations).
The subprograms, developed for calculation of integrals pα,i(x) can be used
without changes for solving different problems.

In the case of stiff problems the Haar wavelet method seems to be more
stable than many other methods. There are some complementary possibilities
to raise the stability of the solution. First, we could use the wavelets with a
variable step size (see, [15], especially the example in Section 5). If we develop
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into the Haar series the highest derivative y(n), then it is not continuous: this
fact may also cause some instabilities. In such cases it is advisable to put into
series the higher derivative y(n+1); this idea is implemented in [14].

In this paper only ordinary differential equations were considered, but the
same approach is applicable also for stiff partial differential equations. We
recommend to consult the paper [15] in which the Burgers equation was solved.

The Haar wavelet transform and PCA (single term Haar wavelet series) both
consist of piecewise constant functions and therefore have the same convergence
rate O(M−2). Nevertheless the multi-Haar wavelet method has by our mind
some advantages:

(i) Very high accuracy fast transformation exists and therefore a possibility
of implementation of fast algorithms compared with other methods;

(ii) The simplicity and small computation costs, resulting from the sparsity
of the transform matrices and small number of significant wavelet coeffi-
cients;

(iii) The method is also very convenient for solving boundary value problems,
since the boundary conditions are taken into account automatically.
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