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Abstract. We consider two inverse problems for a generalized subdiffusion equa-
tion that use the final overdetermination condition. Firstly, we study a problem of
reconstruction of a specific space-dependent component in a source term. We prove
existence, uniqueness and stability of the solution to this problem. Based on these
results, we consider an inverse problem of identification of a space-dependent coef-
ficient of a linear reaction term. We prove the uniqueness and local existence and
stability of the solution to this problem.
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1 Introduction

Anomalous diffusion processes are described by different models [6]. Among
them stands out the time (or space-time) fractional diffusion equation that is
the most common way to represent a subdiffusion. For some situations such
approach does not work [19]. Therefore, more general models that unify wider
range of subdiffusion processes are introduced [19,25].

In this paper we use an operator that is more general than the fractional
time derivative:

D
{k}
t v =

d

dt
k ∗ v, (1.1)

where ∗ denotes the time convolution, i.e. (v1 ∗ v2)(t) =
∫ t
0
v1(t − τ)v2(τ)dτ.

Taken k = t−β

Γ (1−β) , (1.1) transforms into a well-known Riemann-Liouville frac-
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tional derivative. The operator corresponding to the Caputo fractional deriva-
tive denoted as DC(k)v was introduced by Luchko and Yamamoto in [23] and

also in [15].

The toolkit for treating such a type of derivative have been developed by
Prüss et al. [5]. They have created a setting to introduce the operator inverse

to D
{k}
t through the concept of Completely Positive kernels [5]: a kernel M ∈

L1,loc(R+) is called completely positive if there are k0 ≥ 0 and nonnegative
and nonincreasing k1 ∈ L1,loc(R+) such that M ∗ (k0δ + k1) = 1 holds. The
applications of this concept can be found in [1, 33, 34]. Another approach to
this issue has been developed by Kochubei [19].

Often parameters of models are unknown. Then additional observations
are performed and inverse problems solved to reconstruct unknown quantities
[12, 13, 16, 17, 20, 21]. In the present paper we consider two inverse problems
(IPs) that use final observation data: IP1 is to identify a space-dependent
factor f of a source term g(t, x)f(x); IP2 is to reconstruct a coefficient r(x) of
a linear reaction term.

IP1 for fractional and perturbed fractional diffusion equations is studied in
several papers. Theoretical and numerical results are obtained in the particular
case g = g(t) [7,17,18,26] and in the case g = g(t, x) [30,32]. In latter papers the
existence and uniqueness of solutions are proved for almost all scalar diffusion
coefficients. IP1 for a semilinear fractional diffusion equation is considered
in [15]. Uniqueness of the solution is proved.

In this paper we consider IP1 for a more general diffusion equation that
includes the operator (1.1) instead of the fractional derivative. We prove the
uniqueness of the solution to IP1 by applying a modified version of the positivity
principle from [15]. That falls into category of maximum principle results
[13, 20, 22]. Similar approaches to the inverse problems are well-known in the
domain of parabolic equations [2,12]. Next we prove the existence and stability
of the solution of IP1 by means of the Fredholm alternative. The uniqueness of
solution of IP2 follows from the IP1-results. Finally, we prove local existence
and stability of the solution to IP2 by means of the contraction argument.

2 Formulation of direct and inverse problems

Let us consider the generalized subdiffusion equation

Ut(t, x) = (M ∗ LU)t(t, x) +Q(t, x), (2.1)

where U physical state, t is the time, x ∈ Rn is a space variable, Q is a source
term, the operator L = L(x) is such that

L(x) = L1(x) + r(x)I, where L1(x) =

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

aj(x)
∂

∂xj

and I is the unity operator. The kernel M is a memory function related to a
non-locality of the diffusion process.
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There are two ways to derive the equation (2.1) from physical laws. One
method consists in modelling continuous time random walk processes in micro-
level and taking a continuous limit in a macro-level [4] and another one uses
conservative laws and specific constitutive relations with memory [27].

Real world applications of the equation (2.1) include diffusion in fractal and
porous media, e.g. propagation of pollution, heat flow in media with memory,
dynamics of protein in cells, transport in dielectrics and semiconductors, usage
of optical tweezers, Hamiltonian chaos etc. [3, 4, 6, 27,31].

Let us assume that there is a function k such that k ∗M = M ∗ k = 1.
Then if we apply k∗ to (2.1), we obtain an equation that contains the explicit
differential operator L and is called the normal form of (2.1): k ∗ Ut(t, x) =
LU(t, x)+H(t, x), where H(x, t) := k∗Q(t, x). The term k∗Ut can be rewritten

in the form D
{k}
t (U −U(0, ·)) that does not contain the 1st order derivative of

U . Therefore, we get the equation

D
{k}
t (U − U(0, ·)) = LU(t, x) +H(t, x). (2.2)

Conversely, in case of sufficiently regular U , the equation (2.1) follows from
(2.2) by means of the application of the operator ∂

∂tM∗.
The equation (2.1) and its analogue (2.2) incorporate the following possi-

bilities:

1. The kernel M(t) = tβ−1

Γ (β) , 0 < β < 1, represents a power-type mem-

ory. Then (2.1) becomes the celebrated time fractional diffusion equation

Ut = κD1−βLU + Q, where D1−βv =
(
tβ−1

Γ (β) ∗ v
)
t

is the Riemann-

Liouville fractional derivative of the order 1 − β [4, 17, 20, 26]. For such

M , it holds k = t−β

Γ (1−β) and [k ∗ (v − v(0)]t = k ∗ vt = ∂βt v is the Caputo

fractional derivative.

2. The kernel M or its associate k is a linear combination of power functions
[25,31]:

M(t) =
tβ−1

Γ (β)
+

l∑
j=1

pj
tβj−1

Γ (βj)
, 0 < β < βj < 1, pj ≥ 0,

k(t) =
t−β

Γ (1− β)
+

l∑
j=1

qj
t−βj

Γ (1− βj)
, 0 < βj < β < 1, qj ≥ 0.

3. The kernel M has the form M(t) =
∫ 1

0
p(s) t

s−1

Γ (s)ds where p ≥ 0 is a

nonvanishing integrable function (cf. [3, 25, 31]). Such a kernel stands
for the distributed order fractional derivative that is used for modeling
diffusion with a logarithmic growth of the mean square displacement [19].

4. Tempered fractional calculus [29], that is another way to generalize a
fractional calculus, falls into the case

M(t) =
1

Γ (β)
e−λttβ−1 +

λ

Γ (β)

∫ t

0

e−λττβ−1dτ, λ > 0.
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This type of kernel is used for modelling the transition from anomalous
to normal diffusion.

Every presented example of M (or k) has a completely monotonic associate k
(or M) that solves k ∗M = 1 (see Section 3).

Let Ω ∈ Rn be an open bounded domain with the boundary ∂Ω. In direct
problem we have to find a function u that solves the initial-boundary value
problem

D
{k}
t (U − Φ)(t, x) = LU(t, x) +H(t, x), x ∈ Ω, t ∈ (0, T ),

U(0, x) = Φ(x), x ∈ Ω, (2.3)

B(U − b)(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ).

Here Φ and b are given functions and

Bv(x) = v(x) or Bv(x) = ω(x) · ∇v(x),

with ω · ν > 0 and ν(x) denoting the outer normal of ∂Ω at x ∈ Ω. An

important particular case is ω =
(∑n

j=1 aijνj |i=1,...,n

)
. Then the condition

B(U − b)|(t,x)∈(0,T )×∂Ω = 0 corresponds to the flux specified at ∂Ω.
Let us proceed to inverse problems. To this end we introduce the condition

U(T, x) = Ψ(x), x ∈ Ω, (2.4)

with a given observation function Ψ . Firstly, we formulate of an inverse source
problem. Let

H(t, x) = g(t, x)f(x) + h0(t, x), (2.5)

where the components gf and h0 may correspond to different sources or sinks.
The factor f is unknown and to be reconstructed by means of the data (2.4).
Since the whole function U is also unknown, the first inverse problem consists
in determination a pair of functions (f, U) that satisfies (2.3), (2.4) and (2.5).

In the second inverse problem, our aim is to identify the coefficient r of
the linear reaction term rU . In the mathematical formulation, the problem
consists in finding a pair (r, U) that satisfies (2.3) and (2.4). We can handle
the case of zero initial condition Φ = 0 (for details, see the end of Section 6).

Methods to be used in this paper require homogeneous boundary conditions.
Therefore, we perform the change of the second unknown u = U − b in our
problems. It brings along shifts of data by addends containing b.

Firstly, from (2.3) we obtain the following problem for u = U − b:

D
{k}
t (u− ϕ)(t, x) = Lu(t, x) + F (t, x), x ∈ Ω, t ∈ (0, T ),

u(0, x) = ϕ(x), x ∈ Ω, (2.6)

Bu(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ),

where

ϕ(x) = Φ(x)− b(0, x), (2.7)

F (t, x) = H(t, x) + Lb(t, x)−D{k}t (b− b(0, ·))(t, x). (2.8)
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The overdetermination condition (2.4) in terms of u has the form

u(T, x) = ψ(x), x ∈ Ω, (2.9)

where ψ(x) = Ψ(x)− b(T, x). Plugging (2.5) into (2.8) we obtain

F (t, x) = g(t, x)f(x) + h(t, x), (2.10)

where h(t, x) = h0(t, x) + Lb(t, x)−D{k}t (b− b(0, ·))(t, x).

In the reformulated first inverse problem (IP1), we seek for the pair of
functions (f, u) that satisfies (2.6), (2.9) and (2.10).

Let us reformulate the second inverse problem, too. From the relations
(2.3), (2.4) with Φ = 0 by means of the change of variable u = U − b, we obtain
the following problem for the pair (r, u):

D
{k}
t u(t, x) = L1u(t, x) + r(x)(u+ b)(t, x) + F1(t, x) x ∈ Ω, t ∈ (0, T ),

u(0, x) = 0, x ∈ Ω, Bu(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ), (2.11)

u(T, x) = ψ(x), x ∈ Ω,

where b(0, x) = 0, x ∈ Ω, the function ψ is expressed by ψ(x) = Ψ(x)− b(T, x)

and F1(t, x) = H(t, x) + L1b(t, x)−D{k}t b(t, x).

Thus, the reformulated second inverse problem (IP2) is to find the pair of
functions (r, u) that satisfies (2.11).

3 Basic assumptions

In this section we collect basic conditions on the domain, operator L and kernels
k and M that will be assumed throughout the paper.

We assume that ∂Ω is uniformly of the class C2 and ω ∈ (C1(∂Ω))n.
Moreover, we assume that aij , aj , r ∈ C(Ω) and the principal part of L is

uniformly elliptic, i.e.
n∑

i,j=1

aij(x)ξiξj ≥ c|ξ|2 ∀ξ ∈ Rn, x ∈ Ω for some c > 0.

Concerning the function k, we assume that

1. k belongs to L1,loc(0,∞) and is a solution of the equation M ∗ k = 1
with a kernel M ∈ L1,loc(0,∞) that satisfies the conditions

M ∈ C1(0,∞), lim
t→0+

M(t) =∞, M > 0, M ′ ≤ 0,

−M ′ is nonincreasing and convex;
(3.1)

2. k has the following properties:

k ∈ C(0,∞), lim
t→0+

k(t) =∞, k > 0, k is nonincreasing, (3.2)

∃tk > 0 : k(t) is strictly decreasing in (0, tk). (3.3)
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The assumptions (3.1) ensure the existence of a sufficiently regular solution
of the direct problem (see Lemma 3) and the assumptions (3.2), (3.3) are needed
for the application of a positivity principle to this solution.

We mention that restricting generality a bit it is possible to reduce all
conditions 1 and 2 to the single kernel M . Firstly, M ∈ L1,loc(0,∞) and
(3.1) imply the existence of a unique solution k ∈ L1,loc(0,∞) of the equation
k ∗M = 1 ( [10], Ch. 5, Corollary 5.6). Secondly, all properties (3.2), (3.3)
follow from conditions that are a bit stronger than (3.1). It is shown in the
following lemma. Proof is in Appendix.

Lemma 1. Let M ∈ L1,loc(0,∞) satisfy (3.1) and M ′ < 0, logM - convex,
log(−M ′) - convex. Then the solution of M ∗ k = 1 satisfies (3.2), (3.3).

The imposed assumptions on M and k hold for weakly singular completely
monotonic kernels from

CM={z∈L1,loc(0,∞)
⋂
C∞(0,∞) : lim

t→0+
z(t)=∞, (−1)iz(i)>0, i=0, 1, . . .}.

For M and k satisfying M ∗ k = 1, it holds M ∈ CM if and only if k ∈ CM
( [9], Theorem 3).

All examples of M and k given in Section 2 belong to CM.

4 Preliminaries

4.1 Functional spaces

Let X be a Banach space. Since k ∗M = 1, we have

D
{k}
t (M ∗ v) =

d

dt
k ∗M ∗ v =

d

dt
1 ∗ v = v, ∀v ∈ L1((0, T );X), (4.1)

where L1((0, T );X) is the space of functions u : (0, T )→ X that are integrable
in the Bochner sense on (0, T ). This means that the operator M∗ is a one-to-

one mapping from L1((0, T );X) to {M ∗ v : v ∈ L1((0, T );X)} and D
{k}
t is

the inverse of M∗.
As usual, let C([0, T ];X) stand for the Banach space of functions u :

[0, T ] → X that are continuous on [0, T ] with the norm ‖u‖C([0,T ];X) =
max
t∈[0,T ]

‖u(t)‖X and C0([0, T ];X) = {u ∈ C([0, T ];X) : u(0) = 0}. Based

on the relation (4.1), we introduce the functional space

C
{k}
0 ([0, T ];X) := M ∗ C([0, T ];X) = {M ∗ v : v ∈ C([0, T ];X)}.

It is a Banach space with the norm

‖u‖
C
{k}
0 ([0,T ];X)

= ‖D{k}t u‖C([0,T ];X).

Since M∗ ∈ L(C([0, T ];X), C0([0, T ];X)), it holds

C
{k}
0 ([0, T ];X) ↪→ C0([0, T ];X).

Math. Model. Anal., 24(2):236–262, 2019.
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We also define the space

C{k}([0, T ];X) := C
{k}
0 ([0, T ];X) +X

= {u : u(t) = u1(t) + u2, u1 ∈ C{k}0 ([0, T ];X), u2 ∈ X} (4.2)

that is a Banach space with the norm

‖u‖C{k}([0,T ];X) = ‖u− u(0)‖
C
{k}
0 ([0,T ];X)

+ ‖u(0)‖X .

Next we introduce the abstract Hölder spaces with corresponding norms

Cα0 ([0, T ];X) =
{
u ∈ C0([0, T ];X) :

‖u‖Cα0 ([0,T ];X) := sup
0<t1<t2<T

‖u(t2)− u(t1)‖X
(t2 − t1)α

<∞
}
,

Cα([0, T ];X) = Cα0 ([0, T ];X) +X,

‖u‖Cα([0,T ];X) = ‖u− u(0)‖Cα0 ([0,T ];X) + ‖u(0)‖X ,

where 0 < α < 1, and define the Banach spaces with norms

C
{k},α
0 ([0, T ];X) = M ∗ Cα0 ([0, T ];X), (4.3)

‖u‖
C
{k},α
0 ([0,T ];X)

= ‖D{k}t u‖Cα0 ([0,T ];X),

C{k},α([0, T ];X) = M ∗ Cα([0, T ];X) +X,

‖u‖C{k},α([0,T ];X) = ‖D{k}t (u− u(0))‖Cα([0,T ];X) + ‖u(0)‖X .

Let us establish some connections between the spaces (4.2), (4.3) and the
usual C, C1- and Hölder spaces. For C{k}([0, T ];X) the embeddings

C1([0, T ];X) ↪→ C{k}([0, T ];X) ↪→ C([0, T ];X) (4.4)

are valid. The right embedding follows from M∗ ∈ L(C([0, T ];X))1 . To prove
the left embedding, we choose some u ∈ C1([0, T ];X). Then

‖u‖C{k}([0,T ];X) =‖u−u(0)‖
C
{k}
0 ([0,T ];X)

+‖u(0)‖X =‖k∗u′‖C0([0,T ];X)+‖u(0)‖X

and since k∗ ∈ L(C([0, T ];X), C0([0, T ];X)), the left relation in (4.4) follows.

Analogous relations for the space C
{k},α
0 ([0, T ];X) are

C1+α
0 ([0, T ];X) ↪→ C

{k},α
0 ([0, T ];X) ↪→ Cα0 ([0, T ];X) (4.5)

where
C1+α

0 ([0, T ];X) = {u : u, u′ ∈ Cα0 ([0, T ];X)}.
The right embedding in (4.5) is a consequence of the fact that M∗ ∈
L(Cα0 ([0, T ];X)) (see Lemma 4.2 in [14]) and the left embedding in (4.5) can
be proved similarly to the left embedding in (4.4).

Under additional assumptions on M it is possible to show that the operator
M∗ increases the order of Hölder continuity of a function. Namely, the following
lemma is valid. Its proof is deferred to Appendix.

1 The symbol L stands for the space of linear and bounded operators.
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Lemma 2. If M(t) ≤ c1t
β−1, |M ′(t)| ≤ c2t

β−2, t ∈ (0, T ) for some c1, c2 ∈
R+, 0 < β ≤ α < 1 then M∗ ∈ L(Cα−β0 ([0, T ];X), Cα0 ([0, T ];X)).

Under conditions of Lemma 2, C
{k},α−β
0 ([0, T ];X) ↪→ Cα0 ([0, T ];X). In the

particular case M(t) = tβ−1

Γ (β) (then M∗ is the fractional integral of the order

β), it holds the equality C
{k},α−β
0 ([0, T ];X) = Cα0 ([0, T ];X) [15].

By exchanging M and k in above relations, we obtain definitions and em-
beddings of spaces that contain {M} instead of {k} in the superscript.

4.2 Abstract Cauchy problem

Let A : D(A)→ X be a linear densely defined operator in a Banach space X.
We say that A belongs to the class S(η, θ) for η ∈ R, θ ∈ (0, π) if

ρ(A) ⊃ Σ(η, θ) = {λ ∈ C : λ 6= η, arg|λ− η| < θ} and

‖(µ−A)−1‖L(X) ≤
C

|µ− η|
∀µ ∈ Σ(η, θ) for some constant C > 0.

An operator A ∈ S(η, θ) is closed. This implies that XA := D(A) is a Banach
space with the graph norm ‖w‖XA = ‖w‖X + ‖Aw‖X .

Obviously, S(η, θ1) ⊂ S(η, θ2) for θ1 > θ2. Operators of the class S(η, θ),
θ ∈

(
π
2 , π

)
, are the sectorial operators that generate analytic semigroups.

Now let us consider the Cauchy problem

D
{k}
t (u− ϕ)(t) = Au(t) + F (t), t ∈ [0, T ], u(0) = ϕ, (4.6)

with given F : [0, T ]→ X and ϕ ∈ X.

Lemma 3. Let A ∈ S(η, π2 ) for some η ∈ R. Then the following statements
are valid.
(i) (uniqueness) Let u ∈ C{k}([0, T ];X)

⋂
C([0, T ];XA) solve (4.6) and ϕ = 0,

F = 0. Then u = 0.
(ii) Let F ∈ Cα0 ([0, T ];X) and ϕ = 0. Then (4.6) has a solution u in the space

C
{k},α
0 ([0, T ];X)

⋂
Cα0 ([0, T ];XA). This solution satisfies the estimate

‖u‖
C
{k},α
0 ([0,T ];X)

⋂
Cα0 ([0,T ];XA)

≤ C1‖F‖Cα0 ([0,T ];X). (4.7)

(iii) Let F ∈ Cα([0, T ];X) and ϕ ∈ XA. Then (4.6) has a solution u in the
space C{k}([0, T ];X)

⋂
C([0, T ];XA). This solution satisfies the estimate

‖u‖C{k}([0,T ];X)
⋂
C([0,T ];XA) ≤ C2(‖F‖Cα([0,T ];X) + ‖ϕ‖XA). (4.8)

The constants C1 and C2 depend on M and A.

Proof. The change of variable v = D
{k}
t (u − ϕ) ⇔ u = M ∗ v + ϕ reduces

(4.6) of the integral equation

v(t) = A(M ∗ v)(t) + F (t) +Aϕ, t ∈ [0, T ]. (4.9)

Math. Model. Anal., 24(2):236–262, 2019.
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Provided F ∈ C([0, T ];X), ϕ ∈ XA, the function u ∈ C{k}([0, T ];X)
⋂

C([0, T ];XA) solves (4.6) if and only if v ∈ V := {v ∈ C([0, T ];X) : M ∗
v ∈ C0([0, T ];XA)} solves (4.9). Similar one-to-one correspondence holds for

u ∈ C
{k},α
0 ([0, T ];X)

⋂
Cα0 ([0, T ];XA) and v ∈ V α := {v ∈ Cα0 ([0, T ];X) :

M ∗ v ∈ Cα0 ([0, T ];XA)} in the particular case F ∈ Cα0 ([0, T ];X), ϕ = 0.

Since M satisfies the conditions (3.1) and A ∈ S(η, π2 ), we can apply results
of Ch. 3 of [28] to (4.9).

(i) Theorem 3.2 with Corollary 1.1 and Proposition 1.2 in [28] implies that
there exists a family of operators S : [0,∞)→ L(X) (called resolvent of (4.9))
so that a solution v ∈ V (if it exists) is represented by the formula v = d

dtS ∗F .
By assumptions of (i), (4.9) has a solution v ∈ V . Since F = 0, we have v = 0.
Thus, u = 0.

(ii) Theorem 3.3 (i) [28] implies that for F ∈ Cα0 ([0, T ];X) there exists a
solution v ∈ V α of (4.9). This proves the existence of the solution u ∈
C
{k},α
0 ([0, T ];X)

⋂
Cα0 ([0, T ];XA) of (4.6). The estimate (4.7) follows from

the bounded inverse theorem.

(iii) It is sufficient to prove this assertion in case F (t) ≡ ξ ∈ X, because the
problem with given pair of data (F,ϕ) can be splitted into two problems with
the data (F − F (0), 0) and (F (0), ϕ), respectively. For the first problem, the
assertion (ii) applies. Having proved (iii) for the second one, u is expressed as
the sum of solutions of these two problems and satisfies (iii), too.

Thus, let us assume that F (t) ≡ ξ ∈ X. Due to Proposition 1.2 (ii) [28],
(4.9) has the solution v = S(ξ +Aϕ) ∈ V . This implies the existence assertion
of (iii). Due to the strong continuity of S(t) [28], ‖S(t)‖L(X) ≤ C3, t ∈ [0, T ],
where C3 is a constant. Thus, ‖v‖C([0,T ],X) ≤ C3 (‖ξ‖X + ‖Aϕ‖X). Extracting
the term A(M∗v) from (4.9) and estimating it we obtain ‖A(M∗v)‖C0([0,T ],X) ≤
(C3 + 1)(‖ξ‖X + ‖Aϕ‖X). Consequently,

‖u‖C{k}([0,T ];X)
⋂
C([0,T ];XA) = ‖v‖V + ‖ϕ‖XA ≤ C4(‖ξ‖X + ‖ϕ‖XA)

with a constant C4. This implies (4.8). ut

4.3 Statements on direct problem

In order to apply Lemma 3 to the direct problem (2.6), we must introduce
appropriate Banach spaces of x-dependent functions and define realizations of
the operator L in these spaces so that they belong to S

(
η, π2

)
.

Let us introduce the following spaces and operators:

1. Xp = Lp(Ω), 1 < p <∞,
Ap : XAp → Xp with XAp = {z ∈W 2

p (Ω) : Bz|∂Ω = 0} and
Apz = Lz, z ∈ XAp .

2. X0 =

{
C0(Ω) = {z ∈ C(Ω) : z|∂Ω = 0} in case B = I,

C(Ω) in case B = ω · ∇,
A0 : XA0

→ X0 with XA0
= {z ∈

⋂
1<p<∞

W 2
p (Ω) : Bz|∂Ω = 0, Lz ∈ X0}

and A0z = Lz, z ∈ XA0 .
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Corollary 1. Operators Ap, p ∈ {0}
⋃

(1,∞), are sectorial. Thus, Lemma 3
holds in cases X = Xp, A = Ap, p ∈ {0}

⋃
(1,∞) and applies to problem (2.6).

Proof. It follows from Theorems 3.1.2, 3.1.3 and Corollary 3.1.24 (ii) in [24].
ut

Lemma 4. Let K ∈ L1(0, T )
⋂
C1(0, T ), lim

t→0+
K(t) = ∞, K > 0, K be non-

increasing and ∃tK > 0 : K is strictly decreasing in (0, tK). Moreover, let
F ∈ C([0, T ]×Ω). Assume that u solves the problem

D
{K}
t (u− ϕ)(t, x) = Lu(t, x) + F (t, x), t ∈ (0, T ), x ∈ Ω,

u(0, x) = ϕ, x ∈ Ω

and satisfies the smoothness conditions u ∈ C([0, T ]×Ω), uxj ∈ C((0, T ]×Ω),

u ∈ C((0, T ];W 2
p (Ω)) for some p > n, L1u ∈ C((0, T ] × Ω), D

{K}
t (u − ϕ) ∈

C((0, T ]×Ω). Finally, let

lim
ε→0+

1

ε

∫ ε

0

K(τ)dτ sup
0≤s≤ε

|u(t−s, x)−u(t, x)| = 0, ∀t ∈ (0, T ], x ∈ Ω. (4.10)

If ϕ ≥ 0, F ≥ 0 and Bu|∂Ω ≥ 0 then the following assertions are valid.
(i) u ≥ 0;
(ii) if u(t0, x0) = 0 in some point (t0, x0) ∈ (0, T ]×ΩN , where

ΩN =

{
Ω in case B = I
Ω in case B = ω · ∇ ,

then u(t, x0) = 0 for any t ∈ [0, t0].

This lemma is a slight modification of a positivity principle that was proved
in [15] for a semilinear equation in case of a more smooth solution u ∈
C((0, T ];C2(Ω)) and strictly decreasing in (0, T ) kernel K.

To prove Lemma 4, we need the following auxiliary result. It is proved in
Appendix of the paper.

Lemma 5. Let w ∈W 2
p (Ω) for some p>n, L1w ∈ C(Ω) and x∗=argmin

x∈Ω
w(x).

In case x∗ ∈ ∂Ω we also assume that (ω · ∇w)(x∗) ≥ 0. Then L1w(x∗) ≥ 0.

Proof of Lemma 4. Without a restriction of generality we assume that r ≤ 0.
Otherwise it is possible to define ũ = e−σtu as in [15] and to consider the
corresponding problem for ũ. Such a problem also satisfies the assumptions of

Lemma 4 and has the coefficient r̃ = r − σ
∫ T
0
e−σsK(s)ds in place of r. Since

lim
t→0+

K(t) =∞, for sufficiently large σ, r̃ ≤ 0.

Let us suppose that (i) does not hold. Then there exists (t1, x1) ∈ (0, T ]×Ω
such that u(t1, x1) < 0 and (t1, x1) = argmin

x∈Ω,t∈[0,T ]

u(t, x). It was shown in [15]

(formula (37)) that the assumptions D
{K}
t (u − ϕ) ∈ C((0, T ] × Ω), (4.10),
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K > 0 and K – nonincreasing together with the relations u(t, x1) ≥ u(t1, x1)

and u(t1, x1) < 0 imply D
{K}
t (u − ϕ)(t1, x1) < 0. On the other hand, Lemma

5 applies to the function w = u(t1, ·) at x∗ = x1. We obtain L1u(t1, x1) ≥ 0.
Also r(x1)u(t1, x1) ≥ 0 and F ≥ 0. Thus, the left-hand side of the equation

D
{K}
t (u − ϕ)(t1, x1) = [Lu + F ](t1, x1) is negative, but the right-hand side is

nonnegative. We have reached a contradiction. The assertion (i) is valid.

Let us prove (ii). Let u(t0, x0) = 0 at (t0, x0) ∈ (0, T ] × ΩN . Define
t̂0 = inf

{
t : t ≤ t0, u(τ, x0) = 0 for τ ∈ [t, t0]

}
. If (ii) is not valid, then t̂0 > 0

and u(t, x0) ≥ δ, t ∈ (t2, t3) for some δ > 0 and (t2, t3) ⊂ (0, t̂0) such that
t̂0 − t2 < tK . Then, similarly to the proof in [15] p.138, from the assumptions

D
{K}
t (u− ϕ) ∈ C((0, T ]×Ω), (4.10), K > 0, K – nonincreasing and relations

u ≥ 0, u(t, x0) ≥ δ > 0, t ∈ (t2, t3), we derive

D
{K}
t (u− ϕ)(t̂0, x0) ≤ δ(K(t̂0 − t2)−K(t̂0 − t3)). (4.11)

Since 0 < t̂0 − t3 < t̂0 − t2 < tK and K is strictly decreasing in (0, tK), (4.11)

implies D
{K}
t (u − ϕ)(t̂0, x0) < 0. On the other hand, from u(t̂0, x0) = 0 and

u(t, x) ≥ 0, (t, x) ∈ (0, T ] × Ω, we conclude that (t̂0, x0) = argmin
x∈Ω

u(t̂0, x).

By Lemma 5, L1u(t̂0, x0) ≥ 0. Moreover, (ru)(t̂0, x0) = 0 and F ≥ 0. Left-

hand side of the equation D
{K}
t (u − ϕ)(t̂0, x0) = [Lu + F ](t̂0, x0) is negative,

but right-hand side is nonnegative. Again, we have reached the contradiction.
Thus, (ii) holds. 2

At this point we present somewhat more concrete assumptions on the input
data of the direct problem (2.6) that imply the assumptions of Lemma 4 and
Lemma 3.

Corollary 2. Let F ≥ 0, ϕ = 0 and one of the assumptions (a1)–(a3) hold:

(a1) F ∈ C{M},α([0, T ];X0) for some 0 < α < 1 and F (0, ·) = 0;

(a2) F ∈ Cα0 ([0, T ];X0) and M(t) ≥ ctγ−1, t ∈ (0, T ) for some c ∈ R+,
0 < γ < α < 1;

(a3) F ∈ Cα−β0 ([0, T ];X0) and c1t
γ−1 ≤ M(t) ≤ c2t

β−1, |M ′(t)| ≤ c3t
β−2,

t ∈ (0, T ), for some c1, c2, c3 ∈ R+, 0 < β ≤ γ < α < 1.

Then assertions Lemma 4 are satisfied by solution of the problem (2.6).

Proof. Defining X = X0, Lemma 3 with Corollary 1 implies that the solution
of (2.6) exists and satisfies the smoothness conditions of Lemma 4. It remains
to show that (4.10) holds.

The case (a1). The relations F ∈ C{M},α([0, T ];X0), F (0, ·) = 0 mean that
F = k ∗ F̂ , where F̂ ∈ Cα([0, T ];X0). Thus, it follows from Lemma 3 that the
function û that solves (2.6) with F,ϕ replaced by F̂ , ϕ̂ = 0 belongs to the space
C{k}([0, T ];X0). Next, after convolving equation for û with k it is easy to see
that u = k ∗ û solves (2.6) with F = k ∗ F̂ . Therefore, u ∈ k ∗C{k}([0, T ];X0),
that is u = k ∗M ∗ v = 1 ∗ v, v ∈ C([0, T ];X0). This allows us to conclude that
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u ∈ C1([0, T ];X0). Hence,

lim
ε→0+

1

ε

∫ ε

0

k(τ)dτ sup
0≤s≤ε

|u(t− s, x)− u(t, x)| = lim
ε→0+

1

ε

∫ ε

0

k(τ)dτ ·O(ε)

= 0, ∀t ∈ (0, T ], x ∈ Ω.

The case (a2). Again, by Lemma 3 (ii), u ∈ C{k},α0 ([0, T ];X0) and by (4.5),
u ∈ Cα0 ([0, T ];X0). The relation (4.10) follows from the estimate

lim
ε→0+

1

ε

∫ ε

0

k(τ)dτ sup
0≤s≤ε

|u(t− s, x)− u(t, x)| = lim
ε→0+

1

ε

∫ ε

0

k(τ)dτ ·O(εα)

≤ lim
ε→0+

O(εα)

εM(ε)

∫ ε

0

M(ε− τ)k(τ)dτ = lim
ε→0+

O(εα−γ) = 0 ∀t ∈ (0, T ], x ∈ Ω.

The case (a3). According to Lemma 3 (ii), F ∈ Cα−β0 ([0, T ];X0) implies

that u ∈ C{k},α−β0 ([0, T ];X0) = M ∗ Cα−β0 ([0, T ];X0). By Lemma 2 it holds
u ∈ Cα0 ([0, T ];X0). This enables us finish the proof as in case (a2). ut

5 Results on IP1

We will study IP1 in context of Hölder spaces with respect to t. For the sake
of generality, we will assume different orders of spaces related to g and h: for
g we use α1 and for h we use α2.

Theorem 1. Let one of the following assumptions be valid:

(A1) g ∈ C1+α1
0 ([0, T ];C(Ω)) for some 0 < α1 < 1;

(A2) g ∈ C{k},α1

0 ([0, T ];C(Ω)) and M(t) ≥ ctγ−1, t ∈ (0, T ) for some c ∈ R+,
0 < γ < α1 < 1;

(A3) g ∈ C
{k},α1−β
0 ([0, T ];C(Ω)) and c1t

γ−1 ≤ M(t) ≤ c2t
β−1, |M ′(t)| ≤

c3t
β−2, t ∈ (0, T ), for some c1, c2, c3 ∈ R+, 0 < β ≤ γ < α1 < 1.

Additionally, we assume that g ≥ 0, g1 := D
{k}
t g−Rg ≥ 0 where R := max

x∈Ω
r(x)

and

a.e. x ∈ Ω ∃tx ∈ (0, T ] : g(tx, x) > 0. (5.1)

In case B = I we also assume that ∀x ∈ ∂Ω, either g(T, x) > 0 or g(·, x) = 0.

Finally, let (f, u) ∈ C(Ω) ×
(
C
{k}
0 ([0, T ];C(Ω))

⋂
C0([0, T ];W 2

p (Ω))
)

for

some p > 1 solve IP1 for ϕ = 0, ψ = 0, h = 0. Then (f, u) = (0, 0).

Proof. We start the proof by showing that in case B = I, for any x ∈ ∂Ω such
that g(T, x) > 0, the equality f(x) = 0 is valid. To show this, we consider the
equality

D
{k}
t u(T, x) = f(x)g(T, x), x ∈ Ω,

that follows from equation (2.6) in view of ψ = 0. If x ∈ ∂Ω and B = I then the
left-hand side of this equality equals zero. Thus, f(x)g(T, x) = 0 and provided
g(T, x) > 0 we obtain f(x) = 0.
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Let us introduce the functions f+ = |f |−f
2 and f− = |f |+f

2 . Due to the

definition, f± ∈ C(Ω) and f± ≥ 0. Moreover,

in case B = I, for any x ∈ ∂Ω such that g(T, x) > 0, it holds f±(x) = 0. (5.2)

Firstly, we consider the problems

D
{k}
t u±(t, x) = Lu±(t, x) + g(t, x)f±(x), x ∈ Ω, t ∈ (0, T ),

u±(0, x) = 0, x ∈ Ω, Bu±(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ).
(5.3)

By assumptions of the theorem and (5.2), g(t, ·)f± ∈ X0, t ∈ [0, T ]. There-

fore, in cases (A1) and (A2) due to (4.5) we have gf± ∈ C{M},α1

0 ([0, T ];X0)
and gf± ∈ Cα1

0 ([0, T ];X0), respectively. Similarly, in case (A3) due to (4.5)
and Lemma 2 we obtain gf± ∈ Cα1

0 ([0, T ];X0). Moreover, gf± ≥ 0. The
assumptions of Corollary 2 are satisfied for the functions F = gf±. Hence, the
solutions u± of (5.3) satisfy the assertions of Lemma 4.

Secondly, let us consider the problems

D
{k}
t v±(t, x) = Lv±(t, x) + g1(t, x)f±(x), x ∈ Ω, t ∈ (0, T ),

v±(0, x) = 0, x ∈ Ω, Bv±(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ).
(5.4)

In case (A1) we have g′ ∈ Cα1
0 ([0, T ];C(Ω)). Thus, g1 = D

{k}
t g − Rg =

k ∗ g′ − Rg ∈ C{M},α1

0 ([0, T ];C(Ω)). From g(t, ·)f± ∈ X0, t ∈ [0, T ] we imme-

diately get g1(t, ·)f± ∈ X0, t ∈ [0, T ]. Therefore, g1f
± ∈ C{M},α1

0 ([0, T ];X0).
Using similar reasoning, we deduce g1f

± ∈ Cα1
0 ([0, T ];X0) and g1f

± ∈
Cα1−β

0 ([0, T ];X0) in cases (A2) and (A3), respectively. Moreover, g1f
± ≥ 0.

Again, the assumptions of Corollary 2 are satisfied for F = g1f
±. The solutions

v± of (5.4) satisfy the assertions of Lemma 4.
Let us point out that the problem for M ∗ v± is equivalent to the problem

for u± −RM ∗ u±. Thus,

v± = D
{k}
t u± −Ru±. (5.5)

Moreover, since f = f+ − f−, we have u = u+ − u−. Thus, ψ = u(T, ·) =
0 implies that u+(T, ·) = u−(T, ·). Let us denote x∗ = argmax

x∈Ω
u+(T, x) =

argmax
x∈Ω

u−(T, x). By definition, either f+(x∗) = 0 or f−(x∗) = 0. Let us

assume that f+(x∗) = 0 (the situation when f−(x∗) = 0 can be considered in
a similar manner).

Let us suppose that either x∗ ∈ Ω or B = ω · ∇ (the case x∗ ∈ ∂Ω and
B = I will be considered later separately). Then we can apply Lemma 5 to the
function w = −u+(T, ·). We get L1u

+(T, x∗) ≤ 0. Thus, from (5.3), (5.5) and
u+ ≥ 0, r ≤ R it follows:

v+(T, x∗) = L1u
+(T, x∗) + (r(x+)−R)u+(T, x∗) ≤ 0. (5.6)

Due to Lemma 4 (i),

v+(t, x) ≥ 0, (t, x) ∈ (0, T )×Ω. (5.7)
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Hence, (5.6) and (5.7) imply v+(T, x∗) = 0. Thus, by Lemma 4 (ii), v+(t, x∗) =

0, t ∈ [0, T ]. By formula (5.5) it means D
{k}
t u+(t, x∗) − Ru+(t, x∗) = 0, t ∈

[0, T ]. Applying M∗ to to this equality, we obtain the following homogeneous
Volterra equation of the second kind:

u+(t, x∗)−RM ∗ u+(t, x∗) = 0, t ∈ [0, T ].

It has only the trivial solution u+(t, x∗) = 0, t ∈ [0, T ]. Hence, u+(T, x∗) = 0.
Since x∗ is a maximum point of u+(T, x) and u+(T, x) ≥ 0, we also get

u+(T, x) = 0, x ∈ Ω. (5.8)

Now we consider the case x∗ ∈ ∂Ω, B = I, too. Then by Bu+|∂Ω = 0,
immediately u+(T, x∗) = 0 and again we have (5.8).

Since u = u+−u− and ψ = u(T, ·) = 0 holds, from (5.8) we get u±(T, x) = 0,
x ∈ Ω. Lemma 4 (ii) implies u±(t, x) = 0, (t, x) ∈ [0, T ] × Ω. Therefore,
u(t, x) = 0, (t, x) ∈ [0, T ] × Ω. From the differential equation for u we obtain
f(x)g(t, x) = 0, (t, x) ∈ [0, T ]×Ω. Finally, (5.1) yields f = 0. ut

Next we provide simple sufficient conditions that imply the assumption

D
{k}
t g −Rg ≥ 0 in Theorem 1. For this we need the following lemma.

Lemma 6. Let w ∈ C{k}([0, T ];R) be nonnegative and nonincreasing. Then

D
{k}
t w ≥ k(T )w.

Proof. The assertion follows from the estimate

D
{k}
t w(t) = lim

δ→0+

1

δ

[∫ t+δ

t

k(τ)w(t+δ−τ)dτ +

∫ t

0

k(τ)(w(t+δ−τ)

− w(t−τ))dτ
]
≥ lim
δ→0+

k(T+δ)
1

δ

[∫ t+δ

t

w(t+δ−τ)dτ +

∫ t

0

(w(t+δ−τ)

− w(t−τ))dτ
]
= k(T )w(t), 0 < t < T.

ut

Due to that Lemma 6, D
{k}
t g − Rg ≥ 0 holds provided along with other

assumptions on g in Theorem 1, g is nondecreasing in t and k(T ) ≥ R in case
R > 0.

Theorem 2. Let g, M satisfy the assumptions of Theorem 1 and the inequality
g(T, x) > 0, x ∈ Ω, hold. If ϕ,ψ ∈ XAp and h ∈ Cα2([0, T ];Xp), where
p ∈ {0}

⋃
(1,∞), 0 < α2 < 1, then IP1 has a unique solution (f, u) ∈ Xp ×

C{k}([0, T ];Xp)
⋂
C([0, T ];XAp) and the following estimate holds:

‖f‖Xp + ‖u‖C{k}([0,T ];Xp)
⋂
C([0,T ];XAp )

≤ C5

(
‖ϕ‖XAp + ‖ψ‖XAp + ‖h‖Cα2 ([0,T ];Xp)

)
. (5.9)
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If additionally ϕ = h(0, ·) = 0, then u ∈ C
{k},α
0 ([0, T ];Xp)

⋂
Cα0 ([0, T ];XAp)

where α =

{
α2, in case (A1),
min{α1, α2}, in cases (A2), (A3)

and the estimate

‖f‖Xp+‖u‖C{k},α0 ([0,T ];Xp)
⋂
Cα0 ([0,T ];XAp )

≤C6

(
‖ψ‖XAp+‖h‖Cα2

0 ([0,T ];Xp)

)
(5.10)

is valid. The constants C5 and C6 depend on the parameters M,L, g, p, α2.

Proof. Firstly, we are going to replace the overdetermination condition (2.9)
by a fixed-point equation with respect to f.

Suppose that (f, u) ∈ Xp × C{k}([0, T ];Xp)
⋂
C([0, T ];XAp) solves IP1.

Then, since (2.9) holds, the equation (2.6) at t = T with F = fg + h yields

f(x) =

(
D
{k}
t (u− ϕ)− ηu

)
(T, x)− (Ap − η)ψ(x)− h(T, x)

g(T, x)
, (5.11)

where η is chosen so that 0 ∈ ρ(Ap − ηI).
Let us split u into the sum of two functions: u = u1 + u2, such that

D
{k}
t u1 = Apu1 + fg, u1(0, ·) = 0,

D
{k}
t (u2 − ϕ) = Apu2 + h, u2(0, ·) = ϕ. (5.12)

In the context of IP1, u2 is a known function. According to Lemma 3, the

solution to (5.12) belongs to u2 ∈ C{k}([0, T ];Xp). Thus, v2 := D
{k}
t (u2−ϕ)−

ηu2 ∈ C([0, T ];Xp). Next we formulate the following problem:

D
{k}
t v1 = Apv1 + f(D

{k}
t g − ηg), v1(0, ·) = 0. (5.13)

Due to the assumptions (A1)–(A3) and (4.5), it holds D
{k}
t g ∈ Cα̂0 ([0, T ];C(Ω))

where

α̂ =

{
α1, in cases (A1), (A2),
α1 − β, in case (A3).

(5.14)

Thus, f(D
{k}
t g − ηg) ∈ Cα̂0 ([0, T ];Xp). According to Lemma 3, (5.13) has

a solution v1 in C
{k},α̂
0 ([0, T ];Xp)

⋂
Cα̂0 ([0, T ];XAp). It is easy to check that

v1 = D
{k}
t u1 − ηu1.

The notations introduced allow us to rewrite (5.11) in the form

f = Ff + G, (5.15)

where

G(x) =
v2(T, x)− (Ap − η)ψ(x)− h(T, x)

g(T, x)
, x ∈ Ω, (5.16)

(Ff) (x) = v1[f ](T, x)/g(T, x) (5.17)
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and v1[·] stands for the operator that assigns to f the solution v1 of (5.13).
Thus, (2.6), (2.9), (2.10) imply (5.15). On the other hand, taking into account
all the substitutions performed, we can move back from (5.15) to (5.11). To-
gether with (2.6) at t = T and (2.10) it implies (Ap−η)u(T, x) = (Ap−η)ψ(x).
Since (Ap − η) is injective, it yields (2.9). Consequently, IP1 is in the space
Xp×C{k}([0, T ];Xp)

⋂
C([0, T ];XAp) equivalent to the problem of finding the

pair of functions (f, u) that solves (2.6), (2.10), (5.15).

We point out that (5.15) is an independent equation for the first component
f of the solution of IP1. Let us analyse properties of the operator F involved in
this equation. By Lemma 3, v1[·] ∈ L(Xp;C

α̂
0 ([0, T ];XAp)). Thus, v1[·](T, ·) ∈

L(Xp, XAp).

Furthermore, XAp ↪→↪→ Xp. In case p ∈ (1,∞) it is a direct consequence
of W 2

p (Ω) ↪→↪→ Lp(Ω). In case p = 0 it follows from the continuous embedding

of XA0 in C1
B(Ω) := X0

⋂
C1(Ω) (see Theorems 3.1.19, 3.1.22 in [24]) and

C1
B(Ω) ↪→↪→ X0.

Therefore, v1[·](T, ·) : Xp → Xp is compact. Since 1
g(T,·) ∈ C(Ω) due to the

assumptions of this theorem, F : Xp → Xp is also compact.

Next, let us show that 1 /∈ σ(F). Firstly, let us consider the case p = 0.
Suppose that 1 ∈ σ(F). Then the equation f = Ff has a solution f ∈ X0,
f 6= 0. This means that the problem (2.6), (2.10), (5.15) with homogeneous
data ϕ = 0, ψ = 0, h = 0 has the nontrivial solution (f, u1) in the space

X0×C{k}0 ([0, T ];X0)
⋂
C0([0, T ];XA0

). But due to the Theorem 1, IP1 with a
homogeneous data has only the trivial solution in such a space. We came to a
contradiction. Consequently, 1 /∈ σ(F).

Secondly, let us consider the case p ∈ (1,∞). We again suppose that
1 ∈ σ(F), hence the equation f = Ff has a nontrivial solution f ∈ Xp.
The idea is to show that this solution actually belongs to X0. Then we can
apply the arguments from the previous case to show that 1 ∈ σ(F) leads to a
contradiction.

If p > n
2 , then v1[f ](T, ·) ∈ XAp ↪→ X0. Thus, f = Ff = 1

g(T,x)v1[f ](T, ·) ∈
X0. If p ≤ n

2 , then according to embedding theorems, XAp ↪→ Xp1 = Lp1(Ω),
where p1 = np

n−2p > p. Therefore, v1[f ](T, ·) ∈ Xp1 and f = Ff =
1

g(T,x)v1[f ](T, ·) ∈ Xp1 . After a finite number of iterations we obtain f ∈ Xpi ,

where pi = np
n−2ip >

n
2 (works for i > n

2p − 1). Next iteration gives f ∈ X0.

We have shown that the first case of Fredholm alternative is satisfied for
the equation (5.15). Consequently, the solution to (5.15) exists and is unique
for any G ∈ Xp and (I −F)−1 ∈ L(Xp).

Since F = fg + h is Hölder-continuous with values in Xp, Lemma 3 im-
plies that the problem (2.6), (2.10) has unique solution u ∈ C{k}([0, T ];Xp)

⋂
C([0, T ];XAp). This completes the proof of the existence and uniqueness as-
sertion of the theorem.

In the rest of the proof, Ĉ stands for a generic constant depending on the
parameters M,L, g, p, α2. Let us deduce the stability estimate (5.9). We obtain

‖f‖Xp ≤ ‖(I −F)−1‖L(Xp)‖G‖Xp ≤ Ĉ
(
‖h(T, ·)‖Xp + |η|‖ψ‖Xp + ‖ψ‖XAp
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+ ‖D{k}t (u2 − ϕ)− ηu2‖C([0,T ];Xp)

)
≤ Ĉ

(
‖h‖Cα2 ([0,T ];Xp) + ‖ψ‖XAp

+‖ϕ‖XAp
)
. (5.18)

Further, we note that g ∈ Cγ0 ([0, T ];C(Ω)) for any γ ∈ (0, 1) in case (A1) and
for γ = α1 in cases (A2), (A3). Using Lemma 3 we have

‖u‖C{k}([0,T ];Xp)
⋂
C([0,T ];XAp )

= ‖u1 + u2‖C{k}([0,T ];Xp)
⋂
C([0,T ];XAp )

≤ Ĉ(‖f‖Xp‖g‖Cγ0 ([0,T ];C(Ω)) + ‖h‖Cα2 ([0,T ];Xp) + ‖ϕ‖XAp ).

Together with the estimate of f (5.18) it implies (5.9).
In case ϕ = h(0, ·) = 0, the solution of (2.6), (2.10) belongs to the space

C
{k},α
0 ([0, T ];Xp)

⋂
Cα0 ([0, T ];XAp) and can be estimated as

‖u‖
C
{k},α
0 ([0,T ];Xp)

⋂
Cα0 ([0,T ];XAp )

≤ Ĉ(‖f‖Xp‖g‖Cγ0 ([0,T ];C(Ω))+‖h‖Cα2
0 ([0,T ];Xp)

).

This with (5.18) implies (5.10). ut

We point out that in case p = 0 and B = I, the assumptions of Theorem 2
allow to recover f ∈ X0 = C0(Ω) only. In order to fix that in the following
theorem we provide some additional conditions that are sufficient to restore
f ∈ C(Ω) in case B = I.

Theorem 3. Let g,M satisfy the assumptions of Theorem 2. If ϕ, ψ, Lϕ ∈
XAp for some p >

n

2
, Lψ ∈ C(Ω), h ∈ C{k},α2([0, T ];Xp)

⋂
C([0, T ];C(Ω)),

where 0 < α2 < 1 and h(0, ·) ∈ XAp then IP1 has a unique solution (f, u) ∈
C(Ω)× C{k}([0, T ];XAp). Moreover, Lu ∈ C([0, T ];C(Ω)) and the estimate

‖f‖C(Ω)+‖u‖C{k}([0,T ];XAp )
+‖Lu‖C([0,T ];C(Ω))≤ C7

(
‖ϕ‖Xp+‖Lϕ‖XAp

+‖ψ‖Xp+‖Lψ‖C(Ω)+‖h‖C{k},α2 ([0,T ];Xp)
⋂
C([0,T ];C(Ω))+‖h(0, ·)‖XAp

)
(5.19)

holds. If additionally ϕ=h(0, ·) =D
{k}
t h(0, ·) = 0, then u∈C{k},α

′

0 ([0, T ];XAp)
and the estimate

‖f‖C(Ω) + ‖u‖
C
{k},α′
0 ([0,T ];XAp )

+ ‖Lu‖C0([0,T ];C(Ω))

≤ C8

(
‖ψ‖Xp + ‖Lψ‖C(Ω) + ‖h‖

C
{k},α2
0 ([0,T ];Xp)

⋂
C0([0,T ];C(Ω))

)
(5.20)

is valid where α′ = min{α̂;α2} and α̂ is given by (5.14). The constants C7 and
C8 depend on M,L, g, p, α2.

Proof. Throughout the proof, Ĉ denotes a generic constant depending on
M,L, g, p, α2 and RHS stands for the expression in brackets at the right-
hand side of (5.19). By Theorem 2, IP1 has a unique solution (f, u) ∈ Xp ×
C{k}([0, T ];Xp)

⋂
C([0, T ];XAp). Let us consider the problem

D
{k}
t (w2−w2(0, ·)) = Apw2 +D

{k}
t (h−h(0, ·)), w2(0, ·) = Lϕ+ h(0, ·). (5.21)
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Under the assumptions of this theorem, Lemma 3 implies that (5.21) has a
unique solution w2 ∈ C{k}([0, T ];Xp) ∩ C([0, T ];XAp). Moreover, due to (4.7)

and (4.8), ‖w2‖C([0,T ];XAp )
≤ Ĉ(‖h‖C{k},α2 ([0,T ];Xp)

+‖h(0, ·)‖XAp +‖Lϕ‖XAp ).

It is easy to check that w2 = D
{k}
t ∗ (u2 − ϕ) and u2 = M ∗ w2 + ϕ where u2

solves (5.12). Therefore, we have u2 ∈ C{k}([0, T ];XAp) ↪→ C{k}([0, T ];C(Ω))
and

‖u2‖C{k}([0,T ];XAp )

≤ Ĉ
(
‖h‖C{k},α2 ([0,T ];Xp)

+‖h(0, ·)‖XAp+‖Lϕ‖XAp
)

+‖ϕ‖XAp . (5.22)

Let us consider the function G given by (5.16). (Recall that there v2 = w2 −
ηu2.) Due the proved properties of w2 and u2 and the assumptions of the

theorem, it holds G ∈ C(Ω) and ‖G‖C(Ω) ≤ Ĉ RHS.

Now, let us provide an estimate for ‖f‖C(Ω) using the formulas (5.15) and

(5.17). Since 1/g(T, ·) ∈ C(Ω) and v1[·](T, ·) ∈ L(Xp, XAp), we have

‖f‖C(Ω) ≤ ‖Ff‖C(Ω) + ‖G‖C(Ω) ≤ Ĉ‖v1[f ](T, ·)‖C(Ω) + ‖G‖C(Ω)

≤ Ĉ‖v1[f ](T, ·)‖XAp + ‖G‖C(Ω) ≤ Ĉ‖f‖Xp + ‖G‖C(Ω).

Since (I −F) is invertible in Xp, the estimate holds

‖f‖Xp ≤ ‖(I −F)−1‖L(Xp)‖G‖Xp ≤ Ĉ‖G‖C(Ω).

Thus, we obtain

‖f‖C(Ω) ≤ Ĉ RHS. (5.23)

Finally, let us derive an estimate for u and finish the proof of the first part

of the theorem. We have u = u1 + u2, where u1 = M ∗ w1, w1 = D
{k}
t u1 and

w1 solves the problem

D
{k}
t w1 = Apw1 + fD

{k}
t g, w1(0, ·) = 0.

Since fD
{k}
t g ∈ Cα

′

0 ([0, T ];Xp), Lemma 3 implies w1 ∈ Cα
′

0 ([0, T ];XAp) and

‖u1‖C{k},α′0 ([0,T ];XAp )
= ‖w1‖Cα′0 ([0,T ];XAp )

≤ Ĉ‖f‖C(Ω)‖D
{k}
t g‖Cα′0 ([0,T ];Xp)

.

Using here (5.23) we have

‖u1‖C{k},α′0 ([0,T ];XAp )
≤ Ĉ RHS. (5.24)

From (5.22) and (5.24) we obtain for u = u1 + u2 the estimate

‖u‖C{k}([0,T ];XAp )
≤ Ĉ RHS. (5.25)

It remains to estimate Lu in the space C([0, T ];C(Ω)). Using (5.25) we deduce

‖D{k}t (u− ϕ)‖C([0,T ];C(Ω)) ≤ Ĉ‖D
{k}
t (u− ϕ)‖C([0,T ];XAp )

≤ Ĉ RHS.
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From the expression Lu = D
{k}
t (u − ϕ) − fg − h due to the proved estimates

for D
{k}
t (u− ϕ) and f we obtain

‖Lu‖C([0,T ];C(Ω)) ≤ Ĉ RHS. (5.26)

Summing up, (5.23), (5.25) and (5.26) imply (5.19).
Now let us focus on the second part of this theorem that is concerned with

the particular case ϕ = h(0, ·) = D
{k}
t h(0, ·) = 0. Then RHS reduces to the ex-

pression in brackets at the right-hand side of (5.20). Lemma 3 implies that the
function w2 which solves (5.21) belongs the space Cα

′

0 ([0, T ];XAp), the func-

tion u2 = M ∗ w2 belongs to C
{k},α′
0 ([0, T ];XAp) and ‖u2‖C{k},α′0 ([0,T ];XAp )

≤

Ĉ‖h‖
C
{k},α2
0 ([0,T ];Xp)

. This relation by u = u1 + u2 and the estimates (5.23),

(5.24) and (5.26) implies (5.20). ut

Provided the assumptions of Theorem 3 hold and B = I, an explicit expres-
sion of the unknown function f at the boundary can be derived. Namely, setting
t = T and x ∈ ∂Ω in (2.6) and taking the relations F = fg+h and u(T, ·) = ψ

into account we obtain f(x) = − 1

g(T, x)
[Lψ(x) + h(T, x)], x ∈ ∂Ω.

6 Results on IP2

In the context of IP2 let us introduce the following sets for the coefficient r:

KR = {r ∈ C(Ω) : r(x) ≤ R, x ∈ Ω}, where R ∈ R.

Theorem 4. Let R be some real number and IP2 have two solutions (r, u),
(r1, u1), such that

r ∈ C(Ω), r1 ∈ KR, u, u1 ∈ C{k}0 ([0, T ];L1(Ω))
⋂
C0([0, T ];W 2

1 (Ω)),

u1 − u ∈ C{k}0 ([0, T ];C(Ω))
⋂
C0([0, T ];W 2

p (Ω))

for some p > 1 and the function U = u+b (and M) satisfy one of the following
assumptions:
(A4) U ∈ C1+α1

0 ([0, T ];C(Ω)) for some 0 < α1 < 1;

(A5) U ∈ C{k},α1

0 ([0, T ];C(Ω)) and M(t) ≥ ctγ−1, t ∈ (0, T ) for some c ∈ R+,
0 < γ < α1 < 1;

(A6) U ∈ C
{k},α1−β
0 ([0, T ];C(Ω)) and c1t

γ−1 ≤ M(t) ≤ c2t
β−1, |M ′(t)| ≤

c3t
β−2, t ∈ (0, T ), for some c1, c2, c3 ∈ R+, 0 < β ≤ γ < α1 < 1.

Additionally, we assume that

U ≥ 0, D
{k}
t U −RU ≥ 0, (6.1)

a.e. x ∈ Ω, ∃tx ∈ (0, T ] : U(tx, x) > 0.

In case B = I we also assume that ∀x ∈ ∂Ω, either U(T, x) > 0 or U(·, x) = 0.
Then (r1, u1) = (r, u).
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Proof. The difference (r̂, û) = (r1 − r, u1 − u) ∈ C(Ω) ×
(
C
{k}
0 ([0, T ];C(Ω))⋂

C0([0, T ];W 2
p (Ω))

)
solves the problem

D
{k}
t û(t, x) = (L1 + r1)û(t, x) + U(t, x)r̂(x), x ∈ Ω, t ∈ (0, T ),

û(0, x) = 0, x ∈ Ω, Bû(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ), (6.2)

û(T, x) = 0, x ∈ Ω.

The inequalities (6.1) imply that D
{k}
t U −RrU ≥ 0, where Rr := max

x∈Ω
r1(x) ≤

R. Consequently, the assumptions of Theorem 1 are satisfied for the problem
(6.2) and we obtain r̂ = 0, û = 0. ut

Let us formulate a problem that contains approximate data:

D
{k}
t (ũ−ϕ̃)(t, x) = L1ũ(t, x)+r̃(x)(ũ+b̃)(t, x)+F̃1(t, x), x ∈ Ω, t ∈ (0, T ),

ũ(0, x) = 0, x ∈ Ω, Bũ(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ), (6.3)

ũ(T, x) = ψ̃, x ∈ Ω.

We are going to prove an existence and approximation theorem for this problem
in case its data vector D̃ = (b̃, F̃1, ψ̃) is close to the data vector D = (b, F1, ψ)
of the exact problem IP2.

Theorem 5. Assume that R ∈ R and IP2 has a solution (r, u) ∈ KR

× C{k}0 ([0, T ];L1(Ω))
⋂
C0([0, T ];W 2

1 (Ω)) such that U = u + b (and M) sat-
isfy one of the assumptions (A4)–(A6), the inequalities (6.1) and U(T, x) > 0,
x ∈ Ω. Then the following statements are valid.

(i) Let p ∈ {0}
⋃(n

2
,∞
)

, α2 ∈ (0, 1). There exist constants δ1 > 0 and K1 > 0

depending on M,L1, r, U, p, α2 such that if

D̃ −D ∈ D1 = Cα2
0 ([0, T ];C(p)(Ω))× Cα2

0 ([0, T ];Xp)×XAp

and ‖D̃ −D‖D1
≤ δ1, where C(p)(Ω) =

{
C(Ω), in case p ∈

(n
2
,∞
)
,

X0, in case p = 0,
then

problem (6.3) has a unique solution in the set{
(r̃, ũ) : (r̃ − r, ũ− u) ∈ X1 := Xp ×

(
C
{k},α
0 ([0, T ];Xp)

⋂
Cα0 ([0, T ];XAp)

)
,

‖(r̃ − r, ũ− u)‖X1
≤ K1‖D̃ −D‖D1

}
,

where α =

{
α2, in case (A4),
min{α1, α2}, in cases (A5), (A6).

(ii) Let p ∈
(n

2
,∞
)

, α2 ∈ (0, 1). There exist constants δ2 > 0 and K2 > 0

depending on M,L1, r, U, p, α2 such that if

D̃ −D ∈ D2 =
(
C
{k},α2

0 ([0, T ];Xp)
⋂
Cα2

0 ([0, T ];C(Ω))
)2
× Yp
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and ‖D̃−D‖D2
≤ δ2 where Yp = {ψ : ψ ∈ XAp , Lψ ∈ C(Ω)}, then the problem

(6.3) has a unique solution in the set{
(r̃, ũ) : (r̃−r, ũ−u) ∈ X2 := C(Ω)× Up,α′ , ‖(r̃−r, ũ−u)‖X2

≤ K2‖D̃−D‖D2

}
,

where Up,α′ = {v ∈ C
{k},α′
0 ([0, T ];XAp) : Lv ∈ C0([0, T ];C(Ω))}, α′ =

min{α̂;α2} and α̂ =

{
α1, in cases (A4), (A5),
α1 − β, in case (A6).

We mention that in this theorem, the operator Ap and the spaceXAp defined
on the basis of L = L1 + rI depend on the component r of the solution of the
exact problem IP2.

Proof. Let us denote the difference (r̂, û) = (r̃ − r, ũ− u). Then the problem
for the pair (r̂, û) reads

D
{k}
t û = (L1 + r)û+ r̂(u+ b) +

[
r̂û+ F̃1 − F1 + (r̂ + r)(b̃− b)

]
,

û(0, ·) = 0, Bû|∂Ω = 0, û(T, ·) = ψ̃ − ψ.
(6.4)

This problem can be treated as IP1 with f = r̂, g = u+ b, h = r̂û+ F̃1 −F1 +
(r̂+ r)(b̃− b). Therefore, applying the solution operator of IP1 A to (6.4), it is
reduced to the operator equation

(r̂, û) = F2(r̂, û), (6.5)

where F2(r̂, û) = A(r̂û+ F̃1 − F1 + (r̂ + r)(b̃− b), 0, ψ̃ − ψ).
We are going to show that F2 is a contraction in a ball ‖(r̂, û)‖X1

≤ ρ with a
suitable chosen ρ > 0. Firstly, we have to prove that this ball remains invariant
with respect to the operator F2. Let ‖(r̂, û)‖X1 ≤ ρ. According to (5.10),

‖F2(r̂, û)‖X1
≤ C6

(
‖ψ̃−ψ‖XAp +‖r̂û+F̃1−F1+(r̂+r)(b̃−b)‖Cα2

0 ([0,T ];Xp)

)
.

Let cp be an embedding constant such that ‖w‖C(Ω) ≤ cp‖w‖XAp . Then

‖r̂û‖Cα2
0 ([0,T ];Xp)

≤ ‖r̂‖Xp‖û‖Cα0 ([0,T ];C(Ω)) ≤ ‖r̂‖Xpcp‖û‖Cα0 ([0,T ];XAp )
≤ cpρ2.

Therefore,

‖F2(r̂, û)‖X1
≤ C6

(
‖ψ̃ − ψ‖XAp + cpρ

2 + ‖F̃1 − F1‖Cα2
0 ([0,T ];Xp)

+(ρ+R1)‖b̃− b‖Cα2
0 ([0,T ];C(p)(Ω))

)
≤ C6

(
cpρ

2 + (ρ+ 1 +R1)‖D̃ −D‖D1

)
,

where R1 = ‖r‖Xp in case p ∈
(n

2
,∞
)

and R1 = ‖r‖C(Ω) in case p = 0. Now

let us take ρ = K1‖D̃ −D‖D1 with a constant K1. Then

‖F2(r̂, û)‖X1
≤ C6

(
(cpK

2
1 +K1)‖D̃ −D‖D1

+ 1 +R1

)
‖D̃ −D‖D1

.
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In case ‖D̃ −D‖D1
≤ δ1 we have

‖F2(r̂, û)‖X1 ≤ C6

(
(cpK

2
1 +K1)δ1 + 1 +R1

)
‖D̃ −D‖D1 .

Let us define the constants as follows: K1 = C6(2 + R1), δ1 = 1
cpK2

1+K1
.

Then ‖F2(r̂, û)‖X1
≤ K1‖D̃ −D‖D1

. Consequently, for ‖(r̂, û)‖X1
≤ ρ we have

‖F2(r̂, û)‖X1
≤ ρ.

Secondly, inside the set ‖(r̂, û)‖X1
≤ ρ = K1‖D̃ −D‖D1

let us consider the
difference of F2 at (r̂1, û2) and (r̂2, û2). Assuming ‖D̃−D‖D1 ≤ δ1, we deduce
the estimate

‖F2(r̂1, û1)−F2(r̂2, û2)‖X1
≤ ‖A‖‖(r̂1 − r̂2)û1 + r̂2(û1 − û2)

+(r̂1 − r̂2)(b̃− b)‖Cα2
0 ([0,T ];Xp)

≤ C6

(
cpρ‖r̂1 − r̂2‖Xp

+cpρ‖û1 − û2‖Cα0 ([0,T ];XAp )
+ δ1‖r̂1 − r̂2‖Xp

)
≤ C6(cpK1δ1 + δ1)

×‖(r̂1 − r̂2, û1 − û2)‖X1
=

1

(2 +R1)
‖(r̂1 − r̂2, û1 − û2)‖X1

.

It shows that the operator F2 is a contraction in the ball ‖(r̂, û)‖X1 ≤ ρ.
According to the Banach fixed point theorem there exists a unique solution to
the equation (6.5) in that ball. This proves the assertion (i).

(ii) The proof of (ii) repeats the proof of (i) with appropriate changes of
spaces and norms. For A, the estimate (5.20) is used instead of (5.10). ut

Remark 1. In case the data of (6.3) are close to data of a process without
reaction (i.e. r = 0), Theorem 5 implies the existence of the reaction coefficient
r̃ in small.

Remark 2. Supposing the existence of a solution (r, u) of IP2, we ask: what are
sufficient conditions on the data that guarantee the validity of inequality-type
conditions (6.1) and U(T, x) > 0, x ∈ Ω in Theorems 4, 5? To answer this ques-
tion, we return to the problem (2.3) for U and set there Φ = H(0, ·) = 0. Let us
suppose that U is sufficiently smooth. Then constructing a corresponding prob-

lem for D
{k}
t U −RU and assuming D

{k}
t H−RH ≥ 0, (D

{k}
t Bb−RBb)|∂Ω ≥ 0,

Lemma 4 (i) implies the inequality D
{k}
t U − RU ≥ 0. Next, we consider the

conditions U ≥ 0 and U(T, x) > 0, x ∈ Ω. Let us assume that

∃µ ∈ C[0, T ], µ ≥ 0, µ 6= 0, µ− nondecreasing :

H(t, x) ≥ µ(t), x ∈ Ω, t ∈ [0, T ], Bb(t, x) ≥ µ(t), x ∈ ∂Ω, t ∈ [0, T ].

Define V = U − δ1 ∗ µ with δ > 0. The function V solves the problem

D
{k}
t V = LV +H1, V (0, ·) = 0 , B(V − (b− δ1 ∗ µ))|∂Ω = 0,

where H1 = H + δ(r1 ∗µ−D{k}t 1 ∗µ). Since D
{k}
t 1 ∗µ = k ∗µ, we get that for

sufficiently small δ,

H1(t, x) ≥ µ(t)[1− δ(max
x∈Ω

r(x)T + ‖k‖L1(0,T ))] ≥ 0, t ∈ [0, T ], x ∈ Ω
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and BV |∂Ω = B(b − δ1 ∗ µ)|∂Ω ≥ 0. Lemma 4 (i) yields V ≥ 0. Thus, U =

V + δ1 ∗ µ ≥ 0 and U(T, x) = V (T, x) + δ
∫ T
0
µ(τ)dτ > 0, x ∈ Ω.

At the end of this section, we make some general remarks. We applied
results on IP1 to analyze IP2. In a similar manner, results on IP1 can be
applied to study inverse problems to determine other coefficients of L, too.

The basic set of assumptions (A1)–(A3) for g involves the restriction
g(0, ·) = 0. This is due to the fact that in case g(0, ·) 6= 0 we cannot ensure
sufficient regularity of u to apply the positivity principle in the proof of Theo-
rem 1. In IP2, the function u+ b = U works as g. For that reason, we consider
the case Φ = U(0, ·) = 0 in IP2.

In the beginning of the proof of Lemma 4 we showed that the direct problem
with r > 0 can be reduced to a problem with r ≤ 0 by the change of unknown
ũ = e−σtu, where σ > 0. This suggests a possible exponential growth of u and
a related time limitation of the linear reaction model in case r > 0. For bigger
T , nonlinear reaction models are more relevant [6].

Solutions of IP1 and IP2 depend continuously on derivatives of the data
of finite order. This means that these problems are moderately ill-posed. In
case approximate data are given with errors, regularization procedures can be
effectively applied (cf. e.g. [17] for IP1 with g = g(t)).
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Birkhäuser, Basel, 1995.

[25] F. Mainardi, A. Mura, G. Pagnini and R. Gorenflo. Time-fractional diffusion of
distributed order. Journal of Vibration and Control, 14(9-10):1267–1290, 2008.
https://doi.org/10.1177/1077546307087452.

[26] D.G. Orlovsky. Parameter determination in a differential equation of fractional
order with Riemann-Liouville fractional derivative in a Hilbert space. Journal
of Siberian Federal University, 8(1):55–63, 2015. https://doi.org/10.17516/1997-
1397-2015-8-1-55-63.

[27] Y. Povstenko. Fractional heat conduction and associated ther-
mal stress. Journal of Thermal Stresses, 28(1):83–102, 2004.
https://doi.org/10.1080/014957390523741.

[28] J. Prüss. Evolutionary Integral Equations and Applications. Birkhäuser Verlag,
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Appendix: Proofs of Lemmas 1, 2 and 5

Proof of Lemma 1. Theorems 3 and 4 of [9] guarantee that k is nonnegative,
nonincreasing and convex. Convexity implies the continuity of k. From the
equation M ∗ k = 1 we easily deduce lim

t→0+
k(t) = +∞, because in the opposite

case k is bounded from which it follows that lim
t→0+

(M ∗ k)(t) = 0.

Let us prove k > 0. Suppose that it is not true. Then in view of proved
properties of k, ∃t0 : k(t) > 0, t < t0 and k(t) = 0, t > t0. For t > t0 from

M ∗ k = 1 we get
∫ t0
0
M(t− τ)k(τ)dτ = 1. Therefore,

∫ t0
0
M ′(t− τ)k(τ)dτ = 0.
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The last equality contradicts to the assumptions k(t) > 0, t ∈ (0, t0) and
M ′ < 0. Thus, k > 0.

Finally, let us prove (3.3) Let us choose some t3 > 0. Since lim
t→0+

k(t) = +∞,

there exists an interval (0, δ), δ < t3, such that k(t) > k(t3) for t ∈ (0, δ).
Suppose that (3.3) is not true. Then we can find two points t1 < t2 in (0, δ)
so that k(t1) = k(t2). Consequently, for t1 < t2 < t3 we have k(t1) = k(t2) >
k(t3). Obviously, it contradicts to the convexity of k. Therefore, (3.3) is valid.
ut
Proof of Lemma 2 is similar to proof of Theorem 14 in [11] that is concerned

with the case M(t) = tβ−1

Γ (β) . Let z ∈ Cα−β0 ([0, T ];X). Then ‖M ∗ z(t)‖X ≤
const tβ−1 ∗ tα−β = O(tα). Secondly,

(M ∗ z)(t)− (M ∗ z)(t− h) = J1 + J2 + J3,

where

J1 = z(t)

∫ t

t−h
M(τ)dτ, J2 = −

∫ h

0

[z(t)− z(t− τ)M(τ)dτ,

J3 = −
∫ t

h

[z(t)− z(t− τ)]

∫ τ

τ−h
M ′(s)ds dτ.

Immediately, ‖J2‖X ≤ const
∫ h
0
τα−βτβ−1dτ = O(hα). Moreover,

‖J1‖X ≤ const tα−β
∫ t

t−h
τβ−1 = const tα−β [tβ − (t− h)β ],

‖J3‖X ≤ const

∫ t

h

τα−β
∫ τ

τ−h
sβ−2ds dτ = const

∫ t

h

τα−β [(τ − h)β−1 − τβ−1]dτ.

Further estimation of J1 and J3 can be performed exactly as in [11]. As a
result, we get ‖J1‖X , ‖J3‖X = O(hα). This completes the proof. ut

Proof of Lemma 5. Firstly, we point out that the assumption w ∈W 2
p (Ω), p > n

implies w ∈ C1(Ω). We will use maximum principles for elliptic equations in
Sobolev spaces to prove the lemma. Let us consider the case x∗ ∈ Ω. Suppose
that L1w(x∗) < 0. Then there exists a ball B(x∗, ε) ⊂ Ω and δ > 0 such that
L1w(x) ≤ −δ < 0 for x ∈ B(x∗, ε). Let us define the auxiliary function

z(x) = α|x− x∗|2 with α > 0 (7.1)

such that L1(w+ z) ≤ 0 in B(x∗, ε). Since w(x∗) ≤ w(x) and z(x∗) < z(x) for
x ∈ ∂B(x∗, ε), we get

(w + z)(x∗) < (w + z)(x), x ∈ ∂B(x∗, ε). (7.2)

On the other hand, due to L1(w+z) ≤ 0 it follows from the Theorem 9.1 [8] that
min

x∈B(x∗,ε)
(w + z)(x) = min

x∈∂B(x∗,ε)
(w + z)(x), that contradicts (7.2). Therefore,

the supposition L1w(x∗) < 0 was wrong.

Math. Model. Anal., 24(2):236–262, 2019.
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Next let us consider the case x∗ ∈ ∂Ω. Again, suppose L1w(x∗) < 0.
Then there exists B(x∗, ε) and δ > 0 such that L1w(x) ≤ −δ < 0 for x ∈
B(x∗, ε)

⋂
Ω. Similarly to the previous case we define z by (7.1) so that

L1(w + z) ≤ 0 in B(x∗, ε)
⋂
Ω. Then (w + z)(x∗) < (w + z)(x) for x ∈

B(x∗, ε)
⋂
Ω. Hence, Lemma 3.4 [8] is applicable and yields ∂w

∂ν (x∗) =
∂(w+z)
∂ν (x∗) < 0. That contradicts to ∂

∂νw(x∗) ≥ 0 following from the assump-

tion ∂
∂ωw(x∗) ≥ 0. Therefore, L1w(x∗) ≥ 0 holds. ut
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