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Abstract. A method of averaging along characteristics of weakly nonlinear hyper-
bolic systems, which was presented in earlier works of the author for one dimensional
waves, is generalized for some cases of multidimensional wave problems. In this work
we consider such systems and discuss a way to use the internal averaging along
characteristics for new problems of asymptotical integration.
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1 State of Multidimensional Problems

Many physical systems, a state of which depend on the time, can be represented
by the following system of equations
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= ε2F [U ] ,

(1.1)
where U(x, y, z, t; ε) = (u1, u2, · · · , un), A(U), B(U), C(U) are n×n matrices,
F is a nonlinear operator, ε is a small parameter. As examples of such systems
we mention dispersive waves in plasma, problems of nonlinear optics, hydro-
dynamics equations, waves in elastic materials. For example, hydrodynamics

mailto:akr@fm.vtu.lt


48 A. Krylovas

equations [14]






∂~v

∂t
+ ~v∇~v +

1

ρ
∇p = 0, p = P (ρ),

∂ρ

∂t
+ ∇ (ρ~v) = 0

(1.2)

can be rewritten in form (1.1) with U = (v1, v2, v3, ρ)T and with the following
matrices A(U), B(U), C(U):
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It easy to see that there is a constant solution

~v(x, y, z, t) = ~v0, ρ(x, y, z, t) = ρ0

of system (1.2). Small perturbations of the constant solution are typical objects
of acoustics

ρ′(x, y, z, t) ≪ ρ0, ~v′(x, y, z, t) ≪ 1.

The order of the value
ρ′

ρ0
= O(ε) is called the Mach number. Then the

solution of problem (1.2) can be represented in the following form

ρ(x, y, z, t) = ρ0 + ερ′(x, y, z, t), ~v(x, y, z, t) = ~v0 + ~v′(x, y, z, t).

Note that the Mach number (and analogous known Reynolds, Prandtl, Rossby
and other numbers) is only one possible source of small (or large) parameters
in mathematical models.

There is a different way to introduce a small parameter into (1.1) model
and then to use special methods of perturbation theory. An asymptotical
approximation of solution of system (1.1) can be constructing in the following
form

U(x, y, z, t; ε) = U0 + εU1(x, y, z, t; ε),

where U1(t, x, y, z; ε) is an unknown function, which has a fixed asymptotical
anzats. As an example of such anzats we mention Gardner–Morikawa trans-
form (see [17]) U1(ε

a+1t, εa(x − λ0t)), which uses ideas of two asymptotical
scales and a method of characteristics. In the common case λ0 is a constant,
which must be find using standard perturbation technique. In this paper λ0

is an eigenvalue of the non-perturbed problem.
In our algorithm we also use two general principles of asymptotical analysis.

First, we introduce three slow variables

τ = εt, η = εy, ζ = εz

and represent a solution of problem (1.1) as a linear combination of two func-
tions depending on slow variables τ , η, ζ and on fast variables t, x, y, z:

U(x, y, z, t; ε) = U0(η, ζ, τ) + εU1(x, η, ζ, t; ε). (1.3)
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Remark 1. Similar ideas of asymptotical representation of unknown functions
are used in many papers for description of different wave processes, and fre-
quently the anzats of the solution is fixed even more strongly. For example, in
[2, 18] for (1.1) type problems the anzats of the asymptotical solution has (in
our notation) slow variables τ , η, ζ and fast variables t, x. However, in these
papers the main terms of the asymptotical expression have only one harmonic
eiωt. In particular, such a strongly fixed anzats cannot describe an interaction
of few harmonics of the periodical solutions. A more general anzats (1.3) gives
a possibility to simulate the resonant interaction of periodical waves.

Substituting expression (1.3) into (1.1) and setting the coefficients at εn

equal to zero we obtain for n = 1:

U0τ + B(U0)U0η + C(U0)U0ζ = 0 (1.4)

and for n = 2:

U1t + A0U1x = ε
(
A1(U1)U1x + B0U1η + B1(U1)U0η + C0U1ζ

+ C1(U1)U0ζ + F [U0]
)
, (1.5)

where

A0 = A(U0), B0 = B(U0), C0 = C(U0), A1(U1) = ||aij ||n×n ,

aij(u1, u2, . . . , un) =
∂aij(U0)

∂u1
u1 +

∂aij(U0)

∂u2
u2 + · · · +

∂aij(U0)

∂un
un.

Matrices B1 = ||bij ||n×n and C1 = ||cij ||n×n can be written analogically.
Let us assume that a unique solution of problem (1.4) exists in the region

of slow variables (see, e.g., [1])

Ωc0
= {(τ, η, ζ) : 0 6 τ + |η| + |ζ| 6 c0} .

Note that problem (1.4) has no asymptotical integration difficulties and it
can be solved numerically by using standard approximations. Our goal is to
construct a uniformly valid asymptotical solution of problem (1.5) in the large
region of fast variables

Ωc0/ε =
{

(t, x, y, z) : 0 6 t + |x| + |y| + |z| 6
c0

ε

}

.

2 Method of Internal Averaging

Let us assume that non perturbed system (1.5) with ε = 0 is hyperbolic. Then
it can be rewritten in the Riemann invariants (see, e.g., [15]). In this case
there exists the non-degenerate matrix R(τ, η, ζ), such that

Λ := R−1A0R = diag (λ1(τ, η, ζ), λ2(τ, η, ζ), . . . , λn(τ, η, ζ)) . (2.1)

Thus using

R(t, η, ζ)U1(t, η, ζ; ε) = U1(t, η, ζ; ε) = (u1
1, u

1
2, . . . , u

1
n),
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we obtain
∂

∂t
U1 = εR−1

τ U + R−1Ut,
∂

∂x
U1 = R−1Ux

and problem (1.5), (2.1) can be rewritten as:

∂uj

∂t
+ λj(τ, η, ζ)

∂uj

∂x
= εfj(τ, η, ζ, U, Ux, Uη, Uζ). (2.2)

For example, the system of hydrodynamics (1.2) is written in in the Rie-
mann invariants as

u1 =
1

2



v10 +

√

P ′

ρ (ρ0)

ρ0
ρ



 , u2 =
1

2



v10 −

√

P ′

ρ (ρ0)

ρ0
ρ



 ,

u3 = v30, u4 = v40.

For this case the coefficients λj in system (2.2) are given by:

λ1 = v10 +
√

P ′

ρ (ρ0), λ2 = v10 −
√

P ′

ρ (ρ0), λ3 = λ4 = v10.

Functions fj in system (2.2) are the following (here we omit terms, which
define nonlinear operator F [U ] in (1.1)):

fj =

n∑

i=1

n∑

k=1

fjikui
∂uk

∂x
+

n∑

i=1

gji
∂ui

∂η
+

n∑

i=1

hji
∂ui

∂ζ
+

n∑

i=1

pjiui. (2.3)

When problem (1.4) is solved, then all coefficients fjik, gji, hji, pji in (2.3)
are known functions of variables τ , η, ζ. Therefore in order to get asymptotic
approximation of (1.1), (1.3) we must solve system (2.2), (2.3).

Asymptotical integration of this system is a difficult problem even if λj in
(2.2) are constants and it becomes even more complicated when λj are some
functions. In order to construct an asymptotic, which is uniformly valid in
region Ω c0

ε

, it is necessary to use special methods of asymptotical analysis. A

survey of mathematical results for this problems is presented in [3].

A problem with periodical initial conditions deals with internal resonances
and it is more difficult for analysis and numerical solution. A new method of
asymptotical integration of equations (2.2) along characteristics was presented
in [16] and developed in author’s work [6] for one dimensional systems with
internal resonances (without variables y and z and for constant coefficients
λj).

In this paper, for two or three dimensional cases we propose a modified
method of internal averaging along characteristic. Let

yj = x −
1

ε

τ∫

0

λj(s, ν, µ) ds
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be fast characteristic variables. We will seek a solution of (2.2) in the following
form

uj(t, x; η, ζ, ε) = vj(τ, yj , η, ζ) + o(1).

If λj = const we obtain yj = x − λjt and functions vj can be find by solving
the following averaged system

∂vj

∂τ
= Mj [fj ] , (2.4)

Mj [g(τ, . . . , yi, . . . , η, ζ)] = lim
T→+∞

1

T

T∫

0

g(τ, . . . , yj + (λj − λi)t, . . . , η, ζ) dt.

(2.5)
Applications of this method for one dimensional problems with λj = const

are presented in our papers [5, 9, 10, 11, 12]. Note that these models are
one dimensional simplifications of general models, that are two or three di-
mensional. For such models asymptotical analysis can be done by using the
method developed in this paper.

The case λj(τ, ν, µ) 6= const is more difficult and it is not sufficiently ex-
plored. In this case the operator (2.5) of averaging along characteristics in
system (2.4) must be changed by the operator

lim
ε→0

τ∫

0

gj

(
s, . . . , yj +

1

ε

s∫

0

(λj(r, ν, µ) − λi(r, ν, µ)) dr, . . .
)
ds. (2.6)

It is easy to show, that formula (2.6) yields (2.5) if all λj = const. If (1.1) has
no internal resonances then operator (2.6) can be rewritten as

1

(2π)
n−1

2π∫

0

· · ·

2π∫

0
︸ ︷︷ ︸

n−1

g(τ, y1, . . . , yn) dy1 . . . dyj−1dyj+1 . . . dyn.

3 New Asymptotic Problems

Let be λj 6= const. From system (1.4) we see, that it can have a stationary
solution λj(η, ζ). We can treat variables η, ζ as parameters and construct an
asymptotical solution of the system

∂uj

∂t
+ λj(η, ζ)

∂uj

∂x
= εfj (· · · ) (3.1)

with periodical initial conditions

uj(0, x, η, ζ; ε) = uj0(x, η, ζ), j = 1, 2, . . . , n. (3.2)
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Comparison with the case λj = const shows, that we get a more difficult
problem, which deals with internal resonances.

For solving problem (3.1), (3.2) ideas from our works [4, 7] can be ap-
plied. Let us assume that λj(τ) = λj(τ ; η0, ζ0). Then we can construct the
asymptotic near the fixed point (η0, ζ0) as a solution of the following system

∂uj

∂t
+ λj(τ)

∂uj

∂x
= εfj (· · · ) (3.3)

subject to initial conditions (3.2). Problem (3.2), (3.3) was considered in our
work [13] with additional conditions for all coefficients λj(τ):

d

dτ

(
λi(τ) − λj(τ)

λk(τ) − λj(τ)

)

≡ 0. (3.4)

From condition (3.4) it follows that there exist such functions α(τ), β(τ)
and constants λ0

j , that

(∀j) λj(τ) = λ0
jα(τ) + β(τ).

This strong restriction is not satisfied for most real models. In our work
[8] weaker conditions were formulated for system (3.3) with periodical initial
conditions (3.2). In order to formulate these new restrictions the Wronskians

W
(k)
(i1,i2,...,ir)(τ) ≡

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1

dkλi1(τ)

dτk

dkλi2(τ)

dτk
· · ·

dkλir
(τ)

dτk

dr−1λi1(τ)

dτk+1

dk+1λi2(τ)

dτk+1
· · ·

dk+1λir
(τ)

dτk+1

· · · · · · · · · · · ·

dk+r−1λi1(τ)

dτk+r−1

dk+r−1λi2 (τ)

dτk+r−1
· · ·

dk+r−1λir
(τ)

dτk+r−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

and

W
(0)
(i1,i2,...,ir)(τ) ≡ W(i1,i2,...,ir)(τ), W(1,2,...,n)(τ) ≡ W (τ)

are used. For our method (∀τ ∈ [0, τ0]) it is sufficient to require that

W (τ) 6= 0

and it is necessary to fulfill conditions

W
(k)
(i1,i2,...,ir)(τ) 6= 0 or W

(k)
(i1,i2,...,ir)(τ) ≡ 0

for ∀(i1, i2, . . . , ir) 0 6 i1 < i2 < · · · < ir 6 n ∃k > 0. In this way we hope
to apply the method of internal averaging along characteristic for real-world
models and this topic is the object of our future research.
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For system (3.1) and for system (3.3), (3.4) with fixed parameters η0, ζ0 we
can apply our method [4, 7]. The idea of this method is to change coefficients
by

λj(η0, ζ0) = αj + εβj ,

where αj are selected in a special way. Let be

δj~l = l1(α1 −αj) + · · ·+ lj−1(αj−1 −αj) + lj+1(αj+1 −αj) + · · ·+ ln(α1 −αn)

and a set of non-resonant vectors

Rj =
{

~l =
(
l1, . . . , lj−1, lj+1, . . . , ln

)
∈ Rn−1 \

{

~0
}

: δj~l 6= 0
}

are given. Then coefficients αj must satisfy the conditions

(∀~l ∈ Rj)
∥
∥δj~l

∥
∥ = O

(
‖~l‖

)
−γ

, γ > 0.

4 Conclusions

Principles of two asymptotical scales and averaging along characteristics are
used in the paper for asymptotic analysis of multidimensional hyperbolic sys-
tems. These principles give asymptotical approximations for mathematical
models of dispersive waves in plasma, problems of nonlinear optics, waves in
elastic materials.

The main advantage of the presented method is that it gives a uniformly
valid in a large region (of order O(ε−1, where ε is a small parameter) asymp-
totic approximation of wave processes, which describe a resonant interaction
of travelling periodical waves. In order to construct this approximation we
need to solve integro-differential system of averaging equations. In particular
cases the results of earlier works of the author for one dimensional waves can
be easy modified for new multidimensional problems.

In the general case new problems of asymptotic integration must be solved.
These problems are formulated in the paper.
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