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Abstract. Branch and bound methods for global optimization are considered in
this paper. Advantages and disadvantages of simplicial partitions for branch and
bound are shown. A new general combinatorial approach for vertex triangulation
of hyper-rectangular feasible regions is presented. Simplicial partitions may be used
to vertex triangulate feasible regions of non rectangular shape defined by linear in-
equality constraints. Linear inequality constraints may be used to avoid symmetries
in optimization problems.
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1 Introduction

Many problems in engineering, physics, economics and other subjects may be
reduced to problems of global minimization. Mathematically the problem of
global optimization is formulated as

f∗ = min
x∈D

f(x),

where f(x) is a nonlinear objective function of continuous variables f : Rn →
R, D ⊂ Rn is a feasible region, n is a number of variables. Besides of the
global minimum f∗ one or all global minimizers x∗ : f(x∗) = f∗ should be
found. No assumptions on unimodality are included into formulation of the
problem – many local minima may exist. Branch and bound methods for
global optimization are considered in this paper.

An iteration of a classical branch and bound algorithm processes a node in
the search tree representing a not yet explored subspace of the solution space.
The iteration has three main components: selection of the node to process,
branching of the search tree and bound calculation. Subspaces which can-
not contain a global minimum are discarded from further search pruning the
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branches of the search tree. The rules of initial covering and branching depend
on the type of partitions used. Although hyper-rectangular partitions are usu-
ally used in global optimization, other types of partitions may be more suitable
for some problems. Advantages and disadvantages of simplicial partitions are
shown in this paper.

Simplex is a polyhedron in n-dimensional space with the minimal num-
ber of vertices (n + 1). Therefore simplicial partitions are preferable when
the values of an objective function at the vertices of partitions are used to
compute bounds. Usually feasible regions of global optimization problems are
hyper-rectangles defined by intervals of variables. A disadvantage of simpli-
cial partitions is the requirement to cover a feasible region of the problem by
simplices. A new general combinatorial approach for vertex triangulation of
hyper-rectangle is presented.

Another advantage of simplicial partitions is that they may be used to
vertex triangulate feasible regions of non rectangular shape defined by linear
inequality constraints. In this case the constraints are managed by the ini-
tial covering. The advantage is illustrated by examples. Linear inequality
constraints may be used to avoid symmetries in optimization problems. For
example, if exchange of variables does not impact the objective function of the
problem, the linear inequality constraints may be set: x1 ≤ x2 ≤ · · · ≤ xn.
In this case the initial hyper-rectangular feasible region is reduced to n! times
smaller simplex and may be tackled by branch and bound algorithms with
simplicial partitions.

2 Branch and Bound for Global Optimization

Classification of global optimization methods is given in [14]:

• Methods with guaranteed accuracy:

– Covering methods;

• Direct methods:

– Random search methods,

– Clustering methods,

– Generalized descent methods;

• Indirect methods:

– Methods approximating level sets,

– Methods approximating objective function.

One of the classes of global optimization methods are covering methods.
Covering methods can solve global optimization problems of some classes with
guaranteed accuracy. Covering methods detect the sub-regions not containing
the global minimum and discard them from further search. The partitioning of
the sub-regions stops when the global minimizers are bracketed in small sub-
regions guaranteeing the prescribed accuracy. A lower bound for the objective
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Algorithm 1 General branch and bound algorithm.
1: Cover D: L← {Lj |D ⊆

⋃

Lj , j = 1, . . . , m} using covering rule

2: S← ∅, UB(D)←∞
3: while L 6= ∅ do

4: Choose I ∈ L using selection rule, L← L \ I
5: if LB(I) < UB(D) + ǫ then

6: Branch I into p subsets Ij using branching rule

7: for all Ij , j = 1, . . . , p do

8: Find UB(Ij

⋂

D) and LB(Ij) using bounding rules

9: UB(D)← min(UB(D), UB(Ij

⋂

D))
10: if LB(Ij) < UB(D) + ǫ then

11: if Ij may be a solution then

12: S← Ij

13: else

14: L← {L, Ij}
15: end if

16: end if

17: end for

18: end if

19: end while

function over a sub-region may be used to indicate the sub-regions which can
be discarded. Some methods are based on a lower bound constructed as con-
vex envelope of an objective function [8]. Lipschitz optimization is based on
assumption that the slope of an objective function is bounded [10]. Interval
methods estimate the range of an objective function over a sub-region defined
by a multidimensional interval using interval arithmetic [9]. Statistical mod-
els [15] or heuristic estimates [11, 17] may be used to evaluate sub-regions. Al-
though guaranteed accuracy is lost in this case, global optimization algorithms
may be applied to solve “black box” problems. In the “black box” situation the
values of an objective function are assumed to be given by an oracle, usually an
objective function is given by means of a computer program and an analytical
expression is not known, therefore the properties of the objective function are
difficult to elicit.

A branch and bound technique can be used for managing the list of sub-
regions and the process of discarding and partitioning. An iteration of a classi-
cal sequential branch and bound algorithm processes a node in the search tree
representing a not yet explored sub-region of the feasible region. Each iteration
has three main components: selection of the node to process, branching of the
search tree by dividing the selected sub-region and pruning of the branches by
discarding non-promising sub-regions. The rules of selection, branching and
bounding differ from algorithm to algorithm. The general branch and bound
algorithm for global optimization is shown in Algorithm 1. Before the cycle,
a feasible region is covered by one or several partitions whose are added to
the list of candidates L. The branch and bound scheme aims to reduce L and
makes it converge to x∗.
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The rules of covering and branching depend on the type of partitions
used. Partitions may be hyper-rectangular, simplicial, hyper-conic or hyper-
spherical. Example rules of covering rectangular feasible region and branching
are shown in Fig. 1: rectangular partitions are shown in the first row, simplicial
in the second row and spherical in the third and fourth rows. The first column
shows covering rules and the others show branching. Partitions obtained with
branch and bound algorithms for global optimization differ from those used in
combinatorial optimization in that the number of possible partitions is infinite
and that partitions may overlap. Usually feasible regions of general global op-
timization problems are hyper-rectangles. All interval and most of Lipschitz
global optimization branch and bound algorithms use hyper-rectangular parti-
tions. In this case initial covering is simple: L = {D} (see first row in Fig. 1).
Covering by hyper-spheres causes over-covering of a feasible region as well as
overlapping of spheres themselves (see third and fourth row in Fig. 1). Use of
regular simplices causes over-covering of a feasible region and non-overlapping
branching is not known in more than two dimensions. The use of irregular sim-
plices enables non-over-covering of feasible region as well as non-overlapping
branching (see second row in Fig. 1).
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Figure 1. Example rules of covering rectangular feasible region and branching.

The bounding rule describes how the bounds for minimum are found. For
the upper bound for minimum over feasible region UB(D) the best currently
found value of the objective function might be accepted. The lower bound
for values of the objective function over considered sub-region LB(I) may be
estimated using convex envelopes, Lipschitz condition or interval arithmetic.

There are three main strategies of selection:

• Best first – select an element of L with the minimal lower bound. Can-
didate list can be implemented using heap and priority queue.

• Depth first – select the youngest element of L. First-In-Last-Out struc-
ture is used for candidate list which can be implemented using stack.
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• Breadth first – select the oldest element of L. First-In-First-Out struc-
ture is used for candidate list which can be implemented using queue.

Although covering, selection, branching and bounding rules differ in dif-
ferent branch and bound algorithms, the structure of the algorithm remains
the same. This allows implementation of generalized branch and bound tem-
plates [2, 3]. Standard parts of branch and bound algorithms are implemented
in the template, only specific rules should be implemented by the user. The
template eases implementation of branch and bound algorithms for combina-
torial optimization and for covering methods of continuous global optimiza-
tion [4]. When computing power of usual computers is not sufficient to solve
a practical global optimization problem, high performance parallel computers
may be helpful. An algorithm is more applicable in case its parallel implemen-
tation is available, because larger practical problems may be solved by means
of parallel computers. Because of that tools for parallelization of global opti-
mization algorithms have been included in the template. Parallel versions can
be obtained automatically using sequential program implemented using the
template. Parallelization tools include master-slave and distributed versions
of parallel branch and bound [19].

3 Simplex Based Branch and Bound

An n-simplex is the convex hull of a set of (n + 1) affinely independent points
in n-dimensional Euclidean space. An one-simplex is a segment of line, a
two-simplex is a triangle, and a three-simplex is a tetrahedron (see Fig. 2). A
simplex is a polyhedron in n-dimensional space, which has the minimal number
of vertices (n + 1). Therefore simplicial partitions are preferable when the
values of an objective function at the vertices of partitions are used to evaluate
sub-regions. Numbers of function evaluations in Lipschitz global optimization
with rectangular and simplicial partitions is experimentally investigated in [16].
The experiments have shown, that simplicial partitions are preferable.

T
T

T
T

T
T

T�
�

�
�

�
�

� T
T

T
T

T
T

T�
�

�
�

�
�

�
n = 1 n = 2 n = 3

Figure 2. One-, two- and three-simplices.

Branching is carried out by means of partitioning a simplex into sub-
simplices. It is known that tight bounds for function values cannot be con-
structed for a perverted simplex. An irregular triangle (two-dimensional sim-
plex) may be divided into 4 similar triangles, a right equilateral triangle may
be divided into 2 similar triangles, see Fig. 3.

If other branching strategies are used, the perversion of simplices must
be prevented. One way of prevention is to divide simplices by a hyper-plane
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passing through the middle point of the longest edge and the vertices not
belonging to the longest edge. This ensures that the longest edge of sub-
simplices is not more than two times longer than other edges. The examples
of such a division are shown in Fig. 4. Experiments in [16] have shown that
this partitioning is preferable over division into several simplices.
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Figure 3. Subdivision of triangles into similar triangles.
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Figure 4. Subdivision of simplices into two through the middle of the longest edge.

A disadvantage of simplicial partitions is requirement to cover a feasible
region of the problem by simplices. A feasible region is face-to-face vertex
triangulated: it is partitioned into n-simplices, where the vertices of simplices
are also the vertices of the feasible region, see Fig. 5.

Very often a feasible region in global optimization is a hyper-rectangle
defined by intervals of variables. A rectangle may be vertex triangulation into
two triangles. A three-dimensional rectangle may be vertex triangulated into
five simplices as it is shown in Fig. 5.

However such a triangulation is not general. The general (any dimensional)
algorithm for combinatorial vertex triangulation of hyper-rectangle is proposed
in Algorithm 2. Here Dj1 and Dj2 represent the ends of interval of j-th variable
defining hyper-rectangular feasible region; vij represents j-th coordinate of i-
th vertex of the current simplex. This approach is deterministic, the number
of simplices is known in advance, it is equal to n!. All simplices are of equal
hyper-volume, i.e. 1/n! of the hyper-volume of the hyper-rectangle. By adding
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Figure 5. Examples of face-to-face vertex triangulation of feasible regions.
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Algorithm 2 Combinatorial vertex triangulation of hyper-rectangle.
1: for τ = equals one of all permutations of 1, . . . , n do

2: for j = 1, . . . , n do

3: v1j ← Dj1

4: end for

5: for i = 1, . . . , n do

6: for j = 1, . . . , n do

7: v(i+1)j ← vij

8: end for

9: v(i+1)τi
← Dτi2

10: end for

11: end for

just one point at the middle of diagonal of the hyper-rectangle each simplex
may be subdivided into two.

For example, a unit cube is vertex triangulated into six simplices:

τ : {1, 2, 3} {1, 3, 2} {2, 1, 3} {2, 3, 1} {3, 1, 2} {3, 2, 1}

v :
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1 1 0
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where τ represents a permutation and a corresponding simplex is represented
by a matrix v which rows define the coordinates values of the vertices. Ex-
amples of combinatorial vertex triangulation of two- and three-dimensional
hyper-rectangles are shown in Fig. 6.
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Figure 6. Examples of combinatorial vertex triangulation of two- and three-dimensional

hyper-rectangles.

As the number of simplices is known in advance, efficient parallel enumer-
ation of all simplices may be performed. Factoradic numbers can be used
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to assign unique numbers to permutations, such that given a factoradic of k
one can quickly find the corresponding permutation. A parallel algorithm for
combinatorial vertex triangulation based on factoradic numbers is given in Al-
gorithm 3, where size is the number of processors, rank is the number of the
current processor from 0 to size − 1, τ is the permutation of 1, . . . , n corre-
sponding to the current simplex. Such an algorithm may be considered for
covering of hyper-rectangular feasible regions and initial distribution of work
in parallel branch and bound algorithms with simplicial partitions.

One of the advantages of simplicial partitions is that a more general feasible
region defined by linear inequality constraints may be vertex triangulated. In
this way constraints are managed by the initial covering.

For example, let the optimization problem be defined as

min
s.t. Q

f(x), Q =











0 ≤ xi ≤ 1,

x1 + x2 ≤ 1,

x2 − x3 ≤ 0.

In this case five vertices of the hyper-rectangle defined by 0 ≤ xi ≤ 1 form the
feasible region:
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which can be vertex triangulated by two simplices

v=















0 0 0
0 0 1
0 1 1
1 0 0
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Here the origin (000) is represented by the leftmost lower vertex of the cube,
the first coordinate axis is directed right, the second is directed up, and the
third is directed away from the reader.

Another example:

min
s.t. Q

f(x), Q =











0 ≤ xi ≤ 1,

x1 + x2 ≤ 1,

−x2 + x3 ≤ 0.

In this case four vertices of the hyper-rectangle defined by 0 ≤ xi ≤ 1 form
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Algorithm 3 Parallel algorithm for combinatorial vertex triangulation.
1: for k = ⌊n!rank/size⌋ to ⌊n!(rank + 1)/size⌋ − 1 do

2: for j = 1, . . . , n do

3: τj ← j
4: end for

5: c← 1
6: for j = 2, . . . , n do

7: c← c(j − 1)
8: swap τj−⌊k/c⌋%j with τj

9: end for

10: for j = 1, . . . , n do

11: v0j ← Dj1

12: end for

13: for i = 1, . . . , n do

14: for j = 1, . . . , n do

15: v(i+1)j ← vij

16: end for

17: v(i+1)τi
← Dτi2

18: end for

19: end for

the feasible region:
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which is a simplex

v =















0 0 0
0 1 0
0 1 1
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If exchange of values of the variables xi and xj does not change the value
of the objective function, it is symmetric over the hyper-plane xi = xj . In
this case equivalent solutions and equivalent sub-regions of the feasible region
exist [20]. The search space can be restricted by linear inequality constraints to
avoid equivalent solutions and sub-regions in the search space, and to find only
one of the equivalent solutions. This is ensured by constraining the sequence
of values of exchangeable variables by setting linear constraints: xi ≤ xj . The
resulting constrained search space may be vertex triangulated. The search
space and the numbers of local and global minimizers may be reduced by
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avoiding such symmetries.
For example, let the optimization problem be defined as

f(x) =

n
∑

i=1

x2
i

4000
−

n
∏

i=1

cos(xi) + 1, D = [−500, 700]n.

The objective function is symmetric over hyper-planes xi = xj . Constraints
may be set to avoid symmetries: x1 ≤ x2 ≤ . . . ≤ xn. The resulting simplicial
search space is

D =



























−500 −500 . . . −500 −500
−500 −500 . . . −500 700
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. . .
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−500 700 . . . 700 700

700 700 . . . 700 700
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The example of three-dimensional restricted search space is illustrated. The
search space and the numbers of local and global minimizers are reduced n!
times with respect to the original feasible region.

Lipschitz [12, 13, 16], statistical [15] or heuristic estimates presented below
may be used to evaluate simplicial sub-regions. A heuristic attraction based
subdivision method has been proposed in [17]. It has been developed for
multidimensional global optimization with hyper-rectangular partitions. Sub-
division is controlled by the information acquired during local searches. There
is no guarantee that the global minimum is found with a prescribed accuracy,
but the user should specify the time limit. The method is applicable in a
“black box” situation. The algorithm has been applied for multidimensional
scaling, many-body problems, growth model of human mandible problem [18],
grillage-type foundation problem. The algorithm is presented in Algorithm 4.

Algorithm 4 Attraction based subdivision algorithm.
1: while not time-limit do

2: while sub-region list is not empty do

3: remove the best sub-region
4: apply local searches from the sample points
5: reject or subdivide
6: end while

7: for all all rejected sub-regions do

8: subdivide and add to sub-region list
9: end for

10: end while

Parallel version of the algorithm has been developed [11]. The feasible
region is initially divided into sub-regions which are investigated by different
parallel processors working independently. The algorithm corresponds to the
distributed paradigm of parallel programming with the static load balance
strategy. The termination of the algorithm is the same as the stopping condi-
tion in the sequential case – the time limit. The currently known best value of
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Figure 7. Heuristic evaluation of simplicial sub-region based on the results of local searches.

the objective function is exchanged between processors. The existence of the
outer loop ensures that all processors always have work to do, but it is difficult
to know if processors perform computations on equally promising sub-regions.

In this paper the version of the algorithm with simplicial partitions is pro-
posed. Similarly as in the previous version of the algorithm, three cases of the
results of local searches are considered:

• All local searches go outside of the sub-region, Fig. 7a. It is assumed
that there is no minimum point in the sub-region and therefore it may
be rejected.

• All local searches converge to the same point, Fig. 7b. It is assumed,
that there is only one minimum point in the sub-region and it is already
known, therefore the sub-region may be rejected.

• In the other cases, Fig. 7c, the lower bound is estimated using the largest
gradient norm and the smallest objective function value in the sub-region
obtained during local searches. If the estimated lower bound for the
minimum over the sub-region is larger than the smallest function value
found before, the sub-region may be rejected. Otherwise the sub-region
is subdivided.

4 Case Study: Optimization Problems of Grillage-Type

Foundations

The grillage-type foundations are the most conventional and effective scheme
of foundations, especially in the case of weak grounds. Grillage consists of
separate beams, which are supported by piles or reside on other beams. As
piles may reach length of tens meters, reducing the number of piles will lead
to substantial savings. The optimal scheme of grillage should possess the
minimum possible number of piles. Theoretically, reactive forces in all piles
should approach the limit magnitudes of reactions for those piles [5]. These
goals can be achieved by choosing appropriate pile positions. The piles should

Math. Model. Anal., 13(1):145–159, 2008.
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be positioned minimizing the largest difference between reactive forces and
limit magnitudes of reactions.

A designer may arrive at the acceptable pile placement scheme by engi-
neering tests algorithms. However obtaining of optimal schemes is likely only
in the case of simple geometries, simple loadings and the limited number of
design parameters. Practically, this is difficult to achieve for grillages of com-
plex geometries. To be on the safe side, the number of piles in design schemes
is usually overestimated.

The problems may be approached using global optimization [6]. These are
“black box” optimization problems: the values of objective function are eval-
uated by an independent package which models reactive forces in the grillage
using finite element method. Gradient may be estimated using sensitivity anal-
ysis implemented in the modelling package. The number of piles is n, usually
n ≥ 10. The position of a pile is defined by a real number, which is mapped
to a two-dimensional position by the modelling package. Possible values are
in the range [0, 77]. The feasible region of the problems is [0, 77]n. The exper-
iments have shown that the problems are difficult and parallel optimization is
helpful [1, 7].

If characteristics of all piles are equal, their interchange does not change
the value of the objective function. The problem may be constrained to avoid
symmetries of the objective function: x1 ≤ x2 ≤ . . . ≤ xn. In this case a
search space is the simplex

D =



























0 0 . . . 0 0
0 0 . . . 0 77
...

. . .
...

0 77 . . . 77 77
77 77 . . . 77 77



























.

The search space and the numbers of local and global minimizers are reduced
n! times with respect to the original feasible region.

Two piles may not be at the same position. Let us define the minimal
distance between two piles by δ. The problem may be constrained to avoid
symmetries of the objective function and coincidence of the piles:

x1 ≤ x2 − δ, . . . , xn−1 ≤ xn − δ.

In this case the search space is the simplex

D =



























0 δ . . . (n− 2)δ (n− 1)δ
0 δ . . . (n− 2)δ 77
...

. . .
...

0 77− (n− 2)δ . . . 77− δ 77
77− (n− 1)δ 77− (n− 2)δ . . . 77− δ 77



























.

The search space and the numbers of local and global minimizers are reduced
approximately n! times with respect to the original feasible region. Moreover
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Table 1. Performance of attraction based subdivision algorithm.

n min f∗ f∗ max f∗

10 214.129 236.901 257.796

15 179.448 186.946 195.213

20 221.171 262.024 298.273

37 3998.47 5323.85 6475.33

40 1201.02 1330.1 1464.3

in this case there are no unfeasible regions in the search space where piles
coincide.

Grillage-type foundation problems of various dimensionality have been op-
timized using attraction based subdivision algorithm with simplicial partitions.
A trust region algorithm with BFGS update has been used for local optimiza-
tion. 10 runs 10000s each have been performed. The results are given in
Table 1, where the best (min f∗), mean (f∗) and the worst (max f∗) estimates
of global minimum in 10 runs are given. The best function value 214.129 of
the problem with n = 10 piles has been found in one of the runs after 199s.
This means that good function values are found quickly but then the solution
is not necessarily improved during long period of time.

5 Conclusions

The presented approach for vertex triangulation of hyper-rectangular feasible
regions of global optimization problems is general – for any dimensionality,
and deterministic – the number of simplices n! is known in advance.

Simplicial partitions allow reduction of the search space of optimization
problems exposing symmetries. In the case of problems of grillage-type founda-
tion with equal piles the search space is reduced n! times avoiding symmetries.
Moreover simplex partitions allow avoidance of coincidence of piles.
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[4] M. Baravykaitė and J. Žilinskas. Implementation of parallel optimization al-
gorithms using generalized branch and bound template. In I.D.L. Bogle and
J. Žilinskas(Eds.), Computer Aided Methods in Optimal Design and Operations,
volume 7 of Series on Computers and Operations Research, pp. 21–28. World
Scientific, 2006.

[5] R. Belevičius, S. Valentinavičius and E. Michnevič. Multilevel optimization of
grillages. Journal of Civil Engineering and Management, 8(1):98–103, 2002.

[6] R. Čiegis. On global minimization in mathematical modelling of engineering
applications. In A. Törn and J. Žilinskas(Eds.), Models and Algorithms for

Global Optimization, volume 4 of Springer Optimization and Its Applications,
pp. 299–310. Springer, 2007.
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