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Abstract. For nonlinear eigenvalue problems T (λ)x = 0 satisfying a minmax char-
acterization of its eigenvalues iterative projection methods combined with safeguarded
iteration are suitable for computing all eigenvalues in a given interval. Such methods
hit their limitations if a large number of eigenvalues is required. In this paper we
discuss restart procedures which are able to cope with this problem, and we evaluate
them for a rational eigenvalue problem governing vibrations of a fluid-solid structure.
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1 Introduction

We consider the nonlinear eigenvalues problem

T (λ)x = 0, (1.1)

where T (λ) ∈ Cn×n is a family of large and sparse Hermitean matrices for
every λ in an open real interval J . For this type of problems iterative pro-
jection methods are very efficient (cf. [4, 6] and the literature given therein).
In particular, if the eigenvalues of T (·) satisfy a minmax characterization, all
eigenvalues can be determined one after the other in a safe way. However, this
approach hits its limitations if a large number of eigenvalues or eigenvalues in
the interior of the spectrum of (1.1) are needed. In this case one has to project
the problem under consideration onto a sequence of search spaces of growing
dimensions requiring an excessive amount of storage and computing time. In
[2] we presented a new restart technique which projects problem (1.1) only onto
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search spaces of limited dimension. Here we generalize this approach to ratio-
nal eigenvalue problems governing free vibrations of fluid-solid structures. Our
presentation is restricted to the Arnoldi method, but the local restart technique
applies to any other iterative projection method.

The paper is organized as follows. Section 2 outlines the variational char-
acterization of eigenvalues for nonlinear and nonoverdamped eigenproblems as
well as and the safeguarded iteration method. Section 3 recalls the Arnoldi
method for sparse, symmetric, and nonlinear eigenproblems. In Section 4 we
present the local restart technique. In particular we discuss the problem of
spurious eigensolutions. An example of a rational eigenproblem in Section 5
demonstrates the efficiency of the new restart procedure.

2 Variational Characterization of Eigenvalues

In this section we recall conditions under which the eigenvalues of T (·) can be
characterized as minmax values of a Rayleigh functional. Let J ⊂ R be an
open interval which may be unbounded, and assume that T (λ) ∈ Cn×n is a
family of Hermitean matrices. Suppose that for every x ∈ Cn \ {0} the real
equation

f(λ, x) := xHT (λ)x = 0 (2.1)

has at most one solution λ ∈ J . Then equation (2.1) defines a functional p
on some subset D ⊂ Cn which obviously generalizes the Rayleigh quotient for
linear pencils T (λ) = λB −A, and which is called the Rayleigh functional.

We assume further

(λ− p(x))f(λ, x) > 0 for every x ∈ D and λ ∈ J \ {p(x)}

generalizing the definiteness condition for linear pencils.

Under these conditions a minmax principle for the nonlinear eigenproblem
(1.1) was proved in [7] if the eigenvalues are enumerated appropriately. A value
λ ∈ J is an eigenvalue of (1.1) if and only if µ = 0 is an eigenvalue of the matrix
T (λ), and by Poincaré’s maxmin principle there exists m ∈ N with

0 = max
dim V =m

min
x∈V, x 6=0

xHT (λ)x

‖x‖2
.

Then we assign this m to λ as its number and call λ an mth eigenvalue of
problem (1.1).

Under the assumptions above it was shown in [7] that for every m ∈
{1, . . . , n} problem (1.1) has at most one mth eigenvalue in J , which can be
characterized by

λm = min
dim V =m,D∩V 6=∅

sup
v∈D∩V

p(v). (2.2)

The minimum is attained by the invariant subspace of T (λm) corresponding to
its m largest eigenvalues, and the supremum is attained by any eigenvector of
T (λm) corresponding to µ = 0.
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Algorithm 1 Safeguarded Iteration

1: Start with an approximation σ1 to the mth eigenvalue of (1.1)
2: for k = 1, 2, . . . until convergence do

3: Compute an eigenvector xk corresponding to the m-largest eigenvalue of
T (σk)

4: Solve xH
k T (σk+1)xk = 0 for σk+1

5: end for

The enumeration of eigenvalues and the fact that the eigenvectors of (1.1)
are the stationary vectors of the Rayleigh functional suggests the Algorithm 1
called safeguarded iteration for computing the mth eigenvalue.

Safeguarded iteration has the following convergence properties (cf. [5]):

(i) If λ1 := infx∈D p(x) ∈ J and x1 ∈ D then the safeguarded iteration
converges globally to λ1.

(ii) If λm ∈ J is a mth eigenvalue of (1.1) which is simple, then the safe-
guarded iteration converges locally and quadratically to λm.

The safeguarded iteration is certainly not capable of solving large and sparse
nonlinear eigenvalue problems. However, it is well suited as an inner iteration
in a projection method, especially if one is interested in some particular eigen-
values, e.g. in an interval. Since it aims at an eigenvalue with a specific number
missing out of eigenvalues becomes less likely.

3 Iterative Projection Methods

Iterative projection methods like Lanczos, Arnoldi or Jacobi-Davidson are very
efficient for tackling sparse linear eigenvalue problems, and so are their general-
izations for nonlinear ones. A typical example is the nonlinear Arnoldi method
in Algorithm 2, where we assume that problem (1.1) is Hermitean, and the
eigenvalues can be enumerated according to Section 2.

There are many details that have to be considered when implementing the
Arnoldi method according to Algorithm 2 concerning the choice of the initial
basis, when to change and how to choose the preconditioner, when and how
to restart. A detailed discussion is contained in [6]. Here we concentrate on
the initialization and on restarts for symmetric problems allowing a minmax
characterization of their eigenvalues.

If T (λ) is a family of Hermitean matrices allowing a minmax characteriza-
tion of its eigenvalues in an open interval J , and if the columns of V ∈ Cn form
a basis of the current search space V of Cn, then the projected problem

TV (λ)y := V HT (λ)V y = 0 (3.1)

inherits this property, i.e. its eigenvalues in J are minmax values of the re-
striction of the Rayleigh functional p of T (·) to D ∩ V , although in general
the numeration of the eigenvalues of the original problem and the projected
problem will differ.
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Algorithm 2 Nonlinear Arnoldi Method

1: Start with initial basis V , V HV = I; m = 1
2: Determine preconditioner M ≈ T (σ)−1, σ close to first wanted eigenvalue
3: while m ≤ number of wanted eigenvalues do

4: Compute m smallest eigenvalue µ and corresponding eigenvector y of the
projected problem TV (µ)y := V HT (µ)V y = 0 by safeguarded iteration

5: Determine Ritz vector u = V y and residual r = T (µ)u
6: if ‖r‖/‖u‖ < ǫ then

7: Accept approximate eigenpair λm = µ, xm = u; increase m← m + 1
8: Choose new shift σ and determine preconditioner M ≈ T (σ)−1 if in-

dicated
9: Restart if necessary

10: Find approximation (µ, u) to next eigenpair; determine residual r =
T (µ)u

11: end if

12: v = Mr
13: v = v − V V Hv, ṽ = v/‖v‖
14: Reorthogonalize ṽ if necessary
15: Expand subspace: V = [V, ṽ]
16: end while

If J contains a first eigenvalue λ1 = minx∈D p(x), then the safeguarded
iteration for (3.1) converges globally for any initial vector x ∈ V ∩ D to the
smallest eigenvalue of (3.1). If xj denotes an eigenvector corresponding to
the jth eigenvalue λj of (1.1), and if xj ∈ V for j = 1, . . . , k, then λj is
a jth eigenvalue of the projected problem (3.1), as well. Hence, expanding
the search space V iteratively, and determining the (k + 1)th eigenvalue of
the projected problems, one gets a sequence of upper bounds of λk+1 which
(hopefully) converges to λk+1. Thus, the eigenvalues of (1.1) can be determined
one after the other by the nonlinear Arnoldi algorithm.

It may happen that the algorithm converges to an eigenvalue that was ob-
tained already in a previous step. If this eigenvalue is not a multiple one (which
can be checked by computing the angle between the corresponding eigenvec-
tors) this repeated convergence indicates that some eigenvalue has been missed
out because the component of the corresponding eigenvector has not been suf-
ficiently present in the initial vector and has now become large enough that
the eigenvalue approximation enters the interval (λ1, λj) where λj denotes the
current iterate. In this case we detect the missed out eigenvalue by the fol-
lowing back-tracing procedure introduced in [5]. We reduce the number of the
current iterate by 1, j ← j − 1 and compute the jth eigenpair again. Now,
three possibilities arise:

• If it is a new eigenpair and λj ≥ λj−1, then we have found the missed
out eigenvalue. Hence, we set j ← j +1 and resume the outer iteration.

• If it is a new eigenpair but λj < λj−1 then we have found a missed out
eigenvalue, but there are more such eigenvalues in the interval (λ1, λj).
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We then set j ← j − 1 and compute the jth eigenvalue again.

• If it is a previously computed eigenpair and λj ≤ λj−1 we have not yet
found the missed eigenvalue. Thus, we again reduce j ← j − 1 and
compute the jth eigenvalue again.

We continue along these lines until λj > λj−1, and the numbering has been
recovered.

As the subspace expands in the course of the algorithm the increasing stor-
age or the computational cost for solving the projected eigenvalue problems
may make it necessary to restart the algorithm and purge some of the basis
vectors. Restarting with a subspace V which contains the already converged
eigenvectors x1, . . . , xk then obviously keeps the numeration of the eigenvalues,
and we can continue as above to determine the subsequent eigenpairs.

4 Local Restarts

The restart strategy described in the last section hits it limitations if a large
number of eigenvalues or a set of some subsequent eigenvalues in the interior
of the spectrum is required. In order to preserve the numbering the dimension
of the search space has to be at least as large as the number of eigenvalues
in J preceding the sought one. Therefore the size of the projected problem is
growing with the number of the wanted eigenvalue, which results in increasing
time consumed by the nonlinear solver and increasing storage requirements. To
overcome these difficulties we proposed an adjusted version of a local numbering
[2], which does not require to include the entire set of preceding eigenvectors
into the search subspace after a restart.

Assume that we are given an eigenvalue λ̂ ∈ J , which we call an anchor,
and a corresponding eigenvector x̂. Let V be a subspace of Cn that contains
x̂, and let the columns of V form a basis of V . Then λ̂ is also an eigenvalue of
the projected problem

TV (λ) := V HT (λ)V y = 0. (4.1)

Moreover, TV (·) satisfies the conditions of the minmax characterization. Thus,

we can assign to λ̂ a local number ℓ = ℓ(V) in the following way: λ̂ is an ℓth

eigenvalue of problem (4.1) if µ(λ̂) = 0 is the ℓ largest eigenvalue of the linear

problem V HT (λ̂)V y = µ(λ̂)y.
Starting with V =: V0 we determine approximations to the eigenvalue sub-

sequent to the anchor λ̂, projecting problem (1.1) to a sequence of subspaces
V0 ⊂ V1 ⊂ V2 ⊂ . . . which are generated in course of the Arnoldi method aim-
ing at the (ℓ(Vk) + 1)th eigenvalue in the kth iteration step. Explicitly stating
the dependence of ℓ on Vk we emphasize that the number ℓ(Vk) of the anchor
may change in the course of the iteration.

After convergence we may continue the iterative projection method aiming
at the (ℓ(Vk) + 2)th eigenvalue or we may replace the anchor by the newly
converged eigenpair. Since the current search space contains useful information
about further eigenvalues it is advisable to continue expanding the search spaces
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Algorithm 3 Restart Framework

Require: (λi, xi) an (approximate) eigenpair of T (·)
Require: v1 an approximation to xi+1

1: V = [xi, v1]; j = 1;
2: while Restart condition not satisfied do

3: repeat

4: Determine largest eigenvalues µ1(λi) ≥ · · · ≥ µk(λi) > 0 ≥ µk+1(λi)
of projected problem (3.1)

5: Set ℓ := k if µk ≤ −µk+1, and else ℓ := k + 1
6: Compute (ℓ + j)th eigenpair (λ̃ℓ+j , yℓ+j) of TV (·)
7: Expand V aiming at (λℓ+j , xℓ+j)

8: until Eigenpair (λ̃ℓ+j , V yl+j) =: (λi+j , xi+j) converged
9: j = j+1;

10: end while

until the convergence has become too slow or the dimension exceeds a given
bound. This leads to the restart framework in Algorithm 3.

In the course of the computation it may happen that the algorithm con-
verges to an eigenvalue twice, i.e. it returns λi < λi+1 < · · · < λi+k ≈ λi+k+1

for some k ≥ 1. Then two possibilities arise:

(i) the eigenvalue is a multiple (at least double) eigenvalue;

(ii) the algorithm converged to a single eigenvalue twice.

If λi+k is not a multiple eigenvalue (i.e. if the angle between xi+k and xi+k+1

is close to 0), then for the current search space V the projected problem (4.1)
possesses an additional eigenvalue θ ∈ (λi, λi+k) such that θ 6= λi+j for j =
0, . . . , k. Therefore the local number of λi+k is raised by 1, and λi+k is accepted
as an (i+k+1)th eigenvalue. This may have happened for one of the following
two reasons:

• An eigenvalue of (1.1) in the interval (λi, λi+k) might have been missed
out because the corresponding eigenvector x̃ was not sufficiently present
in the initial search space span{xi, v1} and might not have been amplified
sufficiently in the course of the expansions of V until computing λi+k+1.
Afterwards the component of x̃ in the search space V has increased and
has become large enough to produce the additional eigenvalue approxi-
mation θ ∈ (λi, λi+k).

• It might be the case that no eigenvalue of (1.1) is missing in (λi, λi+k) but
the newly produced eigenvalue of the projected problem (4.1) is a spurious
one, i.e. it is a linear combination of eigenvectors of (1.1) corresponding to
eigenvalues less than λi and of eigenvectors corresponding to eigenvalues
greater than λi+k.

In both cases we determine the additional eigenvalue θ and its local number
ℓ+j, and we expand the search space V̂ aiming at (θ, xθ), where xθ denotes the
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Ritz vector corresponding to θ. Then by the minmax principle all eigenvalues
of the projected problem

T
V̂

(λ)ŷ = 0 (4.2)

are less than or equal to the corresponding ones of TV (λ)y = 0, and either
problem (4.2) has exactly k + 1 eigenvalues λi, . . . , λi+k ∈ [λi, λi+k] (i.e. the
additional eigenvalue has left the interval of interest) or there are still k +

2 eigenvalues λi, . . . , λi+k, θ̂ ∈ [λi, λi+k], and it holds θ̂ ≤ θ. In the latter
case we repeat the expansion of the subspace until the sequence of additional
eigenvalues has been moved out of the interval [λi, λi+k] or has converged to a
previously missed out regular eigenvalue. We then adjust the enumeration of
the eigenvalues and continue the iterative projection method.

5 Restarts for Rational Eigenvalue Problems

We consider a rational eigenvalue problem

Kx = λMx +

k
∑

j=1

λ

σj − λ
CjC

T
j x, (5.1)

where K, M ∈ Rn×n are symmetric and positive definite, Cj ∈ Rn×rj are
matrices of small rank rj , and 0 < σ1 < σ2 < · · · < σk are given poles.
Problems of this type arise for example as finite element models of rational
eigenproblems governing free vibrations of tube bundles immersed in a slightly
compressible fluid [3].

It is easily seen that in each of the intervals Jj := (σj−1, σj), j = 1, . . . , k+1
with σ0 = 0, σk+1 = ∞, problem (5.1) satisfies the conditions of the minmax
characterization (2.2). In J1 the eigenvalues are numerated in the natural way.
For the following intervals the numeration follows from Theorem 1 which was
proved in [5].

Theorem 1. Let nj be the number of eigenvalues λi of the reduced linear eigen-

value problem

(

K +

j−1
∑

i=1

σj

σj − σi

CiC
T
i

)

x = λ
(

M +

k
∑

i=j+1

1

σi − σj

CiC
T
i

)

x, Cjx = 0

satisfying λi ≤ σj . Then the rational eigenvalue problem (5.1) has exactly

nj+1−nj+rj+1 eigenvalues in (σj , σj+1] enumerated by nj+1, nj+2, . . . , nj+1+
rj+1.

This theorem suggests a global strategy how for determining all eigenvalues
in a given interval I ⊂ R+ by the nonlinear Arnoldi method, which is similar
to the approach at the end of Section 3.

For J1 = (0, σ1) the infimum of the Rayleigh functional is contained in J1,
and due to the global convergence of the safeguarded iteration we can start
with any vector v such that p(v) ∈ J1, and compute the eigenvalues in J1 one
after the other until the method leaves the interval J1.

Math. Model. Anal., 13(2):171–182, 2008.
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Assume that we have already determined all eigenvalues in J1, . . . Jj , and let
Nj be the number (according to the enumeration in Section 2 for problem (5.1)
in Jj) of the largest eigenvalue λNj

found in Jj . To start the Arnoldi method
for Jj+1 := (σj , σj+1) we choose µ̂ = σj + ε, ε > 0 small, and determine the
eigenvalues of the linear problem

(

K +

j
∑

i=1

µ̂

µ̂− σi

CiC
T
i

)

x = λ
(

M +

k
∑

i=j+1

1

σi − µ̂
CiC

T
i

)

x, (5.2)

which are less than µ̂. We assume that these are ñj of these eigenvalues. If
ñj + rj = Nj then all eigenvalues in (0, σj) have been found. No eigenvalue
exists in (σj , µ̂), and we can initiate the Arnoldi method for Jj+1 with an
orthonormal basis Vj+1 of the eigenspace of problem (5.2) corresponding to the
nj + 1 smallest eigenvalues. Otherwise we have to explore the interval (λNj

, µ̂)
for further eigenvalues.

The method can be restarted if the search space has grown too large where
the current initial basis Vj has to be complemented by the eigenvectors corre-
sponding to eigenvalues found in the current interval Jj so far. The method
(which we call GLOBAL 1) is safe, but costly if the number of poles σj less
than sup I (i.e. the number of linear eigenvalue problems (5.2) to be solved) is
large or if there are many eigenvalues in (0, sup I).

Another variant (called GLOBAL 2) of the iterative projection method can
be devised on the basis of Theorem 1. Again we address one interval after
the other and within each interval one eigenvalue after the other adapting the
number of the eigenvalue for each interval as given by Theorem 1, i.e. every
time when a pole is being crossed the number of the eigenvalue is reduced by the
rank rj of the matrix Cj . This variant fully utilizes the information acquired
while computing the eigenvalues in the former intervals, since the computation
continuous over multiple intervals and no linear problems are being solved.
However, there is no guarantee that all eigenvalues in the interval treated so far
have been found. Moreover, no restart strategy is implemented and therefore
the method is not suitable for a large number of eigenvalues, since the search
space is growing prohibitively large.

However, this can be cured by combining the two variants in a way that we
compute eigenvalues in several intervals corresponding to method GLOBAL
2, and restart corresponding to method GLOBAL 1 as soon as the search
subspace has grown too large. Obviously, this method (called GLOBAL 3) can
be restarted at any point µ̂. On restart we can check again, whether eigenvalues
have been missed in the computation so far.

Finally, the local restart strategy can be applied to the rational eigenvalue
problem in the following way. Let λ̂ denote an anchor, and x̂ the correspond-
ing eigenvector of (1.1), and let ℓ denote the local number of the anchor in the
current search subspace V . According to Theorem 1 the number of an eigen-
value is not unique on the real axis and therefore always needs to be considered
with the interval containing the eigenvalue. Therefore we denote by ℓ + kj the
number of the eigenvalue λℓ+kj

in the interval (σj , σj+1).

As long as the anchor λ̂ and the currently iterated eigenvalue λℓ+kj
are in
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the same interval (σj , σj+1) the local enumeration holds exactly as in Section

4. However, if a pole has been crossed, i.e. λ̂ ∈ (σj , σj+1) and λℓ+kj+1
∈

(σj+1, σj+2) the situation is different.
According to Theorem 1 if λℓ+kj

is the largest eigenvalue smaller than σj+1

then the number of the next eigenvalue is ℓ + kj+1 = ℓ + kj + 1− rj+1, where
the offset rj+1 is equal to the rank of the corresponding matrix Cj+1. For
the iterative projection methods it means that at the lth step of the iteration
with the search subspace Vl, the offset for the projected problem is rl

j+1 =

rankV H
l Cj+1. This is bad news, since the offset rl

j+1 can vary in the course of
the iteration. This can be helped in three ways:

• The simplest but unsatisfactory solution is to reset the anchor every time
a pole is being crossed. However, such a procedure violates the condition
that the anchor is an eigenvalue of (1.1) since the anchor would have to
be set to an approximation to the eigenvalue obtained so far. In this way
missing out eigenvalues becomes more probable;

• A better solution is to recompute the offset rl
j+1 on every iteration as long

as rl
j+1 = rankV H

l Cj+1 < rankCj+1. Once rankV H
l Cj+1 = rankCj+1

the offset remains the same until we discard a part of the subspace Vl.
However, in the worst case we have to compute the rank at every iteration;

• In our view the best solution is to introduce the absent vectors by in-
cluding spanCj+1 corresponding to the (j + 1)th pole lying between the
anchor and the currently iterated eigenvalue. Clearly, this strategy is not
restricted to the two neighboring intervals but can be used over multiple
neighboring intervals.

The presented strategy is flexible to restart whenever necessary keeping the
size of the basis moderate. Furthermore the restart does not require expensive
solving of a generalized linear eigenvalue problem (5.2) of a dimension growing
with the number of the eigenvalue.

The described local enumeration clearly does not interfere with the strate-
gies of dealing with spectral pollution described in Section 4. The only issue is
to keep track of which intervals the anchor and the currently iterated eigenvalue
are contained in and correspondingly adjust the offset of the currently iterated
eigenvalue from the anchor. For other strategies of dealing with spectral pol-
lution see [1, 2].

6 Numerical Experiments

In this section we evaluate the four different variants of iterative projection
method for the computation of the interior eigenvalues of (5.1). We consider
a rational eigenproblem (5.1) of dimension n = 36040 with poles σj := j and
rankCj = 2 for j = 1, . . . , 9 which is a finite element model of an elliptic cavity
with 9 immersed tubes. Details about the model can be found in [1].

As a benchmark we compute all the eigenvalues in the intervals (0, 10),
(7, 10) and (9, 10) by the four restart variants of the nonlinear Arnoldi iteration

Math. Model. Anal., 13(2):171–182, 2008.
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Table 1. CPU times for nonlinear Arnoldi with global restarts.

strategy interval total CPU [s] nonlin. CPU [s] init. CPU [s]

GLOBAL 1 (0,10) 511 12 157
(7,10) 183 6.7 83.3
(9,10) 65.8 2.6 32.2

GLOBAL 2 (0,10) 323 128 3.1
(7,10) 126 11.2 36.7

GLOBAL 3 (0,10) 295 60.3 19.1

discussed in the last section. We report CPU times as obtained under MATLAB
2006b on a Intel Pentium D processor with 3.2 GHz and 4 GB RAM.

Notice that the way of starting and initialization after a restart with in-
variant subspaces of the linear eigenvalue problem (5.2) corresponding to the
correct number of its largest eigenvalues guarantees the correct enumeration
of the eigenvalues. Hence, no spurious eigenvalues occur in any of the three
global variants of the nonlinear Arnoldi method. Though, it might happen that
an eigenvalue is missed in the course of a global variant of the algorithm (in
particular in GLOBAL 2), but this never occurred in our numerical tests. So,
back-tracing was never necessary.

Table 1 shows the total CPU times for computing all eigenvalues with the
times consumed by the nonlinear solvers and the times necessary for the ini-
tialization. For the interval (9, 10) all three variants are identical since no
restart was necessary for this relatively short interval which contains only eight
eigenvalues. Similarly for the interval (7, 10) a restart of GLOBAL 2 does not
pay off since the time for initializing the algorithm (i.e. the time for solving
the linear eigenproblem (5.2)) is higher than the gain of CPU time when solv-
ing smaller projected nonlinear eigenproblems after a restart. Hence, for this
interval GLOBAL 2 and GLOBAL 3 are identical.

For GLOBAL 1 the initialization requires 30% to 50% of the total computing
time since many intervals and eigenvalues are involved.

The total CPU times can be reduced considerably by GLOBAL 2 for the
interval (0, 10) since then with GLOBAL 1 a large number of initializations is
necessary, and the combination of GLOBAL 1 and GLOBAL 2 in GLOBAL 3
reduces the total CPU time even further. We gain about 37% of the total CPU
time by GLOBAL 2 for (0, 10) and about 44% of the CPU time by GLOBAL
3. Nevertheless, as we infer from the time consumed by the nonlinear solver in
GLOBAL 2, this strategy is not suitable for the computation of a large number
of eigenvalues since the search subspace is growing too large.

For the interval (7, 10) we do not have to determine all eigenvalues of the
nonlinear eigenproblem (5.1) in the interval (0, 7) which reduces the CPU time
for all GLOBAL variants. The gain of GLOBAL 2 upon GLOBAL 1 is still 31%
although only 2 additional solves of the linear eigenproblem (5.2) in GLOBAL
1 are necessary for restarts after a pole has been crossed.

Finally, we apply the nonlinear Arnoldi method with local restarts. Here
spurious eigensolutions may appear and it is much more likely than for the
global variants that eigenvalues are missed in the course of the Arnoldi algo-
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rithm. The histogram in Figure 1 shows the behaviour of the locally restarted
Arnoldi method for the interval (7, 10). The centers of the black block bars at
the bottom mark the eigenvalues whereas the height of the block indicates how
often the algorithm has converged to this eigenvalue. Most of the eigenvalues
are obtained only once, but there are eigenvalues to which the method con-
verged up to seven times. This happened for instance for the eigenvalue next
to 9. The white block bars indicate how often the Arnoldi method converged
to eigenvalues in the corresponding interval.
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Figure 1. Number of hits of the nonlinear Arnoldi method with local restarts for the interval
(7, 10) per eigenvalue and interval, respectively.

The computation times for the nonlinear Arnoldi method with local restarts
are shown in Table 2. Comparing to the best of the global variants we gain
about 10% for the interval (0, 10), about 12% for (9, 10), and 20% for (7, 10).
It means, that for large intervals where the search subspace would have grown
large or for a single interval where the effects of crossing a pole do not arise,
the locally restarted variant performs slightly better. For intervals of moderate
size and a small number of pole crossings the gain of the local variant is even
more pronounced.

Table 2. CPU times for nonlinear Arnoldi with local restarts.

total CPU [s] nonlin. CPU [s]

(0,10) 266 17.0
(7,10) 100 7.3
(9,10) 58 0.3

The main advantage of the local restart strategies is that we do not require
all the preceding eigenvectors to be in the search subspace. Thus we can initial-
ize the problem by computing the eigenvalue with the smallest magnitude of
the shifted linear problem (5.2). Moreover, in contrast to the first two variants
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we do not encounter orthogonality problems since the search subspace remains
of moderate size.

7 Conclusions

We proposed three global and one local restart strategy for the nonlinear
Arnoldi method for computing a large number of eigenvalues of a nonlinear
eigenvalue problem allowing for a minmax characterization of its eigenvalues.
The occurrence of spurious eigenvalues and the problem of missing out eigenval-
ues are discussed. For the global restart strategies these do not cause problems,
but they may occur if local restarts are used. However, they are usually de-
tected if the method is not restarted too often, i.e. if the dimensions of the
search spaces are not kept too small.
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