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Abstract. We consider a mathematical model, which describes Q-switching pro-
cess. The finite difference scheme is developed for approximation of the given system
of nonlinear PDEs. It is constructed by using the staggered grid, such a strategy
enables an automatic linearization of the algorithm. The transport equations are
approximated along characteristics z± t, thus no discretization error is introduced at
this stage. But such algorithm puts a strong relation between time and space steps of
the discrete grid. The convergence analysis of this scheme is done using the method
developed in [2]. First some estimates of the boundedness of the exact solution are
proved. Then the boundedness of the discrete solution is investigated. On the basis of
these estimates the main stability inequality is proved. The second order convergence
rate with respect the space and time coordinates follows from this estimate.

Key words: finite difference method, nonlinear PDE, nonlinear optics, mathemat-
ical modelling.

1 Mathematical Model

The Q-switching is a technique which allows the production of light pulses
with extremely high peak power. We consider a mathematical model, which
describes the dynamics of two photon fluxes I± = I±(z, t) propagating in
the opposite directions. These fluxes interact inside the laser’s resonator and
they are coupled through boundary conditions and active medium. The gain
evolution in a laser medium is described by function N = N(z, t).

In this paper we consider a simplified mathematical model of Q-switched
laser, which can be described by the following nonlinear system of differential
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equations [5, 6]:





1

V

∂I+

∂t
+

∂I+

∂z
= σ

(
N − Nt

)
GI+ − α+I+ +

β+NG

τs
, 0 < z ≤ ZR,

1

V

∂I−

∂t
−

∂I−

∂z
= σ

(
N − Nt

)
GI− − α−I− +

β−NG

τs
, 0 ≤ z < ZR,

dN

dt
= S(z, t)−

(N − Nt)
(
I+ + I−

)

Es
−

N

τs
, 0 ≤ z ≤ ZR,

(1.1)
where V is the velocity of light propagation in an active medium, Es is the
saturation energy density describing the amount of energy that can be stored
in a laser, Nt is the coefficient of linear losses, S(z, t) is a source term. The
parameters of the mathematical model satisfy the following requirements of the
positivity or non-negativity

Es, τs > 0, σ, α±, β±, G, Nt ≥ 0.

The initial conditions describe the initial distribution of fluxes and the gain
function at the moment of the beginning of Q-switching process:

I±(z, 0) = I±0 , N(z, 0) = N0(z). (1.2)

The boundary and conjugation conditions describe the influence of the
reflectors at z = 0 and z = ZR and the transmission of the Q-switch at
z = Zs < ZR.

I+(0, t) = R1I
−(0, t) + f(t), I−(ZR, t) = R2I

+(ZR, t), (1.3)

I+(Zs + 0, t) = T +
s (t)I+(Zs, t), I−(Zs − 0, t) = T−

s (t)I−(Zs, t),

where R1, R2 are the reflectivities of the mirrors, and T±
s (t) are the transmis-

sions of the Q-switch

0 ≤ R1, R2 ≤ 1, 0 ≤ T±

s (t) ≤ 1, t > 0.

Function f(t) defines a seed flux, which is small in comparison with the maxi-
mum value of the output laser flux. An example of f(t) is described as:

f(t) =





A
( t

τp

)β

eβ(1−t/τp), β > 0, 0 ≤ t ≤ τp,

A, t > τp.

(1.4)

The rest of the paper is organized as follows. In Section 2 the finite differ-
ence scheme is developed for approximation of the given system of nonlinear
PDEs. The convergence analysis of this scheme is done in Section 3. First
some estimates of the boundedness of the exact solution are proved. Then the
boundedness of the discrete solution is investigated. On the basis of these esti-
mates the main stability inequality is proved. Some final conclusions are done
in Section 4.
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2 Finite-Difference Scheme

Let us now define a pair of uniform staggered grids (ωh, ω̃h), here ωh = ωhz
×

ωht
and ω̃h = ω̃hz

× ω̃ht
:

ωhz
=
{
zj : zj = jhz, 0 ≤ j ≤ J, zJ = ZR

}
,

ω̃hz
=
{
zj+1/2 : zj+1/2 =

(
j +

1

2

)
hz, 0 ≤ j < J,

}
,

ωht
=
{
tn : tn = nht, n = 0, 1, . . . , M, Mht = T

}
,

ω̃ht
=
{
tn+1/2 : tn+1/2 =

(
n +

1

2

)
ht, n = 0, 1, . . . , M − 1

}
.

On these grids discrete functions are defined as

U±,n
j = U±(zj , t

n), K
n+1/2
j+1/2 = K(zj+1/2, t

n+1/2),

here U±,n
j approximates I±(z, t) and K

n+1/2
j+1/2 approximates the gain function

N(z, t). We discretize system (1.1) by using the finite-difference method [4]:





U+,n
j − U+,n−1

j−1

hz
=
[
σG
(
K

n−1/2
j−1/2 − Nt

)
− α+

] U+,n
j + U+,n−1

j−1

2

+
β+G

τs
K

n−1/2
j−1/2 ,

U−,n
j−1 − U−,n−1

j

hz
=
[
σG
(
K

n−1/2
j−1/2 − Nt

)
− α−

] U−,n
j−1 + U−,n−1

j

2

+
β−G

τs
K

n−1/2
j−1/2 ,

K
n+1/2
j−1/2 − K

n−1/2
j−1/2

ht
=

S
n+1/2
j−1/2 + S

n−1/2
j−1/2

2
−


K

n+1/2
j−1/2 + K

n−1/2
j−1/2

2
− Nt




×
( 1

2Es

j∑
k=j−1

(U+,n
k + U−,n

k )
)
−

K
n+1/2
j−1/2 + K

n−1/2
j−1/2

2τs
.

(2.1)
Here the convection terms are approximated along characteristics, therefore we
take hz = V ht. A time integration is implemented by using the Crank-Nicolson
method. The staggered grids for numerical approximation of parabolic diffu-
sion-reaction equations were used in many papers, e.g. for solution of the
Hodgkin-Huxley type equations [1, 3].

The discrete boundary and initial conditions are defined as:

U+,n
0 = R1U

−,n
0 + f(tn), U−,n

J = R2U
+,n
J , tn ∈ ωht

, (2.2)

U±,0
j = I±0 (zj), zj ∈ ωhz

, K0
j−1/2 = N0(zj−1/2), zj−1/2 ∈ ω̃hz

.
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We compute the values K
1/2
j−1/2 at the first step of the staggered time grid by

using the linearized Euler integration method for zj−1/2 ∈ ω̃hz
:

K
1/2
j−1/2 − K0

j−1/2

0.5ht
= S

1/2
j−1/2 −

K
1/2
j−1/2 − Nt

2Es

j∑

k=j−1

(U+,0
k + U−,0

k ) −
K

1/2
j−1/2

τs
.

(2.3)
At the transmission point of the Q-switch zS = Zs we change the ap-

proximation of the transport equations taking into account the conjugation
conditions:

U+,n
S+1 − T +

s (t)U+,n−1
S

hz
=
[
σG
(
K

n−1/2
j−1/2 − Nt

)
− α+

] U+,n
S+1 + T +

s (t)U+,n−1
S

2

+
β+G

τs
K

n−1/2
j−1/2 , (2.4)

U−,n
S−1 − T−

s (t)U−,n−1
S

hz
=
[
σG
(
K

n−1/2
j−1/2 − Nt

)
− α−

] U−,n
S−1 + T−

s (t)U−,n−1
S

2

+
β−G

τs
K

n−1/2
j−1/2 .

The implementation of finite difference scheme (2.1)–(2.4) is explicit. First
the transport equations are solved for j = 1, 2, . . . , J :

U+,n
j =





(
1 + 0.5hzD

+,n−1/2
j−1/2

)
U+,n−1

j−1 + hzB
+K

n−1/2
j−1/2

1 − 0.5hzD
+,n−1/2
j−1/2

, j 6= S + 1,

(
1 + 0.5hzD

+,n−1/2
j−1/2

)
T +

s U+,n−1
j−1 + hzB

+K
n−1/2
j−1/2

1 − 0.5hzD
+,n−1/2
j−1/2

, j = S + 1,

(2.5)

U−,n
j−1 =





(
1 + 0.5hzD

−,n−1/2
j−1/2

)
U−,n−1

j + hzB
−K

n−1/2
j−1/2

1 − 0.5hzD
−,n−1/2
j−1/2

, j 6= S,

(
1 + 0.5hzD

−,n−1/2
j−1/2

)
T−

s U−,n−1
j + hzBK

n−1/2
j−1/2

1 − 0.5hzD
n−1/2
−,j−1/2

, j = S,

where notations D
±,n−1/2
j−1/2 = σG

(
K

n−1/2
j−1/2 − Nt

)
− α±, B± =

β±G

τs
are used.

In the second step, by using the third equation in (2.1), we find new values
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of the gain function

K
n+1/2
j−1/2 =

(
1 − 0.5htL

n
j−1/2

1 + 0.5htLn
j−1/2

)
K

n−1/2
j−1/2 +

0.5ht

(
S

n+1/2
j−1/2 + S

n−1/2
j−1/2

)

1 + 0.5htLn
j−1/2

+
htNt

(
Ln

j−1/2 −
1
τs

)

1 + 0.5htLn
j−1/2

, j = 1, 2, . . . , J, (2.6)

where the following notation

Ln
j−1/2 =

1

2Es

j∑

k=j−1

(U+,n
k + U−,n

k ) +
1

τs
, n ≥ 0.

is used.

3 Convergence Analysis

3.1 The boundedness of the solution of (1.1)

In this section we investigate the boundedness of functions N(z, t) and I±(z, t).
Let us assume, that the initial data satisfies the following inequalities

0 ≤ N0(z) ≤ CN0, 0 ≤ I±0 (z) ≤ CI0, 0 ≤ z ≤ ZR. (3.1)

The source term in the gain equation is also assumed to be non-negative and
bounded from above:

0 ≤ S(z, t) ≤ CS , 0 ≤ z ≤ ZR, t > 0. (3.2)

It follows from (1.4) that

0 ≤ f(t) ≤ A, t > 0. (3.3)

Lemma 1. If conditions (3.1)–(3.3) are satisfied then for a solution of system
(1.1)–(1.3) the following estimates are valid:

I±(z, t) ≥ 0, 0 ≤ N(z, t) ≤ CN , 0 ≤ z ≤ ZR, t > 0.

Proof. By using a special structure of equations (1.1), the positivity of S(z, t)
and applying the classical fixed-point iteration technique it is easy to prove
that all solutions are non-negative

I±(z, t) ≥ 0, N(z, t) ≥ 0, 0 ≤ z ≤ ZR, t > 0.

Thus it remains to prove the boundedness of N(z, t) from above. Let us
rewrite the initial value problem for the gain function as





d(N(z, t) − Nt)

dt
+
(I+ + I−

Es
+

1

τs

)
(N(z, t) − Nt) = S(z, t) −

Nt

τs
,

N(z, 0)− Nt = N0(z) − Nt.
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We put the solution in the form N(z, t) = Nt + v(z, t) + w(z, t), where v(z, t)
solves the homogeneous initial value problem






dv

dt
+
(I+ + I−

Es
+

1

τs

)
v = 0,

v(z, 0) = N0(z) − Nt,

and w(z, t) is the solution of the non-homogeneous initial value problem subject
to zero initial conditions






dw

dt
+
(I+ + I−

Es
+

1

τs

)
w = S(z, t)−

Nt

τs
,

w(z, 0) = 0.

Taking into account that I±(z, t) ≥ 0 we get the estimate

v(z, t) ≤ max(0, CN0 − Nt). (3.4)

Function w(z, t) can be bounded from above by w̃(t) satisfying the initial value
problem






dw̃

dt
+

1

τs
w̃ = CS −

Nt

τs
,

w̃(z, 0) = 0.

The solution of this problem is given by

w̃(t) = (τsCS − Nt)(1 − e−t/τs),

thus the following estimates are valid:

w(z, t) ≤ w̃(t) ≤ max(0, τsCS − Nt). (3.5)

From estimates (3.4) and (3.5) we get the boundedness estimate of function
N(z, t):

N(z, t) ≤ max(Nt, CN0) + max(0, τsCS − Nt).

�

The dynamical stability of the whole system and as a consequence the
boundedness from above of functions I±(z, t) depends on the parameters of
the problem (mainly, on the reflectivity coefficients at the boundaries of the
space domain) and amount of energy, pumped into the reflector. Let us assume
that functions I±(z, t) are uniformly bounded from above by some constant

I±(z, t) ≤ CI , 0 ≤ z ≤ ZR, t > 0.
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3.2 The boundedness of the discrete solution

In this section we investigate the boundedness of the discrete solution of finite
difference scheme (2.1) – (2.4).

We start our analysis assuming that

U±

j ≤ CIh, j = 0, 1, . . . , J, (3.6)

where constant CIh can be selected as CIh = CI + 1. This assumption will
be justified later, when the main stability estimate will be obtained. Such a
method of the analysis of nonlinear difference schemes was developed in [1, 2].

Lemma 2. If conditions (3.1)–(3.3), (3.6) are satisfied then for a sufficiently
small time step ht ≤ h0

t the apriori estimates

0 ≤ K
n+1/2
j+1/2 ≤ CNh, U±,n

j ≥ 0, n = 0, 1, . . . , M, j = 0, 1, . . . , J (3.7)

are valid for the solution of discrete problem

Proof. First we show that estimates (3.7) are valid at the initial time moment
n = 0. The non-negativity of U±,0

j follows from the initial condition and the
assumptions of this lemma. Repeating the proof of Lemma 1 we get from (2.3)
that the estimates

0 ≤ K
1/2
j−1/2 ≤ CN , j = 1, 2, . . . , J

are valid unconditionally.

Let us assume that estimates (3.7) are valid at the time moment tn−1, where
n ≤ M . Since T±

s ≥ 0 and taking a sufficiently small time step

ht < h0
t,1 =

2

σG (CNh − Nt) − max(α+, α−)
,

we get from (2.5) that

U±,n
j ≥ 0, zj ∈ ωz.

This restriction on the time step ht arises due to the conditional monotonicity
of the symmetrical Crank-Nicolson approximation.

It follows from (2.6) that for a sufficiently small time step ht ≤ h0
t,2, where

h0
t,2 = 2Esτs/(2CIhτs + Es) the estimates

K
n+1/2
j−1/2 ≥ 0, j = 1, 2, . . . , J

are valid. Thus it remains to prove that K
n+1/2
j−1/2 is bounded from above by a

constant not depending on n. Let us rewrite the discrete problem for the gain
function as

Math. Model. Anal., 13(2):211–222, 2008.
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(K
n+1/2
j−1/2 − Nt) − (K

n−1/2
j−1/2 − Nt)

ht
+

1

2

[
(K

n+1/2
j−1/2 − Nt) + (K

n−1/2
j−1/2 − Nt)

]

×
1

2Es

j∑
k=j−1

(U+,n
k + U−,n

k ) +
(K

n+1/2
j−1/2 − Nt) + (K

n−1/2
j−1/2 − Nt)

2τs

=
S

n+1/2
j−1/2 + S

n−1/2
j−1/2

2
−

Nt

τs
.

We put the solution in the form K
n+1/2
j−1/2 = Nt + V

n+1/2
j−1/2 + W

n+1/2
j−1/2 , where

V
n+1/2
j−1/2 solves the homogeneous discrete problem





V
n+1/2
j−1/2 − V

n−1/2
j−1/2

ht
+

V
n+1/2
j−1/2 + V

n−1/2
j−1/2

2

( 1

2Es

j∑
k=j−1

(U+,n
k + U−,n

k ) +
1

τs

)

= 0, n > 0, j = 1, 2, . . . , J,

V
1/2
j−1/2 = K

1/2
j−1/2 − Nt, j = 1, 2, . . . , J,

and W
n+1/2
j−1/2 solves the non-homogeneous discrete problem with zero initial

conditions:






W
n+1/2
j−1/2 − W

n−1/2
j−1/2

ht
+

W
n+1/2
j−1/2 + W

n−1/2
j−1/2

2

( 1

2Es

j∑
k=j−1

(U+,n
k +U−,n

k )+
1

τs

)

=
S

n+1/2
j−1/2 + S

n−1/2
j−1/2

2
−

Nt

τs
, n > 0, j = 1, 2, . . . , J,

W
1/2
j−1/2 = 0, j = 1, 2, . . . , J.

Taking a sufficiently small time step ht ≤ h0
t,2 and using the estimate from

above for K
1/2
j−1/2 we prove that V

n+1/2
j−1/2 ≤ CN .

Since (1 − x)/(1 + x) is a monotonically decreasing function, then the fol-
lowing estimate is valid for ht ≤ h0

t,2:

W
n+1/2
j−1/2 ≤

1 − 0.5ht/τs

1 + 0.5ht/τs
W

n−1/2
j−1/2 +

CBht

1 + 0.5ht/τs
, CB = max(0, CS − Nt/τs).

By iterating this inequality we get

W
n+1/2
j−1/2 ≤

CBht

1 + 0.5ht/τs

(
1 +

1 − 0.5ht/τs

1 + 0.5ht/τs
+ . . . +

(1 − 0.5ht/τs

1 + 0.5ht/τs

)n
)

≤ CBτs = max(0, CSτs − Nt).
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Adding all estimates we get the estimate from above for K
n+1/2
j−1/2 :

K
n+1/2
j−1/2 = CN + max(Nt, CSτs), j = 1, 2, . . . , J.

Finally, we take h0
t = min(h0

t,1, h
0
t,2). Thus it is proved that both apriori

estimates (3.7) are satisfied at the next time moment tn. The proof is concluded
by induction on n. 2

3.3 Stability analysis

In this section we investigate the stability and convergence of difference scheme
(2.1)–(2.4). Let us denote the error functions of the discrete solution:

Z
n+1/2
j+1/2 = K

n+1/2
j+1/2 − N(zj+1/2, t

n+1/2), P±,n
j = U±,n

j − I±(zj , t
n).

By putting these functions into the finite-difference scheme we get a discrete
problem for the error functions.

3.3.1 Analysis of the gain equation

First we investigate the equation for the gain function:

Z
n+1/2
j−1/2 − Z

n−1/2
j−1/2

ht
+

Z
n+1/2
j−1/2 + Z

n−1/2
j−1/2

2

j∑
l=j−1

(U+,n
l + U−,n

l )

2Es

+
Z

n+1/2
j−1/2 + Z

n−1/2
j−1/2

2τs
= −

N
n+1/2
j−1/2 + N

n−1/2
j−1/2

4Es

j∑

l=j−1

(P+,n
l + P−,n

l ) − Rn
j−1/2,

where Rn
j−1/2 denotes the residual of the discrete equation:

Rn
j−1/2 =

N
n+1/2
j−1/2 − N

n−1/2
j−1/2

ht
+
(N

n+1/2
j−1/2 + N

n−1/2
j−1/2

2
−Nt

)
j∑

l=j−1

(I+,n
l + I−,n

l )

2Es

+
N

n+1/2
j−1/2 + N

n−1/2
j−1/2

2τs
−

S
n+1/2
j−1/2 + S

n−1/2
j−1/2

2
.

The approximation error is estimated as

‖Rn‖∞ ≤ C(h2
z + h2

t ).

By using the positivity of functions U± and boundedness of Nn+1/2 we get the
stability inequality

∣∣Zn+1/2
j−1/2

∣∣ ≤
∣∣Zn−1/2

j−1/2

∣∣+ CNht

Es
(‖P+,n‖∞ + ‖P−,n‖∞) + ht‖R

n‖∞.
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It remains to estimate the error at the first time step. Similarly to analysis
given above and taking into account that initial conditions are exact

P±,0
j = 0, zj ∈ ωhz

, Z0
j−1/2 = 0, zj−1/2 ∈ ω̃hz

,

we get the equation for the error function:

2

ht
Z

1/2
j−1/2 +

( 1

2Es

j∑

l=j−1

(I+,0
l + I−,0

l ) +
1

τs

)
Z

1/2
j−1/2 = −R0

j−1/2,

where R0
j−1/2 denotes the residual of the discrete equation:

R0
j−1/2 =

N
1/2
j−1/2 − N0

j−1/2

0.5ht
+

N
1/2
j−1/2

τs
− S

1/2
j−1/2

+
(N

1/2
j−1/2 + N0

j−1/2

2
− Nt

) 1

2Es

j∑

l=j−1

(I+,0
l + I−,0

l ).

The approximation error is estimated as

‖R0‖∞ ≤ C(h2
z + ht).

By using the positivity of functions I± we get the stability inequality

∣∣Z1/2
j−1/2

∣∣ ≤ ht

2
‖R0‖∞ ≤ C(h2

t + hth
2
z).

3.3.2 Analysis of the transport equations

Next we investigate equations for the error functions P±. Since this analy-
sis is similar for both functions, we will present a detailed analysis only for
the forward moving wave function. The error function satisfies the following
equations:

P+,n
j − P+,n−1

j−1

hz
=
[
σG
(
K

n−1/2
j−1/2 − Nt

)
− α+

] P+,n
j + P+,n−1

j−1

2

+ σGZ
n−1/2
j−1/2

I+,n
j + I+,n−1

j−1

2
+

β+G

τs
Z

n−1/2
j−1/2 − R

+,n−1/2
u,j−1/2 ,

j = 1, 2, . . . , J, j 6= S + 1,

P+,n
S+1 − T +

S (t)P+,n−1
S

hz
=
[
σG
(
K

n−1/2
S+1/2 − Nt

)
− α+

] P+,n
S+1 + T +

S (t)P+,n−1
S

2

+ σGZ
n−1/2
S+1/2

I+,n
S+1 + T +

S (t)I+,n−1
S

2
+

β+G

τs
Z

n−1/2
S+1/2 − R

+,n−1/2
u,S+1/2 , j = S + 1,



Finite-Difference Scheme for One Problem of Nonlinear Optics 221

where R
+,n−1/2
u,j−1/2 denotes the residual of the discrete equation

R
+,n−1/2
u,j−1/2 =

I+,n
j − I+,n−1

j−1

hz
−
[
σG
(
N

n−1/2
j−1/2 − Nt

)
− α+

] I+,n
j + I+,n−1

j−1

2

−
β+G

τs
N

n−1/2
j−1/2 , j = 1, 2, . . . , J, j 6= S + 1,

R
+,n−1/2
u,S+1/2 =

I+,n
S+1 − T +

S (t)I+,n−1
S

hz
−
[
σG
(
N

n−1/2
S+1/2 − Nt

)
− α+

]

×
I+,n
S+1 + T +

S (t)I+,n−1
S

2
−

β+G

τs
N

n−1/2
S+1/2 , j = S + 1.

The approximation error is estimated as

‖R+,n−1/2
u ‖∞ ≤ C(h2

z + h2
t ).

For j = 1, 2, . . . , J we write the the discrete error equation as

P+,n
j =


1 + 0.5hzD

n−1/2
j−1/2

1 − 0.5hzD
n−1/2
j−1/2


P+,n−1

j−1 +
hz

1 − 0.5hzD
n−1/2
j−1/2

×

(
σG

(
I+,n
j + I+,n−1

j−1

2
+

β+

στs

)
Z

n−1/2
j−1/2 − R

+,n−1/2
u,j−1/2

)
.

By taking a sufficiently small hz ≤ 1/(3CNh) and denoting CI = ‖I+‖C(0,Z)

we get the following estimate

∣∣P+,n
j

∣∣ ≤ (1+3CNhhz)
∣∣P+,n−1

j−1

∣∣+ 6hz

5

(
CI

∣∣Zn−1/2
j−1/2

∣∣+
∣∣R+,n−1/2

u,j−1/2

∣∣
)
, j = 1, . . . , J.

Similar estimates are valid for function P−,n:

∣∣P−,n
j−1

∣∣ ≤ (1+3CNhhz)
∣∣P−,n−1

j

∣∣+6hz

5

(
CI

∣∣Zn−1/2
j−1/2

∣∣+
∣∣R−,n−1/2

u,j−1/2

∣∣
)
, j = 1, . . . , J.

We get from the boundary conditions that
∣∣P+,n

0

∣∣ ≤ |R1|
∣∣P−,n

0

∣∣,
∣∣P−,n

J

∣∣ ≤ |R2|
∣∣P+,n

J

∣∣.

Let us denote ∥∥Pn
∥∥
∞

= max
(∥∥P+,n

∥∥
∞

,
∥∥P−,n

∥∥
∞

)
.

Combining the inequalities given above and taking into account that |Rj | ≤ 1
and hz = V ht, we prove the second stability estimate

∥∥Pn
∥∥
∞

≤ (1 + 3CNhV ht)
∥∥Pn−1

∥∥
∞

+
6V ht

5

(
CI

∥∥Zn−1/2
∥∥
∞

+
∥∥Rn−1/2

u

∥∥
∞

)
.
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4 Conclusions

A simplified mathematical model of Q-switching is approximated by the sym-
metric finite difference scheme. This approximation is constructed on the stag-
gered grid which enables automatic linearization of the discrete problem. The
convergence analysis is based on a priori boundedness estimates of the dis-
crete solution. Such estimates give an important information on the numerical
solution, establishing a connection with similar properties of the exact solution.

The main goal of a future work is to generalize the obtained results for
2D nonstationary mathematical models defining the problem in (z, x) space
domain.
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