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Abstract. Recent author’s papers have shown new opportunities resulting from
the treatment of resource planning in project scheduling as the optimization problem
for a hybrid system. This approach gives the possibility to work out the optimum
resource sharing in an iteration process of branch-and-bound type. The present paper
concentrates on the most standard case of the problem in question for which all the
relationships may be represented in the linear form. Two exact finite methods are
proposed. The first method is obtained using the piecewise-linear form of Bellman
function, the second evolves from the decomposition approach for dynamic linear
programming problem.
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1 Introduction

The question of internal resources planning for project scheduling is not incor-
porated in the classical models of PERT/CPM and in most of later improve-
ments of them [5]. The problem still attracts attention [1], but the results
are not promising: for all general problem formulations only heuristics were
proposed; the cases when an exact solution may be calculated with a regular
method have little significance.

A new form of the model proposed by the author [8] gives the chance to cal-
culate the optimum resources sharing between parallel works with the two-level
optimization method. As most optimization techniques the proposed method
results in an iteration algorithm not having the property of finite convergence.

The present paper focuses on the most widely used case when the resources
usage may be represented with linear relationships. It means that each work
intensity is proportional to its share of capacities that may alter from one stage
to another. It is supposed that the use of materials is proportional to works
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rates; the difference between linear and non-linear models is displayed in this
aspect only. Linear form of the model enables to incorporate in it some addi-
tional restrictions, such as restrictions on terms of some works (initiation and
termination times and duration), admits conditions of non-strict precedence of
works etc. However, here we use explicitly only the basic model formulated in
[8] and present it in a slightly different form. Most results formulated here stay
valid for the other linear resource planning models.

We assume that the project consists of n jobs and NR capacity types; let
IRj be the set of jobs using the j type. The qualitative state d of the project
is a vector, di being the state of the i-th job with three possible values:

• 0 (“not started”),

• 1 (“in performance”),

• 2 (“finished”).

Let Il(d) =
{

di = l, i ∈ {1, . . . , n}
}

, where l = 0, 1, 2. Obviously I0(d)∪I1(d)∪
I2(d)={1,. . . ,n}. Every such a triple (I0(d), I1(d), I2(d)) defines the unique d.
For the amount of i-th job we use the notation xi to denote its current value
and xTi for its final value. For each i-th job we introduce the set of strictly
preceding jobs Pi, so that di=0, if dj < 2 for some j ∈ Pi. The period of the
project fulfillment is divided into the succession of stages by the events of jobs
termination and subsequent jobs origination. It well known that the optimum
resource sharing is constant between two successive events, thus it is sufficient
to consider the project state only at the moments of these events.

It is convenient [8] to split each instant of a job termination into two parts:
the stage termination (the job is being done the last time and subsequent jobs
are not begun) and the beginning of the next stage (the job is terminated and
subsequent jobs are started). The set of all possible values of quantitative state
vector X for a given d is defined as

X(d) = {x | xi = 0, if di = 0; 0 ≤ xi ≤ xTi, if di = 1; xi = xTi, if di = 2}.

All possible qualitative states form the set AD defined by the following condi-
tions

di =







0, if for some j ∈ Pi dj < 2,

l, l ∈ {0, 1, 2}, otherwise.

The initial value d0 is given by d0
i = 1 if Pi = ∅, and d0

i = 0, otherwise.

Let d ∈ AD. The next state d′ must satisfy the following conditions:

IT 6= ∅, IT ⊆ I1(d), I2(d
′) = I2(d) ∪ IT , I01 = {i ∈ I0(d) |Pi ⊆ I2(d

′)}, (1.1)

I1(d
′) = (I1(d) \ IT ) ∪ I01, I0(d

′) = I0(d) \ I01.

We denote by D+(d) the set of all states d′ satisfying conditions (1.1) and
by D+(d, IT ) the set of states d′ satisfying (1.1) for a given IT ⊂ I1(d).
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For a given d, x ∈ X(d) the set of possible states (d′, x′), d′ ∈ D+(d),
x′ ∈ X(d′) given at the beginning of the next stage is defined by the following
linear relationships involving the stage duration t and the amounts of jobs yi:

0 < umin it ≤ yi ≤ umax it, i ∈ I1(d), yi = 0, i /∈ I1(d), (1.2)
∑

i∈IRj

yi ≤ uRjt; t ≥ 0,

and

x′

i = xi + yi, x′

i ≤ xTi, i = 1, . . . , n,

IT = {i | x′

i = xTi}, d′ = D+(d, IT ).

2 Dynamic Programming Method for Linear Resource

Planning Model

The optimum synthesis of the resources sharing is found with the dynamic
programming method. The terminal state (xT , dT ) of the project is xT =
(xT1, . . . , xTn), dT = (2, . . . , 2).

To apply the method we define the Bellman function for states at the be-
ginning of stages W (x, d), expressing the minimum time for reaching the final
state (xT , dT ) from (x, d). We must set W (xT , dT ) = 0. The Bellman equation
is given as

W (x, d) = min{W (x, d, d′) | d′ ∈ D+(d), P (x, d, d′) 6= ∅}, x ∈ X(d),

where the polyhedron P (x, d, d′) is determined by restrictions (1.2) together
with

xi + yi ≤ xTi, if di = 1; xi + yi = xTi, if di = 1&d′i = 2; (2.1)

and

W (x, d, d′) = min{t + W (x + y, d′) | (y, t) ∈ P (x, d, d′)}.

Lemma 1. If a function W (x) defined on a convex compact set X ⊂ Rn is

continuous and piecewise-linear, i.e., there exists a finite set of linear functions

Wm(x) = CX0mx + C0m, m = 1, . . . , M , and W (x) = Wm(x)(x) for every

x ∈ X, then X = P1 ∪ . . . ∪ PL, where W (x) = Wm(l)(x) for each x ∈ Pl,

l = 1, . . ., L, and polyhedra Pl are determined by inequalities

CXlrx + Clr ≤ 0, r = 1, . . . , nl. (2.2)

Proof. Let i, j ∈ {1, . . . , L}, i 6= j, and let X(i, j) = {x ∈ X | Wi(x) <
Wj(x)}. If X(i, j) 6= ∅, then X(i, j) is an opened polyhedron and its clo-
sure [X(i, j)] = {x ∈ X | Wi(x) ≤ Wj(x)} is a closed polyhedron. Let
J = {m(1), . . . , m(L)} be an arbitrary permutation of {1, . . . , M} and

X(J) = {x ∈ X | Wm(s)(x) < Wm(s+1)(x), s = 1, . . . , M − 1}.

Math. Model. Anal., 13(2):275–288, 2008.
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Let X(J) 6= ∅. From the continuity of W (x) we conclude that there exist an
m(J), such that W (x) = Wm(J)(x) for any x ∈ X(J), and hence W (x) =
Wm(J)(x) for any x ∈ [X(J))]. Each of such polyhedra may be treated as some
Pl(J) defined with a set of inequalities of the type (2.2):

(CX0m(s+1) − CX0m(s))x + (C0m(s+1) − C0m(s)) ≤ 0, s, s + 1 ∈ S(J). (2.3)

The lemma is proved. ⊓⊔

Theorem 1. For an arbitrary d ∈ AD function W (x, d) is a continuous piece-

wise-linear function of x.

Proof. Let us prove the continuity of W (x,d). Let d0 ∈ A, x0 ∈ X(d0). All
possible ways to finish the project beginning from (x0, d0) may be represented
by (x(k), T (k), d(k)), k = 1, . . . , N + 1, where

x(1) = x, d(1) = d, d(N + 1) = dT , x(N + 1) = xT ,

x(k + 1)=x(k) + y(k)), T (k + 1)=T (k) + t(k), d(k + 1)=D+(x(k), IT (k)),

(y(k), t(k)) satisfy (1.2) and

IT (k) = {j ∈ I1(d(k)) | xj(k + 1) = xTj} 6= ∅,

xj(k + 1) < xTj , j ∈ I1(d(k)) \ IT (k).

The optimum succession S0 = {(x0(k), T 0(k), d0(k)), i = 1, . . . , N0 + 1}
minimizes

t(1) + . . . + t(N),

and W (x0, d0) = t0(1) + . . . + t0(N).
Let x1 ∈ X(d0), ∆x(1) = x1 − x0 and let ‖∆x(1)‖ be small. We assess

|W (x1, d0) − W (x0, d0)| by constructing a possible succession

S1 = {(x1(k), T 1(k), d1(k)), i = 1, . . . , N1 + 1},

that is close to S0 in a certain sense.
Let u0(k) = y0(k)/t0(k). Setting y1(1) = u0(1)t1(1), we satisfy (1.2); the

value of t1(1) is determined via the condition x1
i (1) + u0

i (1)t1(1) = xTi, i ∈
I1
T (1), x1

i (1) + u0
i (1)t1(1) < xTi, i /∈ I1

T (1). Thus we conclude that

t1(1) = t0(1) + min{−∆xi(1)/u0
i (1) | i ∈ I0

T (1)},

|t1(1) − t0(1)| ≤ ‖∆x(1)‖∞/umin,

where umin = min{umin i, i = 1, . . . , n}, ‖a‖∞ = min{|ai|, i = 1, . . . , m} for
a ∈ Rm, I1

T (1) = Argmin{−∆xi(1)/u0
i (1), i ∈ I0

T (1)} ⊆ I0
T (1),

‖∆x(2)‖∞ ≤ ‖∆x(1)‖∞ + umax|t
1(1) − t0(1)| ≤ ‖∆x(1)‖∞(1 + umax/umin),

umax = min{umax i, i = 1, . . . , n}.
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Taking into account that x0
i (2) = xTi, i ∈ I0

T (1) \ I1
T (1), we conclude that all

these jobs will terminate not later than t1(1) + ‖∆x(2)‖∞/umin. Therefore, on
S1 the state d0(2) is achieved as d1(k2) at the time T 1(k2), where

|T 1(k2) − T 0(2)| ≤ qT ‖∆x(1)‖∞, ‖x1(k2) − x0(2)‖ ≤ qX‖∆x(1)‖∞,

and qT = (2umin + umax)/(umin)
2, qX = (umin + umax)umax/(umin)

2. Setting
y1(k2) = u0(2)t1(k2) and repeating analogous computations N − 1 times we
conclude that

W (x1, d0)−W (x0, d0) = T 1(kN+1)−T 0(N+1) ≤ qT (qN
X−1)/(qX−1)‖∆x(1)‖∞.

Interchanging x1 and x0, we conclude that for any sufficiently small ∆x

|W (x0 + ∆x, d0) − W (x0, d0)| ≤ qT (qN
X − 1)/(qX − 1)‖∆x‖∞.

So the continuity of W (x, d) is proved.
It is possible to establish an ordering on AD. Let AD(0)={dT }. The other

classes are determined recursively: for known AD(i), i = 0, . . . , j, we have

AD(j + 1) = {d ∈ AD \ (AD(0)∪ . . .∪AD(j)) | D+(d) ⊆ AD(0)∪ . . .∪AD(j)}.

For d = dT we have W (x, d) = 0, that is a particular case of a continuous
piecewise-linear function of x. So the theorem is valid for d ∈ AD(0). Suppose
that it is valid for d ∈ AD(i), i = 0, . . . , j. We shall prove that it is valid for
d ∈ AD(j + 1). According to Lemma 1 for any d′ ∈ AD(i), i = 0, . . . , j, for the
function W (x′, d′) we have

W (x′, d′) = Wl(x
′, d′) ≡ CX0l(d

′)x′ + C0l(d
′),

x′ ∈ Xl(d
′) = {x′ | CXrl(d

′)x′ + Crl(d
′) ≤ 0, r = 1, . . . , nl(d

′)}.

Let d ∈ AD(j + 1). According to the supposition for W (x, d, d′) we have

min{t + Wl(x + y, d′) | (y, t) ∈ P (x, d, d′), (x + y) ∈ Xl(d
′), l = 1, . . . , L(d′)}

= min{t + CXr0(d
′)(x + y) + Cr0(d

′) | (y, t) ∈ Pl(x, d, d′),

(x + y) ∈ Xl(d
′), l = 1, . . . , L(d′)}.

The set Pl(x, d, d′) = {(y, t) | (y, t) ∈ P (x, d, d′), (x + y) ∈ Xl(d
′)} is defined

by conditions (1.2), (2.1) and the following inequality

CXrl(d
′)(x + y) + Crl(d

′) ≤ 0, r = 1, . . . , nl(d
′). (2.4)

In fact the minimum of t + CX0l(d)(x + y) + C0l on the polyhedron Pl(x, d, d′)
is reached on its vertex. Any possible vertex corresponds to some set I of
inequalities (1.2), (2.1), (2.4) and all equalities (1.2), (2.1) for which dim I =
n + 1. In more abstract way, forming a vector of coordinates of the vertex
v = (y, t) we represent this condition as

bT
i (d, d′)v + aT

i (d, d′)x ≤ ci(d, d′), i ∈ I1l,

bT
i (d, d′)v + aT

i (d, d′)x = ci(d, d′), i ∈ I2l.

Math. Model. Anal., 13(2):275–288, 2008.
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Let us denote B(I, d, d′), A(I, d, d′), c(I, d, d′) the matrices which rows are
bi(d, d′), ai(d, d′), i ∈ I, and the vector which components are ci(d, d′), i ∈ I,
respectively. Then we have

v(I, d, d′, x) = B−1(I, d, d′)
(

A(I, d, d′)x − c(I, d, d′)
)

.

This vector v(I, d, d′) is a vertex of Pl(x, d, d′) iff it satisfies the rest of (1.2),
(2.1), (2.4) constraints, i.e., for i ∈ I1 \ I we have

bT
i (d, d′)

(

B−1(I, d, d′)(A(I, d, d′)x − c(I, d, d′)
)

+ aT
i (d, d′)x ≤ ci(d, d′). (2.5)

The set of inequalities (2.5) defines the domain X(I, d, d′) in Rn for which the
vector v(I, d, d′) is a vertex of Pl(x, d, d′). So all possible particular formulas
for W (x, d) are

W (x, d, I) = t(I, d, d′, x) + CX0l(d
′) (x + y(I, d, d′, x)) + C0l(d

′).

All functions on the right-hand side are linear, so W (x, d) is a continuous
piecewise-linear function of x. ⊓⊔

Remark. From the proof of Lemma 1 and Theorem 1 a quasi-constructive
way to define parameters of W (x, d) may be derived. Given values of L(d′),
nl(d

′), Clr and values of CXlr components, we may generate the set AI(d, d′)
of all possible sets I of the above type and calculate coefficients of any lin-
ear vector function v(I, d, d′, x). To know whether X(I, d, d′) 6= ∅ means to
test compatibility of linear restrictions (2.5). This problem may be reduced
to the solution of some linear programming problem which yields coordinates
of an internal point for a non-empty polyhedron (2.5) as well. So we define
the set AI0(d, d′) = {I ∈ AI(d, d′) |X(I, d, d′) 6= ∅}. The domain on which
W (x, d) = W (x, d, I) may be represented with the formula

X(I, d) =
⋂

J∈AI(d,d′)

(X(I, d, d′) \ (X(J, d, d′) ∩ {x |W (x, d, I) ≥ W (x, d, J)})).

Thus the domain on which the Bellman function is expressed with any of its
linear formulas is the result of operations of conjunction and difference which
primary operands are convex polyhedra. So the result is a polyhedron as well,
but probably non-convex. If it is non-convex, then it must be represented as a
union of convex polyhedra.

The proof of Lemma 1 using formula (2.3) gives a more simple descrip-
tion of convex domains on which W (x, d) is expressed with definite linear
formulas. For each of such polyhedra it is necessary to establish what lin-
ear formula expresses the Bellman function on it. To know this, it is suf-
ficient to compute an arbitrary internal point and to determine whether it
belongs to X(I, d) by testing its belongingness to polyhedra X(I, d, d′) and
X(J, d, d′) ∩ {x |W (x, d, I) ≥ W (x, d, J)}.

3 Resource Planning as a Problem of a Transforming Pro-

cess Optimization

In paper [8] the given problem was represented as an optimization problem for
a hybrid system [3]. This form of the model enables us to perform non-local
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optimization with the use of special optimality conditions and iteration method
of branch-and-bound type. In this paper additional opportunities resulting
from linear form of relationships are studied. It was noticed in [8] that the
process may have different scenarios, i.e., sequences D = (d(1), . . . , d(N)) of
qualitative states of the project. According to this approach the search of the
optimum solution is based on three types of calculations: optimization within
a given scenario, testing the optimality of this scenario and shifting to a better
adjacent scenario.

For a given scenario the optimum schedule is found by solving the following
dynamic linear programming problem (DLP):

T (N) → min; (3.1)

T (0) = 0; T (k) = T (k − 1) + t(k), k = 1, . . . , N ; (3.2)

x(0) = 0; xi(k) = xi(k − 1) + yi(k); (3.3)

umin it(k) ≤ yi(k) ≤ umax it(k), i ∈ I1(d(k)); yi(k) = 0, i /∈ I1(d(k)); (3.4)
∑

i∈IRj

yi(k) ≤ uRjt(k), j = 1, . . . , m, t(k) ≥ 0; (3.5)

xi(k) + yi(k) = xTi, i ∈ I2(d(k + 1)). (3.6)

First of all, DLP problem is a particular case of a linear programming problem,
so its exact solution may be found with a finite method. Besides, there are
decomposition methods that enhance the efficiency of optimum search, e.g. [4].
All these methods guarantee reaching the optimum (within a given scenario).
If more than one work terminates at the end of some stage, then other scenario
representations of the project schedule exist and it is necessary to test whether
the same schedule is optimal within these adjacent scenarios.

For a class of hybrid models, including (3.1)–(3.6), the necessary opti-
mality conditions were established in [2]. Here we strengthen these results
taking into account linearity of the model relationships. To formulate them
we represent the model in other forms that are more general. Let us denote
the generalized vectors of state z(k) = (x1(k), . . . , xn(k), T (k)) and control
v(k) = (y1(k), . . . , yn(k), t(k)). For a given scenario D the problem (3.1)–(3.6)
(and some similar problems) may be represented as

zn+1(N + 1) → min; (3.7)

z(k + 1) = z(k) + v(k), k = 1, . . . , N ; (3.8)

bT
V i(k, D)v(k) ≤ 0, i ∈ IV 1(k, D), bT

V i(k, D)v(k) = 0, i ∈ IV 2(k, D); (3.9)

bT
Zi(k, D)z(k) + bT

V i(k, D)v(k) + ci(k, D) = 0, i ∈ IT (k, D). (3.10)

We introduce formally bZi(k, D) = 0 for i ∈ IV 1(k, D) ∪ IV (k, D) to represent
(3.9) and (3.10) in the similar form. In this representation (3.7) corresponds
to (3.1), (3.8) to (3.2) and (3.3), (3.9) to (3.4) and (3.5), (3.10) to (3.6).

Let us substitute z(k) by v(1)+ . . .+v(k−1) according to (3.7) and denote
I1(D) = IV 1(1, D)∪ . . .∪ IV 1(N, D), I2(k, D) = IV 2(k, D)∪ IT (k, D), I2(D) =
I2(1, D)∪ . . .∪ I2(N, D), v = (v(1), . . . , v(N)). Then we may express residuals

Math. Model. Anal., 13(2):275–288, 2008.
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in (3.9), (3.10) as Fi(v, D), the target functional as F0(v, D) and formulate the
problem (3.1)–(3.6) in the most general form

F0(v, D) ≡ aT
V 0(D)v → min, (3.11)

Fi(v, D) ≡ aT
V i(D)v ≤ 0, i ∈ I1(D), (3.12)

Fi(v, D) ≡ aT
V i(D)v + a0i(D) = 0, i ∈ I2(D). (3.13)

We say that the vector δv of the same dimension as v determines a feasible

direction [6] in v ∈ V (D), if such α1(δv) > 0 exists that for any 0 ≤ α ≤ α1(δv)
we have that v + αδv ∈ V (D). Let v1 ∈ V (D). From the convexity of V (D)
we find that δv = v1 − v is a feasible direction in v with α1(δv) = 1.

For a given v ∈ V (D) we treat a restriction (3.12) as an active one, if
Fi(v, D) = 0, and denote the set of all active restrictions as I10(v, D). All
restrictions (3.13) for v ∈ V (D) are active too. We use further the following
notations for sets and subsets of active restrictions:

I0(v, D) = I10(v, D) ∪ I2(v, D), IV 10(v, k, D) = IV 1(k, D) ∩ I10(v, D),

I0(v, k, D) = IV 10(v, k, D) ∪ IV 2(k, D) ∪ IT (k, D).

In general, the problem (3.11)–(3.13) may be treated as regular if for any
v ∈ V (D) gradients of active restrictions aV i(D), i ∈ I0(v, D), are linearly
independent. For our problem the desired linear independence may take place
for any v ∈ V (D), except such v ∈ V (D) for which t(k) = 0 for some k (i.e.
K0(v, D)={k | vn+1(k) = 0} = ∅). We suppose further that the following
regularity condition is satisfied.

Condition 1. For any k = 1, . . . , N and v(k) satisfying (3.9) and such that
vn+1(k) > 0 we have that

1. dim IV 10(v, k, D) ∪ IV 2(k, D)) ≤ n + 1;

2. for any J ⊆ IT (k, D) for which

dim(IV 10(v, k, D) ∪ IV 2(k, D) ∪ J) ≤ n + 1,

vectors bV i(k, D), i ∈ IV 10(v, k, D) ∪ IV 2(k, D) ∪ J , are linearly indepen-
dent.

Let IRj ∩ IRi = ∅, i 6= j,i, j = 1, . . . , m. From the form of restrictions
(3.4)–(3.6) we come to the conclusion that Condition 1 takes place if for any
j = 1, . . . , m and any Imin ⊆ IRj , Imax ⊆ IRj , for which Imin ∩ Imax = ∅,

∑

i∈Imin∩IRj

umin i+
∑

i∈Imax∩IRj

umax i 6= uRj .

Under the regularity condition the use of decomposition approach formulated
in [8] is possible. We propose here a concrete decomposition scheme successfully
used earlier by the author for the solution of numerous dynamical optimization
problems.
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4 Usage of a Decomposition Scheme

The method proposed here originates from author’s generalization [7] of the
computational construction proposed by Boltyanski [2] to simplify optimality
conditions for discrete-time processes.

Let v ∈ V (D), K0(v, D) = ∅. Let us determine for any k = 1, . . . , N
P (k) ⊆ IT (k, D) and NM (k) according to the conditions:

dim(IV 10(v, k, D) ∪ IV 2(k, D) ∪ PT (k)) ≤ n + 1, L(k) = IT (k, D) \ PT (k),

NL = dim(L(1)) + . . . + dim(L(N)),

NM (k) ≤ n + 1 − dim(IV 10(v, k, D) ∪ IV 2(k, D) ∪ PT (k)),

NMS(k) = NM (1) + . . . + NM (k) ≥ NLS(k) = dim(L(1)) + . . . + dim(L(N)),

NMS(N) = NLS(N), M(k) = {NMS(k − 1) + 1, . . . , NMS(k)}.

We can determine (n + 1) × (n + 1) matrices C(k) and a set of linearly inde-
pendent vectors gm(k) ∈ Rn+1, m ∈ M(k) by solving the following systems of
linear equations:

bT
Zi(k, D) + bT

V i(k, D)C(k) = 0, bT
V i(k, D)gl(k) = 0, l ∈ M(k),

i ∈ IV 10(v, k, D) ∪ IV 2(k, D) ∪ PT (k).
(4.1)

It is shown in [7] for a more general model than (3.7)–(3.10) that any feasible
direction δv may be defined stage-wise in such a way:

δv(k) = δ0v(k) + C(k)δz(k) +
∑

l∈M(k)

µlg
l(k), (4.2)

where the following conditions are valid for the every δ0v(k)

bT
V i(k, D)δ0v(k) ≤ 0, i ∈ IV 10(k, D), (4.3)

bT
V i(k, D)δ0v(k) = 0, i ∈ IV 2(k, D) ∪ PT (k)), (4.4)

and the given below conditions on variables µl, l ∈ M(k), are valid. Note that
for any δz ∈ Rn+1 and any µl, l ∈ M(k), δFi = Fi(v, D) − Fi(v + δv, D),
i ∈ IV 10(v, k, D) ∪ IV 2(k, D) ∪ PT (k), we have the formula

bT
Zi(k, D)δz(k) + bT

V i(k, D)δv(k) = bT
V i(k, D)δ0v(k). (4.5)

Using the following conjugate equations for the target functional and restric-
tions from L(k):

p0(N + 1)=(0, . . . , 0,−1), p0(k)=(E + C(k))p0(k + 1), k=N, . . . , 1; (4.6)

pi(k′ + 1) = 0, k′ = k + 2, . . . , N, pi(k + 1) = bT
Zi(k, D), (4.7)

pi(k′) = (E + C(k′))pi(k′ + 1), k′ = k, . . . , 1,
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and letting LS = L(1) . . .∪L(N) we get the following formulas for their varia-
tions:

δFi(v) =

N
∑

k=1

(pi(k + 1), δ0v(k)+
∑

l∈M(k)

µlg
l(k)), i ∈ {0} ∪ LS . (4.8)

The relationships to determine all values of µl, l ∈ M(k), k = 1, . . . , N , are
given as

δFi(v) = 0, i ∈ LS . (4.9)

With the formulas (4.8) they are reduced to a system of linear equations. Let
Gil = (pi(k + 1), gl(k)), l ∈ LS , l ∈ M(k), Q = G−1, then

µl = −
∑

i∈LS

Qil

N
∑

k=1

(pi(k + 1), δ0v(k)), l ∈ M(k), k = 1, ..., N. (4.10)

With the substitution of (4.10) to (4.8) we have the final expression for δF0(v)

δF0(v, D) =

N
∑

k=1

(q(k + 1), δ0v(k)), q(k + 1) = p0(k + 1)

+
∑

i∈LS

(

N
∑

k′=1

∑

l∈M(k′)

Qil

(

p0(k′ + 1), gl(k′)
)

)

pi(k + 1). (4.11)

The efficiency of the decomposition scheme depends mainly on its dimension,
i.e., NLS(N); in practice, as a rule, NLS(N) is much less than the dimension
of v.

With the use of formulas (4.3)–(4.4), (4.11) we formulate the criterion of
optimality.

Theorem 2. The control v ∈ V (D) for which K0(v, D) = ∅ is the solution

of problem (3.7)–(3.10) if and only if for any δ0v(k), k = 1, . . . , N satisfying

(4.3)–(4.4) the following condition is valid

(q(k + 1), δ0v(k)) ≥ 0. (4.12)

Proof. The necessary condition follows from the theorem proved in [7]. Thus
we consider the sufficiency case.

Let the conditions of Theorem 2 are valid but there is v∗ ∈ V (D), F0(v
∗) <

F0(v). Then δv∗ = v∗ − v is a feasible direction, δ0v
∗ corresponds to δv∗, thus

δ0v
∗(k) satisfies (4.3)–(4.4) and therefore (4.12) is valid for it. We get that

δF0(v) = aT
V 0(D)δv = F0(v

∗) − F0(v) < 0.

Then due to the statement of the theorem and formula (4.11) δF0(v) is a sum of
non-negative terms so δF0(v) ≥0. The obtained contradiction ends the proof.
⊓⊔
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If K0(v, D) 6= ∅, then the control v′ received from v by cancelling stages of zero
duration (and hence v(k) = 0) and joining IT (k) to IT (k − 1) corresponds to
another scenario D′. For v′ ∈ V ′(D′) the optimality criterion of Theorem 2
may be tested. It is possible, however, to test the optimality of v within the
original scenario and the other adjacent scenarios with the below optimality
conditions.

Different scenario representations exist for the process with v ∈ V (D) for
which K0(v, D) = ∅ and K1(D) = {k | dim(IT (k)) > 1} 6= ∅. We treat the
scenario D′ as adjacent to D if there exists a set of stages K ′ ⊆ K1(D) for
which every k ∈ K ′ (for D) corresponds in D′ to the succession of stages
that we numerate with compound indices (k, 1) or k, (k, 2), . . . , (k, n(k)), these
stages terminating with sets of finished jobs IT (k, 1), . . ., IT (k, n(k)), where
IT (k) = IT (k, 1) ∪ . . . ∪ IT (k, n(k)), the rest stages k /∈ K ′ having the same
IT (k). Obviously v′ ∈ V ′(D′), if v′(k) = v(k), k = 1, . . . , N , v′(k, i) = 0,
k ∈ K ′, i = 1, . . . , n(k), here we denote vTR(v, D, D′) by v′.

Let v ∈ V (D) be the solution of problem (3.7)–(3.10). To establish whether
the adjacent scenario D′ is not better than D, it is necessary to compare
F0(vTR(v, D, D′), D′) = F0(v, D) with F0(v

′, D′) for near controls v′ ∈ V (D′)
with at least one v′(k, i) 6= 0. To construct such a v′ we use the following vari-
ant of the formula (4.2). Let v′(k, i) satisfy (3.9) for all k ∈ K ′, i = 1, . . . , n(k).
To determine v′ ∈ V (D′) with given values of v′(k, i) we take into consideration
that:

1) restrictions (3.9) on values v′(k), k = 1, . . . , N , stay the same as for D
and for additional steps they must be satisfied;

2) the total amount of restrictions (3.10), or (3.6), stay the same as on D;
3) for an additional step formulas for (3.6) include additional terms and

may be expressed as

z′i(k)+v′i(k)+v′i(k, 2)+. . .+v′i(k, n(k))−xTi = 0, k ∈ K ′, i ∈ IT (k, r), (4.13)

here we take into account that v′i(k, j) = 0 for j > r. Let us define δv(k),
k ∈ K ′, as

δv(k) = C(k)
(

δz(k) +

n(k)
∑

r=1

v(k, r)
)

+
∑

l∈M(k)

µlg
l. (4.14)

According to the definition of C(k), gl(k) (see also formula (4.5)) we conclude
that for any δz(k), k ∈ K ′

bT
Zi(k, D)δz(k)+bT

V i(k, D)δv(k) = 0, i ∈ IV 10(v, k, D′)∪IV 2(k, D′)∪PT (k).

Due to (4.13)–(4.14) we have for δFi(v
′, D′), i ∈ LT (k), k = 1, . . . , N , and for

δz(k + 1), k ∈ K ′, the same expression as for the scenario D with

δ0v(k) = (E + C(k))

n(k)
∑

r=1

v(k, r). (4.15)

Let us determine µl, l ∈ M(k), k = 1, . . . , N , from (4.10) as for the scenario D
with δ0v(k) = 0 for k /∈ K ′, using the formula (4.15) for k ∈ K ′. Then we have
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from (4.11)

δF0(v
′) =

∑

k∈K′

(

q(k + 1), (E + C(k))

n(k)
∑

r=1

v(k, r)
)

. (4.16)

Theorem 3. Let the pair (D, v ∈ V (D)) be such that K1(D) 6= ∅ and let

K0(v, D) = ∅ be the solution of problem (3.7)–(3.10). The optimum values

of problem (3.7)–(3.10) for all adjacent scenarios satisfy F ∗(D′) ≥ F ∗(D) =
F0(v, D) if and only if for any k ∈ K1(D), IT1(k) ⊂ IT (k), IT1(k) 6= ∅ and

δv′ = (δy′

1, . . . , δy
′

n, 1) satisfying

umin i ≤ δy′

i ≤ umax i, i ∈ I1(d(k, 2)), δy′

i = 0, i /∈ I1(d(k, 2)); (4.17)
∑

i∈IRj

δy′

i ≤ uRj , j = 1, . . . , m, d(k, 2) = D+(d(k), IT1(k)), (4.18)

the following inequality is valid

δF0(v) = (q(k + 1), (E + C(k))δv′) ≥ 0. (4.19)

Proof. Necessity. Let k ∈ K1(D), IT1(k) ⊂ IT (k), and δv′ = (δy′

1, . . . , δy
′

n, 1)
satisfy (4.17)–(4.18). Let us define the scenario D′ differing from D in two as-
pects: 1) I ′T (k) = IT1(k); 2) after the k-th stage a stage (k, 2) with I ′T (k, 2) =
IT (k) \ IT1(k) is inserted. Let us determine a family of v′(α), α > 0 as
v′(α, k′) = v(k′)+αδv(k′), where δv(k′) is expressed by (4.2) with δ0v(k′) = 0,
k′ 6= k, v′(α, (k, 2)) = αδv′, v′(α, k) = v(k) + αδv′(k) and δv(k) is expressed
by (4.14). Due to the definition of C(k), gl(k), and formulas (4.17)–(4.18) we
have

Fi(v
′(α, k), D′) = Fi(v, D), i ∈ I10(v, D) ∪ I2(D), (4.20)

Fi(v
′(α, k), D′) = Fi(v, D) + α(∇Fi(v, D), δv′), i ∈ I1(D) \ I10(v, D), (4.21)

Fi(v
′(α, k), D′) = α(bT

V i(k, D)δv′) ≤ 0, i ∈ I1(D
′) \ I1(D) = IV 1((k, 2), D′),

(4.22)

Fi(v
′(α, k), D′) = 0, i ∈ I2(D

′) \ I2(D) = IV 2((k, 2), D′). (4.23)

From formulas (4.20)–(4.23), we come to the conclusion that for sufficiently
small α we get that v′(α, k) ∈ D′, so F0(v

′(α), D′) ≥ F0(v, D) and hence
δF0(v) = (F0(v

′(α), D′)−F0(v, D))/α ≥ 0. With the use of (4.16) we conclude
that (4.19) is valid.

Sufficiency. Let D1 ∈ SD(D), v(1) ∈ V (D1). Let us determine v(0) ∈ V (D1)
so v(0)(k) = v(k), k = 1, . . . , N , v(0)(k, r) = 0, r = 2, . . . , n(k), k ∈ K ′(D1).
From (3.1)–(3.6) we conclude that v(0) ∈ V (D1). Let

v(1,α) = αv(1) + (1 − α)v(0), α ∈ [0, 1/2].

The control v(2,α) ∈ V (D1), α ∈[0,1/2], is determined with v(2,α)(k) = v(0)(k)+
αδv(k), k = 1, . . . , N , v(2,α)(k, r) = αv(1)(k, r) = v(1,α)(k, r), r = 2, . . . , n(k),
k ∈ K ′(D). Here δv(k) is determined due to (4.2) with δ0v(k) = 0 for k /∈
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K ′(D1) and (4.14) for k ∈ K ′(D1), where µl, l ∈ M(k), k = 1, . . . , N , are
computed as if vectors δ0v(k) for k ∈ K ′(D1) would determined from (4.15).
Then

Fi(v
(1,α), D1) = αFi(v

(1), D1) + (1 − α)(Fi(v
(0), D1) ≤ 0, i ∈ I1(v

(0), D1),

Fi(v
(1,α), D1) = αFi(v

(0), D1) + (1 − α)(Fi(v
(1), D1) = 0, i ∈ I2(D1).

According to formulas (4.2), (4.14) we have

Fi(v
(2,α), D1) = Fi(v

(0), D1), i ∈ I1(D) ∪ I2(D),

Fi(v
(2,α), D1) = Fi(v

(1,α), D1), i ∈ (I1(D1) ∪ I2(D1)) \ (I1(D) ∪ I2(D)).

The rest constraints (3.9) for (k, r) are satisfied, since

bT
V i((k, r), D1)v

(2,α)(k, r) = αbT
V i((k, r), D1)v

(1)(k, r).

Let us consider vectors

δv(2) = (v(1,α) − v(2,α))/α, δv(1) = (δv(2)(1), . . . , δv(2)(N)).

Taking into account the fact that Fi(v
(2,α), D1) = 0, i ∈ I10(D), δv(2)(k, r) = 0,

r = 2, . . . , n(k), k ∈ K ′(D), as well as the form of restrictions (3.2)–(3.5), we
have

aT
V i(D)δv(1) = (Fi(v

(1,α), D1) − Fi(v
(2,α), D1))/α ≤ 0, i ∈ I10(D),

aT
V i(D)δv(1) = (Fi(v

(1,α), D1) − Fi(v
(2,α), D1))/α = 0, i ∈ I2(D1).

Therefore, δv(1) is a feasible direction for v and for small α we get that v +
αδv(1) ∈ V (D) and due to optimality of v on D F0(v + αδv(1), D) ≥ F0(v, D).
Thus we have that

F0(v
(1,α), D1) − F0(v

(2,α), D1) = αaT
V 0(D1)δv

(2)

= αaT
V 0(D)δv(1) = F0(v + αδv(1), D) − F0(v, D) ≥ 0.

Setting δv′ = v′(k, r)/v′n+1(k, r), IT1(k) = IT (k, 1)∪. . .∪IT (k, r−1), we satisfy
conditions (4.17)–(4.18), thus (4.19) is valid. Hence,

F0(v
(1,α), D1) − F0(v

(0), D1) ≥ F0(v
(2,α), D1) − F0(v

(0), D1)

=
∑

k∈K′

n(k)
∑

r=1

v′n+1(k, r) (q(k + 1), (E + C(k))v′(k, r)) ≥ 0.

and F0(v
(1), D1)− F0(v, D) = (F0(v

(1,α), D1)− F0(v
(0), D1)/α ≥ 0. Therefore,

F ∗(D1) ≥ F ∗(D) for all D1 ∈ SD(D). ⊓⊔
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5 Principal Construction of the Computational Method

As it was formulated above, the numerical method based on the above decom-
position constructions consists in the interchange of the solution of optimiza-
tion problems (3.7)–(3.10) within a given D and the search of better adjacent
scenarios by testing optimality conditions of Theorem 3. Most of the neces-
sary calculations are reduced to direct computation of conjugate trajectories
with (4.6)–(4.7), solution of algebraic linear equations (4.1) and (4.9), some
linear transformations and testing optimality conditions by solution of linear
programming problems, the latter being:

1. Minimization of qT (k + 1)δ0v(k) under constraints (4.3)–(4.4) and
|δ0vi(k)| ≤ 1, i = 1, . . . , n;

2. Minimization of qT (k + 1)(E + C(k))δv′ under constraints (4.17)–(4.18).

The dimension (n+1 and n variables, respectively) and the structure of both
problems are very similar, no singularity being displayed.

The author’s hypothesis is that in the set of D there are no local minima.
It means that if F (D) is less than F (D′) for all adjacent scenarios D′ this
value gives the global minimum. No contradictions with this hypothesis was
found, some evidence is found in particular cases, but its formal substantiation
is not obtained. If it is always true, it is not necessary to build a solution
tree, because in that case every minimizing succession of scenarios lead to the
globally optimum solution.
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