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1 Introduction

When studying heat-transfer and mass-transfer processes where their duration
and the coefficients of heat conduction/diffusion are small or large we must deal
with boundary value problems for singularly perturbed parabolic equations, i.e.,
equations with small parameters multiplying the highest-order derivatives in
space and/or the derivative in time. The smallness of these parameters induces
boundary, initial and initial-boundary layers in the solution of the problem. As
a consequence, for such problems the errors in the discrete solutions that are
obtained using classical difference schemes are commensurable with the solu-
tions of the boundary value problem itself (see, e.g., [16]) just as for parabolic
problems where the highest-order spatial derivatives are multiplied by a small
parameter [2, 3, 7, 9, 10, 15].

In this paper, a Dirichlet problem is considered for a singularly perturbed
parabolic reaction-diffusion equation. The second-order spatial derivative and
the temporal derivative in the differential equation are multiplied by parameters
ε2
1 and ε2

2, respectively. These parameters are components of the perturbation
vector-parameter ε = (ε1, ε2), and ε1, ε2 ∈ (0, 1]. As one or both of the param-
eters ε1 and ε2 tend to zero, initial, boundary and/or initial-boundary layers
arise in the solution of the Dirichlet problem.

For such problem, the standard difference schemes converge in the discrete
maximum norm to the true solution under the condition N−1 = o(ε1), N−1

0 =
o(ε2

2), where (N + 1) and (N0 + 1) are the numbers of mesh points in x and t

respectively; for each fixed value of the parameter ε, this scheme on uniform
meshes is convergent of order O(N−2 + N−1

0 ). Using the method of fitted
meshes, i.e., piecewise-uniform meshes condensing in a neighbourhood of the
initial and boundary layers, a difference scheme is constructed that converges
ε-uniformly at the rate O(N−2 ln2 N +N−1

0 lnN0); à definition of the ε-uniform
convergence see in Section 2. A description of the condensing mesh technique
can be found, e.g., in [1, 3, 9, 10, 15].

Grid approximations of boundary value problems for parabolic equations
that are two-dimensional in space, i.e., on a strip and on a rectangle, similar
to the boundary value problem of the present paper have been studied in [16].
Sufficiently coarse a priori estimates that were derived in [16] allowed to estab-
lish the ε-uniform convergence of the schemes constructed on piecewise-uniform
meshes but only with order O(N−1 ln N)2/3 +(N−1

0 lnN0)
1/2) on a rectangular

grid where N characterizes the number of nodes in x1 and x2 on studied spatial
domains, and (N0 + 1) is the number of nodes in time t.

2 Problem Formulation

2.1. On the domain G, where

G = D × (0, T ], G = G
⋃

S, D = (0, d), (2.1)

we consider the initial–boundary value problem for the singularly perturbed
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parabolic equation 1

L(2.2) u(x, t) = f(x, t), (x, t) ∈ G, (2.2a)

u(x, t) = ϕ(x, t), (x, t) ∈ S, (2.2b)

L(2.2) ≡ ε2
1 a(x, t)

∂2

∂x2
− ε2

2 p(x, t)
∂

∂t
− c(x, t).

The parameters ε1 and ε2 are components of a vector-parameter ε = (ε1, ε2)
and take arbitrary values in the open-closed interval (0, 1]. Assume that the
coefficients a(x, t), c(x, t), p(x, t) and the right-hand side f(x, t) are sufficiently
smooth on the set G and that

0 < a0 ≤ a(x, t) ≤ a0, 0 < c0 ≤ c(x, t) ≤ c0,

0 < p0 ≤ p(x, t) ≤ p0, (x, t) ∈ G.
(2.3)

Define SL = Γ × (0, T ], S0 = D × {t = 0}, S = SL
⋃

S0, and Γ = D \ D. The

boundary function ϕ(x, t) is assumed to be sufficiently smooth on the sets S
L

and S0 and to be continuous on S.
By a solution of the initial-boundary value problem, we mean a function

u ∈ C(G)
⋂

C2,1(G) that satisfies the differential equation G and the boundary
condition on S.

Problems similar to (2.2), (2.1) arise in modelling heat transfer in a liquid
flowing through a narrow channel [12], including the entrance. The parameters
ε2
1 and ε2

2 characterize the heat-conduction coefficient and the flow velocity
along the channel, and the coefficient c(x, t) describes heat emission from the
channel wall to the liquid flow. In modelling heat transfer in fluidized-bed
reactors, the parameters ε2

1 and ε2
2 characterize the diffusion of particles and

their convective velocity along the reactor, and the coefficient c(x, t) describes,
e.g., water evaporation heat and/or heat released by the reaction [5].

2.2. Let us discuss the behaviour of the solution u of the initial-boundary
value problem. When one or both of the parameters ε1 and ε2 tend to zero, the
solution of the boundary value problem exhibits layers which are initial, bound-
ary and initial-boundary (see Remark 1 in Section 3). The initial-boundary lay-
ers are parabolic while the initial and boundary layers are regular or parabolic
depending on the relation between the parameters ε1 and ε2.

The errors of discrete solutions to classical difference schemes that approx-
imate the problem (2.2), (2.1) depend on the parameters εi and may be com-
mensurable with the exact solutions of the boundary value problems for small
values of the parameters ε1 and ε2; see the estimates (4.3), (4.6) in Section 4.
When the error in the discrete solution is independent of the parameters εi and
tends to zero as the number of mesh points grows, we say that the solution (or
the difference scheme) converges ε-uniformly. We are interested in numerical
methods with this valuable property.

Our aim for the boundary value problem (2.2), (2.1) is to construct a differ-
ence scheme that converges ε-uniformly with convergence rates that are close
to the first order in time and close to the second order in space.

1 Throughout the paper, the notation L(j.k) (M(j.k), Gh(j.k)) means that these operators
(constants, grids) are introduced in formula (j.k).

Math. Model. Anal., 13(4):483–492, 2008.
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3 A priori Estimates

Let us give estimates for the solution u and its derivatives. They are derived
using techniques from the papers [15, 6, 8, 4].

Using comparison theorems, we find that

|u(x, t)| ≤ M
[
max

G
|f(x, t)| + max

S
|ϕ(x, t)|

]
, (x, t) ∈ G. (3.1)

Assume that the problem data satisfy the condition

a, c, p, f ∈ Cl+α,(l+α)/2(G), (3.2a)

ϕ ∈ Cl+2+α(S0)
⋂

Cl+2+α,(l+2+α)/2(S
L
)

⋂
C(S), l ≥ 0, α > 0,

and that on the set Sc = S
L ⋂

S0, the data satisfy compatibility conditions
(see, e.g., in [8]), that ensure

u ∈ Cl+2+α,(l+2+α)/2(G) (3.2b)

for each fixed value of the parameters εi. Additional conditions will be given
later.

3.1. We find bounds for the solution of the problem (2.2), (2.1), using a
classical technique [4, 8]. Set ξ = ξ(x) = ε−1

1 x and τ = τ(t) = ε−2
2 t. In these

new variables the original problem is transformed into the boundary value
problem

L̃ ũ(ξ, τ) = f̃(ξ, τ), (ξ, τ) ∈ G̃, (3.3a)

ũ(ξ, τ) = ϕ̃(ξ, τ), (ξ, τ) ∈ S̃. (3.3b)

Here ṽ(ξ, τ) = v
(
x(ξ), t(τ)

)
, where v(x, t) is any one of the functions u(x, t),

. . . , ϕ(x, t), and

G̃0 = {(ξ, τ) : ξ = ξ(x), τ = τ(t), (x, t) ∈ G0},

where G0 is either of the sets G, S.
In the domain G̃ with the boundary condition (3.3b) on S̃, the differential

equation (3.3a) is regular with respect to the parameters εi. Hence the Schauder
estimates give ∣∣∣∣

∂k+k0

∂ξk∂τk0

ũ(ξ, τ)

∣∣∣∣ ≤ M, (ξ, τ) ∈ G̃.

Returning to the variables x and t, we obtain the bound
∣∣∣∣

∂k+k0

∂xk∂tk0

u(x, t)

∣∣∣∣ ≤ M ε1
−k ε2

−2k0 , (x, t) ∈ G, k + 2k0 ≤ K, (3.4)

where K = l + 2, l = l(3.2). We have now shown the following result:

Theorem 1. The solution of the boundary value problem (2.2), (2.1) satisfies
the estimate (3.1). If the hypothesis (3.2) is satisfied, then the estimate (3.4) is
valid.
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3.2. Let us refine the estimate (3.4). Here we need estimates of regular and
singular parts of the solution. A type of components to the singular part of
the solution and parts of the domain boundary in whose neighbourhood these
components arise depend on the relations between the scalar parameters ε1 and
ε2. When deriving the estimates for the boundary layer and the initial layer
functions, we use solutions of auxiliary problems defined on extensions of the set
G. Such approach allows us to construct estimates for each singular component
separately and also to avoid “artificial” compatibility conditions that ensure the
smoothness of the solution components required for justification convergence
the constructed schemes. We assume that

a, c, p, f ∈ Cl+4,(l+4)/2(G), (3.5a)

ϕ ∈ Cl+2+α(S0)
⋂

Cl+2+α,(l+2+α)/2(S
L
)

⋂
C(S), l ≥ 0, α > 0,

and that on the set Sc compatibility conditions are fulfilled that guarantee

u ∈ Cl+2+α,(l+2+α)/2(G). (3.5b)

The problem solution will now be decomposed in the following way:

u(x, t) = U(x, t) + W (x, t) + V (x, t) + Q(x, t), (x, t) ∈ G, (3.6)

where U(x, t) is the regular part of the solution while W (x, t), V (x, t) and
Q(x, t) are components of the singular part of the solution, i.e., the initial,
boundary and initial–boundary layers.

Extend the data of problem (2.2) beyond the boundary S to a larger domain

G
e0

: the function ϕe(x, t) is smooth on G
e0

with ϕe(x, t) = ϕ(x, t), (x, t) ∈ S,
and the functions fe(x, t) (which extends f) and ϕe(x, t) are assumed to be
equal to zero outside a sufficiently small neighbourhood of the set G. Define

the function Ue(x, t), (x, t) ∈ G
e0

, to be the solution of the problem

Le
(2.2) Ue(x, t) = fe(x, t), (x, t) ∈ Ge0, Ue(x, t) = ϕe(x, t), (x, t) ∈ Se0. (3.7)

Now take U(x, t) to be the restriction of Ue(x, t) to G.
Next, choose the domains Ge1 and Ge2 as extensions of G beyond the sets

SL and S0 respectively, where G
e1

, G
e2

⊂ G
e0

. The sets S0 and SL are
parts of the boundaries of the extended domains Ge1 and Ge2 respectively. Let
W e(x, t) be the solution of the problem

Le
(2.2) W e(x, t) = 0, (x, t) ∈ Ge1,

W e(x, t) = ϕe(x, t) − Ue(x, t), (x, t) ∈ Se1.
(3.8)

Then choose W (x, t) to be the restriction to G of the function W e(x, t). The

function V (x, t) is the restriction to G of the function V e(x, t), (x, t) ∈ G
e2

,
where V e(x, t) is the solution of the problem

Le
(2.2) V e(x, t) = 0, (x, t) ∈ Ge2,

V e(x, t) = ϕe(x, t) − Ue(x, t), (x, t) ∈ Se2.
(3.9)

Math. Model. Anal., 13(4):483–492, 2008.
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The function Q(x, t) is the solution of the problem

L(2.2)Q(x, t) = 0, (x, t) ∈ G,

Q(x, t) = ϕ(x, t) − [Ue(x, t) + W e(x, t) + V e(x, t)], (x, t) ∈ S.

This completes the construction of the decomposition (3.6).
A further decomposition is needed: write the solution of (3.7) as

Ue(x, t) = Ue
0 (x, t) + ε 2

1 Ue
1 (x, t) + ve

U (x, t), (x, t) ∈ G
e0

.

Here Ue
0 (x, t) and Ue

1 (x, t) are solutions of the problems

Le
(3.10) Ue

0 (x, t) = fe(x, t), (x, t) ∈ G
e0

\ Se0
0 ,

Ue
0 (x, t) = ϕe(x, t), (x, t) ∈ Se0

0 ,

Le
(3.10) Ue

1 (x, t) = −ae(x, t) ∂2

∂x2 Ue
0 (x, t), (x, t) ∈ G

e0
\ Se0

0 ,

Ue
1 (x, t) = 0, (x, t) ∈ Se0

0 ,

(3.10)

and Le
(3.10) is an extension of the operator L ≡ −ε 2

2 p(x, t)
∂

∂t
− c(x, t).

The problems (3.7) and (3.10) can be differentiated with respect to t. Es-

timating the functions Ue
0 , Ue

1 and ve
U in turn on G

e0
, one obtains the bound

∣∣∣∣
∂k+k0

∂xk∂tk0

U(x, t)

∣∣∣∣ ≤ M [1 + ε 4−k
1 ], (x, t) ∈ G, k + 2k0 ≤ K, (3.11a)

where K = l + 2, l = l(3.5).
Decompose the solutions of (3.8) and (3.9) as the sums

W e(x, t) = W e
0 (x, t) + ve

W (x, t), (x, t) ∈ G
e1

,

V e(x, t) = V e
0 (x, t) + ve

V (x, t), (x, t) ∈ G
e2

,
(3.12)

where the functions W e
0 (x, t), (x, t) ∈ G

e1
and V e

0 (x, t), (x, t) ∈ G
e2

are solu-
tions of the problems

Le
(3.10) W e

0 (x, t) = 0, (x, t) ∈ G
e1

\ Se1L,

W e
0 (x, t) = ϕe(x, t) − Ue(x, t), (x, t) ∈ Se1L

0 ;

Le
(3.13) V e

0 (x, t) = 0, (x, t) ∈ G
e2

\ Se2
0 ,

V e
0 (x, t) = ϕe(x, t) − Ue(x, t), (x, t) ∈ Se2

0 ,

(3.13)

and Le
(3.13) is an extension of the operator L ≡ ε 2

1 a(x, t)
∂2

∂x2
− c(x, t). Esti-

mating the components in (3.12), we find the bounds
∣∣∣∣

∂k+k0

∂xk∂tk0

W (x, t)

∣∣∣∣ ≤ M ε−2k0

2 [1 + ε 4−2k0

2 ] exp
(
− m2 ε−2

2 t)
)
,

∣∣∣∣
∂k+k0

∂xk∂tk0

V (x, t)

∣∣∣∣ ≤ M ε−k1

1 [1 + ε 4−2k0

2 ] exp
(
− m1 ε−1

1 r(x, Γ )
)
,

(x, t) ∈ G, k + 2k0 ≤ K.

(3.11b)
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For the component Q(x, t) we obtain the bound

∣∣∣∣
∂k+k0

∂xk∂tk0

Q(x, t)

∣∣∣∣ ≤ M ε−k1

1 ε−2k0

2 [1 + ε 4−2k0

2 ]

×min
[
exp

(
− m1 ε−1

1 r(x, Γ )
)
, exp(−m2 ε−2

2 t)
]
,

(x, t) ∈ G, k + 2k0 ≤ K.

(3.11c)

In the bounds (3.11b) and (3.11c) we have K = l + 2 where l = l(3.5) while m1

and m2 are arbitrary numbers satisfying the condition mi = mi(3.11) < m0
i(3.11),

i = 1, 2, where

m0
1(3.11) =

(
1 + M(3.11)

)
−1

c
1/2
0 (a0)−1/2,

m0
2(3.11) =

(
1 + M(3.11)

)
−2

c0 (p0)−1,
(3.11d)

and M(3.11) is an arbitrary number satisfying the condition M(3.11) ≥ ε1 + ε2,
where ε1, ε2 ∈ (0, 1].

Theorem 2. Assume that conditions (3.5) are fulfilled for the data of bounda-
ry value problem (2.2), (2.1) and its solution. Then functions U(x, t), W (x, t),
V (x, t) and Q(x, t) of (3.6) satisfy the bounds (3.11).

Remark 1. An examination of the main terms in the asymptotic representations
of the singular components of the problem solution reveals that boundary lay-
ers appear when ε1 = o(1) while initial layers appear when ε2 = o(1). If both
conditions ε1 = o(1) and ε2 = o(1) are fulfilled, then the solution also contains
initial-boundary layers, where the initial-boundary layers are parabolic in na-
ture, while the initial and boundary layers are regular. Under the condition
that ε1 = o(1) and ε2 ≈ 1, only the parabolic boundary layer appears while
under the condition ε1 ≈ 1 and ε2 = o(1), we have only the parabolic initial
layer.

4 Grid Approximations of the Initial–Boundary Value
Problem (2.2), (2.1)

4.1. We now construct a finite difference scheme that uses a classical approx-
imation of the boundary value problem (2.2), (2.1) on rectangular grids. On
the set G we introduce the grid

Gh = Dh × ω0 = ω × ω0, (4.1)

where ω and ω0 are, in general, nonuniform meshes on the segments [0, d] and
[0, T ] respectively. For xi, xi+1 ∈ ω and tj , tj+1 ∈ ω0, set hi = xi+1 − xi,
h = maxi hi, h

j
t = tj+1 − tj and ht = maxj h

j
t . Let (N + 1) and (N0 + 1) be

the number of nodes in the meshes ω and ω0. Assume that h ≤ MN−1 and
ht ≤ MN−1

0 . For the problem (2.2), (2.1) we consider the difference scheme

Λ(4.2) z(x, t) = f(x, t), (x, t) ∈ Gh, z(x, t) = ϕ(x, t), (x, t) ∈ Sh. (4.2)

Math. Model. Anal., 13(4):483–492, 2008.
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Here Gh = G
⋂

Gh, Sh = S
⋂

Gh,

Λ(4.2) ≡ ε2
1 a(x, t) δxbx − ε2

2 p(x, t) δt − c(x, t), (x, t) ∈ Gh,

δxbx z(x, t) and δt z(x, t) are the second-order and the first-order (backward)
difference derivatives:

δxbx z(x, t) = 2(hi + hi−1)−1[δx z(x, t) − δx z(x, t)],

δx z(x, t) =
(
hi

)
−1 [

z(xi+1, t) − z(x, t)
]
,

δx z(x, t) =
(
hi−1

)
−1 [

z(x, t) − z(xi−1, t)
]
, x = xi.

The difference operator Λ(4.2) is ε-uniformly monotone [11].
By using comparison theorems, one can verify that the solution of the prob-

lem (4.2), (4.1) is ε-uniformly bounded:

| z(x, t) | ≤ M, (x, t) ∈ Gh.

Taking into account the estimates of Theorem 1 for K = 4, one can show
that

|u(x, t) − z(x, t)| ≤ M
[ N−1

ε1 + N−1
+

N−1
0

ε2
2 + N−1

0

]
, (x, t) ∈ Gh. (4.3)

Thus the scheme (4.2), (4.1) converges under the condition

N−1 = o(ε1), N−1
0 = o(ε2

2) as N, N0 → ∞. (4.4)

If the mesh
Gh (4.5)

is equidistant, then one can prove the sharper estimate

|u(x, t) − z(x, t)| ≤ M
[ N−2

(ε1 + N−1)2
+

N−1
0

ε2
2 + N−1

0

]
, (x, t) ∈ Gh. (4.6)

It follows that the finite difference scheme (4.2), (4.1) converges under the
condition (4.4).

Theorem 3. Let the data of the boundary value problem (2.2), (2.1) satisfy
the conditions (2.3) and assume for the problem solution that the estimates
of Theorem 1 are fulfilled for K = 4. Then under the condition (4.4), the
solutions of the finite difference scheme (4.2) on the meshes (4.1) and (4.5)
converge to the solution of the boundary value problem with the bounds (4.3)
and (4.6) respectively.

4.2. We now construct a grid that condenses in the boundary and initial
layer regions and on which the solution of the finite difference scheme converges
ε-uniformly. Set

Gh = D
s

h × ωs
0 = ωs × ωs

0, (4.7a)
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where ωs = ωs(σ1) and ωs
0 = ωs

0(σ2) are piecewise-equidistant meshes on [0, d]
and [0, T ] respectively; here σ1 and σ2 are parameters depending on N , N0

and ε. The mesh sizes in ωs (see, e.g., [15, 14, 13]) are h(1) = 4σ1N
−1 on

the intervals [0, σ1] and [d − σ1, d], and h(2) = 2(d − 2σ1)N
−1 on [σ1, d − σ1].

The mesh sizes in ωs
0 are h

(1)
0 = 2σ2N

−1
0 on the interval [0, σ2] and h

(2)
0 =

2(T − σ2)N
−1
0 on [σ2, T ]. The values σ1 and σ2 are specified by

σ1 = σ1(4.7)(ε, N1) = min
{

4−1 d, M1 ε1 lnN1

}
,

σ2 = σ2(4.7)(ε, N0) = min
{

2−1 T, M2 ε2
2 lnN0

}
,

(4.7b)

where M1, M2 are arbitrary constants. Thus the grid Gh(4.7) is defined by

the parameters N , N0, ε and by the constants M1 and M2, i.e., Gh(4.7) =

Gh(4.7)(N, N0, ε; M1, M2) = Gh(4.7)(M1, M2).

From the estimates of Theorem 2 (for K = 4) one can deduce ε-uniform
convergence of the solution of the finite difference scheme (4.2), (4.7) to the
solution of the boundary value problem (2.2), (2.1). The convergence rate of
the solution of the finite difference scheme is estimated using a technique from
[13, 14, 15]. When

M1 > 6 (m0
1(3.11))

−1 and M2 > 9 (m0
2(3.11))

−1, (4.8)

we obtain the ε-uniform convergence estimate

|u(x, t) − z(x, t)| ≤ M [N−2 ln2 N + N−1
0 lnN0], (x, t) ∈ Gh, (4.9a)

for the solution of the finite difference scheme. Also, one has the ε-dependent
estimate

|u(x, t) − z(x, t)| ≤ M
[ N−2

(ε1 + ln−1 N)2
+

N−1
0

ε2
2 + ln−1 N0

]
, (x, t) ∈ Gh. (4.9b)

So for any fixed value of the parameter ε, these schemes converge at the rate
O

(
N−2 + N−1

0

)
. Thus, we have

Theorem 4. For the components of the solution of the boundary value problem
(2.2), (2.1) in the representation (3.6), assume that the estimates of Theorem
2 hold for K = 4. Then the solution of the finite difference scheme (4.2), (4.7)
is ε-uniformly convergent to the solution of (2.2), (2.1). If in addition the
condition (4.8) is satisfied then the estimates (4.9) are valid.

Remark 2. In the case when for an approximation of the boundary value prob-
lem (2.2), (2.1) the scheme (4.2) is used on a mesh that condenses only in x

or only in t, the scheme converges only under the condition N−1
0 = o(ε2

2) or
N−1 = o(ε1) respectively. The scheme (4.2) on such meshes is not ε-uniformly
convergent.
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