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Abstract. The present paper analyses the unsteady 2-dimensional flow of a viscous
MHD fluid between two parallel infinite plates. The two infinite plates are considered
to be approaching each other symmetrically, causing the squeezing flow. A similarity
transformation is used to reduce the partial differential equations modeling the flow, to
a single fourth-order non-linear differential equation containing the Reynolds number
and the magnetic field strength as parameters. The velocity functions are obtained
for a range of values of both parameters by using the homotopy perturbation method.
The total resistance to the upper plate is presented.
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1 Introduction

The interaction of conducting fluids with electromagnetic fields is the well
known area of Magento-Hydro Dynamics (MHD). The flow of a fluid that is
under the influence of an electromagnetic field, i.e., an MHD fluid between
moving parallel plates leads to squeezing flow. Such a flow problem lends itself
to applications in bearings with liquid-metal lubrications, for instance. The
use of a MHD fluid as lubricant is of interest, because it prevents the unex-
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pected variation of lubricant viscosity with temperature under certain extreme
operating conditions. The MHD lubrication in an externally pressurized thrust
bearing has been investigated both theoretically and experimentally by Maki
et al. [16]. Other authors that have investigated the effects of a magnetic field
in lubrication include [12] and [15] for instance. These authors had neglected
the inertial terms in the Navier-Stokes equations. Hamza [4] considered the
squeezing flow between two discs in the presence of a magnetic field. The prob-
lem of squeezing flow between rotating discs has been studied by [5] and later
by [1].

In the present analysis we consider the 2-dimensional flow of an MHD fluid
between parallel plates that are moving symmetrically about the line of axial
symmetry, giving rise to the the squeezing flow. The approximate analytical
solution to the equation is presented for an interesting useful class of squeez-
ing flow in the presence of a magnetic field using the homotopy perturbation
method. There are many different methods to solve nonlinear equations such
as the artificial parameter method. Recently, He ([6, 7, 8, 9]) proposed a new
perturbation method which is, in fact, a coupling of the traditional perturba-
tion method [13, 14, 17] and homotopy as used in topology. This gives rise to
the homotopy perturbation method (HPM). In several papers He applied this
method to discuss non-linear boundary value problems ([6, 7, 8, 9]) as well as
non-linear problems on bifurcation.

Due to the success of the homotopy perturbation method different re-
searchers applied it to solve nonlinear differential equation in different field
of applied mathematics. In fluid mechanics Siddiqui et al. [18, 19, 20, 21]
used this method for solving non-linear problems involving Newtonian and
non-Newtonian fluids. For a comprehensive account of the use of the HPM
successfully to solve problems in fluid mechanics, please see [10, 11].

The objective of the paper is to apply the homotopy perturbation method to
study the squeezing flow of an incompressible MHD fluid between two parallel
plates. The unsteady Navier–Stokes equations, after employing a similarity
transformation, reduce to a 4th order nonlinear ordinary differential equation
involving the parameter R. In a previous study, for instance [1] solved a similar
problem between rotating discs using a numerical method. Here, in this study,
we decompose the nonlinear differential equation into linear and non linear
parts, each involving the parameter R. The homotopy perturbation method
does not pose any restrictions on the parameter R, i.e., it does not have to be
small. We note that the authors have applied the method to solve a similar
flow problem, where the fluid is not characterised as an MHD fluid.

The plan of the paper consists of Section 2, which develops the equations as
well as boundary conditions governing the squeezing flow. Section 3 applies the
homotopy perturbation method to obtain the solution of the problem. Section
4 deals with the total resistance to the upper plate. The results obtained are
discussed graphically in Section 5. The special case of no magnetic field is
shown, where the homotopy perturbation solution matches the results of [3],
i.e., squeezing flow between parallel plates in the absence of a magnetic field.
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2 Problem Formulation

We consider the rectilinear unsteady hydromagnetic squeezing flow of an in-
compressible two dimensional viscous fluid between two infinite parallel plates.
The distance between the plates at any time t is 2a(t). The central axis of the
channel is taken as the x-axis and the y-axis is normal to it. A uniform mag-
netic field B = (0, B0, 0) is acting along the y-axis and the induced magnetic
field is assumed to be negligible. The magnetic field is of constant strength H0

and it is applied in a direction perpendicular to the flow of the fluid. In fact
B0 = H0µ0, where µ0 is the magnetic permeability. It is also assumed that the
plates move symmetrically with respect to the central axis of the channel (see,
Fig. 1).
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Figure 1. Rectilinear flow.

The unsteady mass and momentum conservation equations describing the
flow are

∂u

∂x
+

∂v

∂y
= 0, (2.1)

ρ

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= − ∂p

∂x
+ ν

(

∂2u

∂x2
+

∂2u

∂y2

)

− σB2

0u, (2.2)

ρ

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

= −∂p

∂y
+ ν

(

∂2v

∂x2
+

∂2v

∂y2

)

, (2.3)

where u and v are the velocity components along the x and y directions respec-
tively, ν denotes the kinematic viscosity and ρ the density of the fluid, σ is the
electrical conductivity of the fluid. We define the vorticity function ω and the
generalized pressure h, respectively as

ω =
∂v

∂x
− ∂u

∂y
, (2.4)

h =
ρ

2
(u2 + v2) + p. (2.5)

On substituting (2.4) and (2.5) in (2.1), (2.2) and (2.3), the mass and momen-
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tum equations become

∂u

∂x
+

∂v

∂y
= 0, (2.6)

∂h

∂x
+ ρ

(

∂u

∂t
− vω

)

= −ν
∂ω

∂y
− σB2

0u, (2.7)

∂h

∂y
+ ρ

(

∂v

∂t
+ uω

)

= ν
∂ω

∂x
. (2.8)

Eliminating the generalized pressure h using (2.7) and (2.8), we have a single
momentum equation,

ρ

(

∂ω

∂t
+
(

u
∂

∂x
+ v

∂

∂y

)

ω

)

= ν∇2ω − σB2

0

∂u

∂y
. (2.9)

The boundary conditions on u(x, y, t) and v(x, y, t) are

at y = a, u(x, y, t) = 0, v(x, y, t) = vw(t), (2.10)

at y = 0, v(x, y, t) = 0,
∂u(x, y, t)

∂y
= 0. (2.11)

Here vw(t) =
da

dt
is the velocity of the plates. The first two conditions are due

to the no-slip condition at the upper plate and the remaining two follow from
the symmetry of the flow at y = 0.

If the dimensionless variable η = y/a(t) is introduced, where 2a(t) is the
distance between the plates at any time, (2.6) and (2.9) become

∂u

∂x
+

∂v

a(t)∂η
= 0, (2.12)

ρ

(

∂ω

∂t
+
(

u
∂

∂x
+ v

∂

a(t)∂η

)

ω

)

= ν∇2ω − σB2

0

∂u

a(t)∂η
. (2.13)

The boundary conditions on u(x, η, t) and v(x, η, t) are

at η = 1, u(x, η, t) = 0, v(x, η, t) = vw(t), (2.14)

at η = 0, v(x, η, t) = 0,
∂u(x, η, t)

∂η
= 0. (2.15)

Let us define velocity components as ([2, 22])

u =
C − x

a(t)
vw(t)f ′(η), v = vw(t)f(η), ω = −C − x

a(t)2
vw(t)f ′′(η), (2.16)

where C is constant related to the inlet condition of the channel. By sub-
stituting (2.16) in (2.12) and (2.13), we find that the continuity equation is
identically satisfied and (2.13) becomes

avw

ν
(ff ′′′ − f ′f ′′ − ηf ′′′ − 2f ′′) +

a2

νvw

dvw

dt
f ′′ = f iv − f ′′M2,
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where M2 = σB2

0
/ν and the primes denote differentiation with respect to η.

The boundary conditions are determined from (2.14),(2.15) and (2.16) to be

f(1) = 1, f ′(1) = 0, (2.17)

f(0) = 0, f ′′(0) = 0. (2.18)

Thus for a similarity solution we define

avw

ν
= R,

a2

νvw

dvw

dt
= RQ, (2.19)

where R and Q are both functions of t, but for a similarity solution R and Q
are taken to be constants. After integrating the first equation of (2.19), we
have

a(t) = (2νRt + a2

0)
1

2 , (2.20)

where 2a0 is the distance between the two plates at time t = 0. When R > 0,
the plates move apart symmetrically with respect to η = 0 (or y = 0). In
contrast,when R < 0, the plates approach each other and squeezing flow exists
with similar velocity profiles as long as a(t) > 0. From (2.13) and (2.14), it
follows that Q = −1, which means that (2.10) becomes

R (ff ′′′ − f ′f ′′ − ηf ′′′ − 3f ′′) = f iv − M2f ′′, (2.21)

subject to boundary condition (2.17) and (2.18).

3 Basic Idea of the Homotopy Perturbation Method

The homotopy perturbation method is a combination of the classical pertur-
bation technique and the homotopy technique. To explain the basic idea of
homotopy perturbation method, we consider the following non-linear differen-
tial equation

A(f) − f(η) = 0, η ∈ Ω, (3.1)

subject to the boundary condition

C′

(

f,
∂f

∂η

)

= 0, η ∈ ∂Ω,

where A is a general non-linear operator, C′ is a boundary operator, f(η) is

known as an analytic function, ∂Ω is the boundary of the domain and
∂f

∂η
is

the directional derivative along the normal drawn outward from Ω.
The non-linear operator A, can be divided further into two parts: a linear

part L and a non-linear part N . So that equation (3.1) can be written as

L(f) + N(f) − f(η) = 0.

By the homotopy technique, we construct a homotopy

f (η, q) : Ω × [0, 1] → R,

Math. Model. Anal., 13(4):565–576, 2008.



570 A. M. Siddiqui, S. Irum and A. R. Ansari

which satisfies the equation

H [ f, q ] = (1 − q) [ L(f) − L(f0) ] + q [ A(f) − f(η) ] = 0,

which is equivalent to

H [ f, q ] = L(f) − L(f0) + qL(f0) + q [ N(f) − f(η) ] = 0, (3.2)

where q ∈ [0, 1] is an embedding parameter, f0 is the initial approximation of
equation (3.2), which satisfies the boundary conditions. Therefore, we have

H(f, 0) = L[ f ] − L[ f0 ] = 0, H(f, 1) = A[ f ] − f(η) = 0.

Thus, the continuously changing q from zero to one is just that of changing
f(η, q) from f0(η) to f(η). In topology, this kind of process is called a defor-
mation, and L(f) − L(f0), A(f) − f(η) are called homotopic.

In this method, we use the embedding parameter q as a small parameter
and assume that the solution of (3.2) can be expanded as powers of q in terms
of a series of the form,

f(η, q) = F0 + qF1 + q2F2 + · · · , (3.3)

and letting q → 1, we note that (3.3) yields

lim
q→1

f(η, q) = F0 + F1 + F2 + · · · , or lim
q→1

f(η, q) = f (η).

The question of convergence of series in equation (3.3) has been discussed by
He in [6].

4 Solution of the Problem Using the Homotopy Pertur-

bation Method

As mentioned in the earlier section the HPM approach requires that we start
by defining a homotopy w (η, q) : Ω × [0, 1] → R for (2.21) which satisfies the
equation

L(w) − L(f0) + qL(f0) − Rq

[

w
d3w

dη3
− dw

dη

d2w

dη2
− η

d3w

dη3

]

= 0, (4.1)

where L =
d4

dη4
+ (3R − M2)

d2

dη2
is the linear operator, q ∈ [0, 1] is the

embedding parameter, f0 is the initial guess approximation. We introduce
θ = 3R − M2 to make the following solutions more compact. Let us take the
initial guess approximation of (2.21) subject to boundary condition (2.17) and
(2.18) as

f0(η) =

(

η
√

θ cos
√

θ − sin
√

θη√
θ cos

√
θ − sin

√
θ

)

,
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and the corresponding boundary conditions are given by

w(1) = 1,
dw

dη
(1) = 0, (4.2)

w(0) = 0,
d2w

dη2
(0) = 0. (4.3)

We assume that the solution of (2.21) can be expressed as a power series in
q, i.e.,

w(η, q) = w0 + qw1 + q2w2 + · · · , (4.4)

where the wi are independent of q. Substituting (4.4) into (4.1), (4.2) and (4.3)
and equating powers of q gives rise to a set of problems that we will specify
and solve in the following sections.

4.1 The zeroth-order problem

The differential equation of the zeroth-order problem is

L[ w0 ] − L[ f0 ] = 0

under the boundary conditions

w0(1) = 1, w′

0(1) = 0,

w0(0) = 0, w′′

0
(0) = 0.

Since L is a linear operator, therefore the solution of the zeroth-order problem
is

w0(η) =

(

η
√

θ cos
√

θ − sin
√

θη√
θ cos

√
θ − sin

√
θ

)

= f0(η).

It can be shown that as M → 0, θ → 3R, the non-magnetic zeroth order
solution for w0 is recovered. Furthermore, when we expand the trigonometric
functions and let R → 0, we recover the zeroth order solution of [3], i.e.,

w0(η) =
3η

2
− η3

2
= f0(η).

4.2 The first-order problem

The differential equation for the first-order problem is

L[ w1 ] + L[ f0 ] − R [w0w
′′′

0 − w′

0w
′′

0 − ηw′′′

0 ] = 0

under the boundary conditions

w1(1) = 1, w′

1(1) = 0,

w1(0) = 0, w′′

1
(0) = 0.
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The solution of the first-order boundary value problem is given by

w1(η) = −ǫ

(

η
√

θ cos
√

θ − sin
√

θη√
θ cos

√
θ − sin

√
θ

)

+
α

4

(

2 sin
√

θη

(θ)3/2
− η cos

√
θη

θ
− η2 sin

√
θη

θ

4η cos
√

θη

(θ)3/2
+

6 sin
√

θη

θ2

)

+ β

(

sin
√

θη

θ2
− η cos

√
θη

2(θ)3/2

)

− γη,

where α, β, γ and ǫ are all constants defined as

α =
R(θ)

3

2 sin
√

θ

(
√

θ cos
√

θ − sin
√

θ)2
, β =

R(θ)
3

2 cos
√

θ

(
√

θ cos
√

θ − sin
√

θ)2
,

γ =
α

4

(

sin
√

θ√
θ

+
cos

√
θ

θ
− cos

√
θ√

θ
+

2 sin
√

θ

θ
+

2 cos
√

θ

(θ)3/2

)

+
β

2

(

sin
√

θ

θ
− cos

√
θ

(θ)3/2

)

,

ǫ =
α

4

(

2 sin
√

θ

(θ)3/2
− cos

√
θ

θ
− sin

√
θ

θ
− 4 cos

√
θ

(θ)3/2
+

6 sin
√

θ

θ2

)

+ β

(

sin
√

θ

θ2
−

cos
√

θ

2(θ)3/2

)

− γ.

It can be shown that as the magnetic field strength is reduced such that B → 0,
the non-magnetic first-order solution for w1 is recovered. Since as B → 0 we
have that M → 0, we note that this can happen also if σ → 0, i.e., the electrical
conductivity of the fluid is very low or zero. But in both cases of either B → 0
or σ → 0 the fluid will loose its MHD character, reverting to a viscous fluid.

Furthermore, when we expand the trigonometric functions and let R → 0,
we recover the first order solution of [3], i.e.,

w1(η) =
η5

10
− η7

280
− 53η3

280
+

13η

140
.

Finally, the homotopy perturbation solution of the problem up to the first
order is

f(η) = lim
q→1

f(η, q) = w0(η) + w1(η) + · · · ,
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or equivalently

f(η) = (1 − ǫ)

(

η
√

θ cos
√

θ − sin
√

θη√
θ cos

√
θ − sin

√
θ

)

+
α

4

(

2 sin
√

θη

(θ)3/2
− η cos

√
θη

θ
− η2 sin

√
θη

θ
− 4η cos

√
θη

(θ)3/2
+

6 sin
√

θη

θ2

)

+ β

(

sin
√

θη

(θ)2
− η cos

√
θη

2(θ)3/2

)

− γη.

Now we compare our first order solution with [3]. On setting M = 0 we
find that the non-magnetic solution at this order becomes

f(η) = (1 − ǫ)

(

η
√

3R cos
√

3R − sin
√

3Rη√
3R cos

√
3R − sin

√
3R

)

+
α

4

(

2 sin
√

3Rη

(3R)3/2
−η cos

√
3Rη

3R
−η2 sin

√
3Rη

3R
−4η cos

√
3Rη

(3R)3/2
+

6 sin
√

3Rη

(3R)2

)

+ β

(

sin
√

3Rη

(3R)2
− η cos

√
3Rη

2(3R)3/2

)

− γη,

and the constants α, β, γ and ǫ reduce to

α =
R(3R)

3

2 sin
√

3R

(
√

3R cos
√

3R − sin
√

3R)2
, β =

R(3R)
3

2 cos
√

3R

(
√

3R cos
√

3R − sin
√

3R)2
,

γ =
α

4

(

sin
√

3R√
3R

+
cos

√
3R

3R
− cos

√
3R√

3R
+

2 sin
√

3R

3R
+

2 cos
√

3R

(3R)3/2

)

+
β

2

(

sin
√

3R

3R
−

cos
√

3R

(3R)3/2

)

,

ǫ =
α

4

(

2 sin
√

3R

(3R)3/2
− cos

√
3R

3R
− sin

√
3R

3R
− 4 cos

√
3R

(3R)3/2
+

6 sin
√

3R

(3R)2

)

+ β

(

sin
√

3R

(3R)2
− cos

√
3R

2(3R)3/2

)

− γ.

5 Results and Discussion

A similarity solution of the full Navier-Stokes equations for the unsteady flow
between two parallel plates approaching or receding from each other under the
influence of an electromagnetic field has been presented. It is shown that a
similarity solution exists only when the distance between the plates varies as
(2νRt+a2

o)
1

2 , and squeezing flow takes place for R > 0. Employing He’s homo-
topy perturbation method, we have obtained approximate analytical solutions
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for the fluid velocity for the flow of an unsteady 2-dimensional viscous MHD
fluid between two parallel plates. Figure 2 shows that at a given time and for
a fixed positive value of R the normal velocity increases monotonically from
η = 0 to η = 1, for various values of the magnetic parameter M . Figure 3
shows that at a given time and for a fixed positive value of R, the longitudi-
nal velocity decreases from η = 0 to η = 1 for various values of the magnetic
parameter M . In addition, in Figure 4 we see that for a fixed positive value of
the magnetic parameter M , the normal velocity increases monotonically from
η = 0 to η = 1, for different values of R. Finally, in Figure 5 we see that
for a fixed positive value of magnetic parameter M , the longitudinal velocity
decreases monotonically from η = 0 to η = 1 for different values of R.

Figure 2. The normal velocity profiles

for different values of magnetic parameter

M, when R = 1.5 is fixed.

Figure 3. The longitudinal velocity pro-

files for different values of magnetic param-

eter M, when R = 1.5 is fixed.

Figure 4. Shows the normal velocity pro-

files for different values of R, when M = 1

is fixed.

Figure 5. Shows the longitudinal velocity

profiles for different values of R, when M =

1 is fixed.

In essence we have attained the solution of the problem and considered the
special case in the absence of the magnetic field. In this case we found the
solution to match the results of [3]. In addition, this paper demonstrates the
effectiveness of the homotopy perturbation method, used for solving the full
Navier-Stokes equations, describing the squeezing flow between two parallel
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plates. In contrast to the traditional perturbation technique, its initial approx-
imation contains the whole linear portion involving the parameter R from the
resulting non-linear differential equation. A significant advantage of the HPM
is the freedom of selection of parameter R, it is not restricted to being small.
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[14] A. Krylovas and R. Ĉiegis. Asymptotical analysis of one dimensional gas dy-
namics equations. Math. Model. and Anal., 6(1):117–128, 2001.

[15] D. C. Kuzma, E. R. Maki and R. J. Donnelly. The magnetohydrodynamic squeeze
film. Journal of Tribology, 110:375–377, 1988.

[16] E. R. Maki, D. C. Kuzma, R. L. Donnelly and B. Kim. Magnetohydrodynamic
lubrication flow between parallel plates. Journal of Fluid Mechanics, 26:537–543,
1966.

[17] A. H. Nayfeh. Introduction to Perturbation Techniques. John Wiley & Sons,
New York; Chichester, 1981.

[18] A. M. Siddiqui, M. Ahmed and Q. K. Ghori. Couette and Poiseuille flow for non-
Newtonian fluids. International Journal of Nonlinear Sciences and Numerical

Simulation, 7(1):15–26, 2006.

Math. Model. Anal., 13(4):565–576, 2008.



576 A. M. Siddiqui, S. Irum and A. R. Ansari

[19] A. M. Siddiqui, R. Mahmood and Q. K. Ghori. Thin film flow of a third grade
down an inclined plane by He’s homotopy Perturbation method. Chaos, Solitons

and Fractals. (available online)

[20] A. M. Siddiqui, R. Mahmood and Q. K. Ghori. Thin film flow of a fourth grade
fluid down a vertical cylinder by He’s homotopy Perturbation method. Physics

Letters A, 352:404–410, 2006.

[21] A. M. Siddiqui, R. Mahmood and Q. K. Ghori. Thin film flow of a third grade
on a moving belt by He’s homotopy Perturbation method. International Journal

of Nonlinear Sciences and Numerical Simulation, 7(1):7–14, 2006.

[22] P. Singh, V. Radhakrishnan and K. A. Narayan. Squeezing flow between parallel
plates. Ingenieu-Archiv, 60:274–281, 1990.


	Introduction
	Problem Formulation
	Basic Idea of the Homotopy Perturbation Method
	Solution of the Problem Using the Homotopy Perturbation Method
	The zeroth-order problem
	The first-order problem

	Results and Discussion
	References

