DIFFERENCE SEQUENCE SPACE $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ OF FUZZY REAL NUMBERS*

B.C. TRIPATHY and S. BORGOHAIN
Mathematical Sciences Division, Institute of Advanced Study in Science and Technology
Paschim Boragaon; Garchuk; Guwahati-781035; India
E-mail: \{tripathybc, stutiborgohain\}@yahoo.com;

Received June 15, 2007; revised December 19, 2007; published online December 1, 2008

Abstract

The difference sequence space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ of fuzzy real numbers for both $1 \leq p<\infty$ and $0<p<1$, is introduced. Some properties of this sequence space like solidness, symmetricity, convergence-free are studied. Some inclusion relations involving this sequence space are obtained.

Key words: Orlicz function; symmetric space; solid space; convergence-free; metric space; completeness.

1 Introduction

The concept of fuzzy set theory was introduced by Zadeh [18]. Later on sequences of fuzzy numbers have been discussed by Tripathy and Nanda [17], Nuray and Savas [7], Kwon [5], Esi [1], Tripathy and Dutta [12], Et, Altin and Altinok [2] and many others.

Kizmaz [4] studied the notion of difference sequence spaces at the initial stage. He investigated the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ of crisp sets. The notion is defined as follows, $Z(\Delta)=\left\{x=\left(x_{k}\right):\left(\Delta x_{k}\right) \in Z\right\}$, for $Z=\ell_{\infty}, c$ and c_{0}, where $\Delta x=\left(\Delta x_{k}\right)=\left(x_{k}-x_{k+1}\right)$, for all $k \in N$.

The above spaces are Banach spaces, normed by, $\|x\|_{\Delta}=\left|x_{1}\right|+\sup _{k}\left|\Delta_{k}\right|$.
The idea of Kizmaz [4] was applied to introduce different type of difference sequence spaces and studied their different properties by Tripathy [11], Tripathy and Esi [13] and many others.

Tripathy and Esi [12] introduced the new type of difference sequence spaces, for fixed $m \in N, Z\left(\Delta_{m}\right)=\left\{x=\left(x_{k}\right):\left(\Delta_{m} x_{k}\right) \in Z\right\}$, for $Z=\ell_{\infty}, c$ and c_{0} where $\Delta_{m} x=\left(\Delta_{m} x_{k}\right)=\left(x_{k}-x_{k+m}\right)$, for all $k \in N$. This generalizes the notion of difference sequence spaces studied by Kizmaz [4].

[^0]The above spaces are Banach spaces, normed by,

$$
\|x\|_{\Delta}=\sum_{r=1}^{m}\left|x_{r}\right|+\sup _{k}\left|\Delta_{m} x_{k}\right| .
$$

Triapthy, Esi and Triapthy [14] further generalized this notion and introduced the following notion. For $m, n \geq 1, Z\left(\Delta_{m}^{n}\right)=\left\{x=\left(x_{k}\right):\left(\Delta_{m}^{n} x_{k}\right) \in Z\right\}$ for $Z=\ell_{\infty}, c$ and c_{0}. This generalized difference has the following binomial representation,

$$
\begin{equation*}
\Delta_{m}^{n} x_{k}=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r} x_{k+r m} . \tag{1.1}
\end{equation*}
$$

An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$, which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$. If the convexity of the Orlicz function is replaced by sub-additivity, then this function is called a modulus function.

Remark 1. An Orlicz function satisfies the inequality $M(\lambda x) \leq \lambda M(x)$ for all λ with $0<\lambda<1$.

Sargent [9] introduced the crisp set sequence space $m(\phi)$ and studied some properties of this space. Later on it was studied from the sequence space point of view and some matrix classes were characterized with one member as $m(\phi)$ by Rath and Tripathy [8], Tripathy [10], Tripathy and Sen [16] and others. In this article we introduce the space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ of sequences of fuzzy real numbers defined by Orlicz function.

Throughout the article $w^{F}, \ell^{F}, \ell_{\infty}^{F}$ represent the classes of all, absolutely summable and bounded sequences of fuzzy real numbers, respectively.

2 Definitions and Background

A fuzzy real number X is a fuzzy set on R, i.e. a mapping $X: R \rightarrow I(=[0,1])$ associating each real number t with its grade of membership $X(t)$.

A fuzzy real number X is called convex if

$$
X(t) \geq X(s) \wedge X(r)=\min (X(s), X(r))
$$

where $s<t<r$. If there exists $t_{0} \in R$ such that $X\left(t_{0}\right)=1$, then the fuzzy real number X is called normal.

A fuzzy real number X is said to be upper semi continuous if for each $\varepsilon>0$ and for all $a \in I$ the mapping $X^{-1}([0, a+\varepsilon))$ is open in the usual topology of R. The class of all upper semi continuous, normal, convex fuzzy real numbers is denoted by $R(I)$.

For $X \in R(I)$, the α-level set X^{α} for $0<\alpha \leq 1$ is defined by $X^{\alpha}=\{t \in$ $R: X(t) \geq \alpha\}$. The 0 -level, i.e. the set X^{0}, is the closure of strong 0 -cut, thus we have that $\{t \in R: X(t)>0\}$ is compact.

The absolute value of $X \in R(I)$, i.e. $|X|$, is defined as (see, Kaleva and Seikkala [3])

$$
|X|(t)= \begin{cases}\max \{X(t), X(-t)\}, & \text { for } t \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

For $r \in R, \bar{r} \in R(I)$ is defined as,

$$
\bar{r}(t)= \begin{cases}1, & \text { for } t=r \\ 0, & \text { otherwise }\end{cases}
$$

The additive identity and multiplicative identity of $R(I)$ are denoted by $\overline{0}$ and $\overline{1}$ respectively. The zero sequence of fuzzy real numbers is denoted by $\bar{\theta}$.

Let D be the set of all closed bounded intervals $X=\left[X^{L}, X^{R}\right]$. Define $d: D \times D \rightarrow R$ by $d(X, Y)=\max \left\{\left|X^{L}-Y^{L}\right|,\left|X^{R}-Y^{R}\right|\right\}$. Then (D, d) is a complete metric space.

Define $\bar{d}: R(I) \times R(I) \rightarrow R$ by $\bar{d}(X, Y)=\sup _{0<\alpha \leq 1} d\left(X^{\alpha}, Y^{\alpha}\right)$, for $X, Y \in R(I)$. Then it is well known that $(R(I), \bar{d})$ is a complete metric space.

A sequence $X=\left(X_{k}\right)$ of fuzzy real numbers is said to be convergent to the fuzzy number X_{0}, if for every $\varepsilon>0$, there exists $k_{0} \in N$ such that $\bar{d}\left(X_{k}, X_{0}\right)<$ ε, for all $k \geq k_{0}$. A sequence space E is said to be solid if $\left(Y_{n}\right) \in E$, whenever $\left(X_{n}\right) \in E$ and $\left|Y_{n}\right| \leq\left|X_{n}\right|$, for all $n \in N$.

Let $X=\left(X_{n}\right)$ be a sequence, then $S(X)$ denotes the set of all permutations of the elements of $\left(X_{n}\right)$ i.e. $S(X)=\left\{\left(X_{\pi(n)}\right): \pi\right.$ is a permutation of $\left.N\right\}$. A sequence space E is said to be symmetric if $S(X) \subset E$ for all $X \in E$.

A sequence space E is said to be convergence-free if $\left(Y_{n}\right) \in E$ whenever $\left(X_{n}\right) \in E$ and $X_{n}=\overline{0}$ implies $Y_{n}=\overline{0}$.

A sequence space E is said to be monotone if E contains the canonical pre-images of all its step spaces.
Lemma 1. A sequence space E is monotone whenever it is solid.
Let \wp_{s} be the class of all subsets of N those do not contain more than s number of elements. Throughout $\left\{\phi_{s}\right\}$ is a non-decreasing sequence of positive real numbers such that $n \phi_{n+1} \leq(n+1) \phi_{n}$ for all $n \in N$.

The space $m(\phi)$ introduced by Sargent [9] is defined as,

$$
m(\phi)=\left\{\left(x_{k}\right) \in w:\|x\|_{m(\phi)}=\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|x_{k}\right|<\infty\right\} .
$$

Lindenstrauss and Tzafriri [6] used the notion of Orlicz function and introduced the sequence space:

$$
\ell_{M}=\left\{\left(x_{k}\right) \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \quad \text { for some } \rho>0\right\}
$$

The space ℓ_{M} becomes a Banach space with the norm defined by

$$
\left\|\left(x_{k}\right)\right\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

which is called an Orlicz sequence space. The space ℓ_{M} is closely related to the space ℓ_{p}, which is an Orlicz sequence space with $M(x)=x^{p}$, for $1 \leq p<\infty$.

In the later stage different classes of Orlicz sequence spaces were introduced and studied by Esi [1], Tripathy and Mahanta [15] and many others.

In this article we introduce the following difference sequence space:

$$
\begin{array}{r}
m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}=\left\{X=\left(X_{k}\right): \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right)^{p}<\infty,\right. \\
\text { for some } \rho>0\}, \text { for } 0<p<\infty
\end{array}
$$

3 Main Results

In this section we prove some results involving all these sequence spaces.
Theorem 1. (a) The sequence space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is a complete metric space with the metric
$\eta(X, Y)=\sum_{r=1}^{m n} \bar{d}\left(X_{r}, Y_{r}\right)+\inf \left\{\rho>0: \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \Delta_{m}^{n} Y_{k}\right)}{\rho}\right)\right)^{p} \leq 1\right\}$,
for $X, Y \in m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}, m \geq 1, n \geq 1$ and $0<p<1$.
(b) The sequence space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is a complete metric space with the metric

$$
\begin{aligned}
\eta(X, Y)=\sum_{r=1}^{m n} \bar{d}\left(X_{r}, Y_{r}\right)+\inf \{ & \rho>0: \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \\
& \left.\times\left(\sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \Delta_{m}^{n} Y_{k}\right)}{\rho}\right)\right)^{p}\right)^{\frac{1}{p}} \leq 1\right\},
\end{aligned}
$$

for $X, Y \in m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}, m \geq 1, n \geq 1$ and $1 \leq p<\infty$.
Proof. (a). Clearly, $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is a metric space with the metric η, defined above. We have to prove that it is a complete metric space. Let $\left(X^{(i)}\right)$ be a Cauchy sequence in $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ such that $X^{(i)}=\left(X_{n}^{(i)}\right)_{n=1}^{\infty}$. Let $\varepsilon>0$ be given. For a fixed $x_{0}>0$, choose $r>0$ such that $M\left(\frac{r x_{0}}{2}\right) \geq 1$. Then there exists a positive integer $n_{0}=n_{0}(\varepsilon)$ such that $\eta\left(X^{(i)}, X^{(j)}\right)<\varepsilon /\left(r x_{0}\right)$, for all $i, j \geq n_{0}$. By the definition of η, we get:

$$
\begin{align*}
& \sum_{r=1}^{m n} \bar{d}\left(X_{r}^{(i)}, X_{r}^{(j)}\right)+\inf \left\{\rho>0: \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\right. \\
& \left.\quad \times \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}^{(j)}\right)}{\rho}\right)\right)^{p} \leq 1\right\}<\varepsilon, \quad \text { for all } i, j \geq n_{0} \tag{3.1}
\end{align*}
$$

which implies that, $\sum_{r=1}^{m n} \bar{d}\left(X_{r}^{(i)}, X_{r}^{(j)}\right)<\varepsilon$, for all $i, j \geq n_{0}$ and finally we get

$$
\bar{d}\left(X_{r}^{(i)}, X_{r}^{(j)}\right)<\varepsilon, \quad \text { for all } i, j \geq n_{0}, r=1,2,3, \ldots, m n .
$$

Hence $\left(X_{r}^{(i)}\right)$ is a Cauchy sequence in $R(I)$, so it is convergent in $R(I)$, by the completeness property of $R(I)$, for $r=1,2,3, \ldots m n$. Let,

$$
\begin{align*}
& \lim _{i \rightarrow \infty} X_{r}^{(i)}=X_{r}, \quad \text { for } r=1,2,3, \ldots m n \tag{3.2}\\
& \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}^{(j)}\right)}{\rho}\right)\right)^{p} \leq 1, \quad \text { for all } i, j \geq n_{0} \tag{3.3}
\end{align*}
$$

For $s=1$ and σ varying over \wp_{s}, we get,

$$
\begin{array}{ll}
\sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}^{(j)}\right)}{\eta\left(X^{(i)}, X^{(j)}\right)}\right)\right)^{p} \leq \phi_{1}, & \text { for all } i, j \geq n_{0} \\
\left.\Rightarrow M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}^{(j)}\right)}{\eta\left(X^{(i)}, X^{(j)}\right)}\right)\right)^{p} \leq \phi_{1}^{\frac{1}{p}} \leq M\left(\frac{r x_{0}}{2}\right), & \text { for all } i, j \geq n_{0}
\end{array}
$$

Using the continuity of M, we get,

$$
\begin{array}{ll}
\bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}^{(j)}\right) \leq \frac{r x_{0}}{2} \eta\left(X^{(i)}, X^{(j)}\right), & \text { for all } i, j \geq n_{0} \\
\Rightarrow \bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}^{(j)}\right)<\frac{r x_{0}}{2} \frac{\varepsilon}{r x_{0}}=\frac{\varepsilon}{2}, & \text { for all } i, j \geq n_{0}
\end{array}
$$

which implies that ($\Delta_{m}^{n} X_{k}^{(i)}$) is a Cauchy sequence in $R(I)$ and so it is convergent in $R(I)$ by the completeness property of $R(I)$.

Let, $\lim _{i} \Delta_{m}^{n} X_{k}^{(i)}=Y_{k} \in R(I)$, for each $k \in N$. We have to prove that

$$
\lim _{i} X^{(i)}=X \quad \text { and } \quad X \in m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}
$$

For $k=1$, we get from (1.1) and (3.2) that

$$
\lim _{i} X_{m n+1}^{(i)}=X_{m n+1}, \quad \text { for } m \geq 1, n \geq 1
$$

Hence we get that $\lim _{i} X_{k}^{(i)}=X_{k}$, for each $k \in N$. Also, $\lim _{i} \Delta_{m}^{n} X_{k}^{(i)}=\Delta_{m}^{n} X_{k}$, for each $k \in N$. Using the continuity of M, we get, from (3.3),

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}\right.}{\rho}\right)\right)^{p} \leq 1
$$

for some $\rho>0$ and $i \geq n_{0}$. Now on taking the infimum of such ρ 's and using (3.1), we get

$$
\inf \left\{\rho>0: \sup _{s \geq 1, \sigma \not \wp_{⿰ ㇒ 乛}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}\right)}{\rho}\right)\right)^{p} \leq 1\right\}<\varepsilon
$$

for all $i \geq n_{0}$. Hence we get,

$$
\begin{aligned}
& \sum_{r=1}^{m n} \bar{d}\left(X_{r}^{(i)}, X_{r}\right)+\inf \left\{\rho>0: \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\right. \\
&\left.\times \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}^{(i)}, \Delta_{m}^{n} X_{k}\right)}{\rho}\right)\right)^{p} \leq 1\right\}<\varepsilon+\varepsilon=2 \varepsilon
\end{aligned}
$$

for all $i \geq n_{0}$, which implies that,

$$
\eta\left(X^{(i)}, X\right)<2 \varepsilon, \quad \forall i \geq n_{0}, \quad \Rightarrow \quad \lim _{i} X^{(i)}=X
$$

Now, we shall prove that $X \in m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$. We know that,

$$
\eta(X, \bar{\theta}) \leq \eta\left(X^{(n)}, X\right)+\eta\left(X^{(n)}, \bar{\theta}\right)<\varepsilon+M, \text { for all } n \geq n_{0}(\varepsilon)
$$

i.e. $\eta(X, \bar{\theta})$ is finite, which implies that, $X \in m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$. Hence the space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is a complete metric space. This completes the proof of (a) part of the theorem. The (b) part can be proved by following similar techniques.

Theorem 2. The sequence space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is not solid in general, for $0<p<\infty$.

Proof. The result follows from the following example.
Example 1. Let $m=3, n=2, p=2$. Let $X_{k}=\bar{k}$, for all $k \in N$ and $\phi_{s}=s$ for all $s \in N$. Let $M(x)=|x|$, for all $x \in[0, \infty)$. Then, we have, $\bar{d}\left(\Delta_{3}^{2} X_{k}, \overline{0}\right)=0$, for all $k \in N$. Hence, we have,

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{s} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{3}^{2} X_{k}, \overline{0}\right)}{\rho}\right)\right)^{2}<\infty, \text { for some } \rho>0
$$

which implies that, $\left(X_{k}\right) \in m\left(M, s, \Delta_{3}^{2}, 2\right)^{F}$. Consider the sequence $\left(\alpha_{k}\right)$ of scalars defined by,

$$
\alpha_{k}=\left\{\begin{array}{ll}
1, & \text { for } k \text { is even, } \\
0, & \text { otherwise }
\end{array} \quad \Rightarrow \alpha_{k} X_{k}= \begin{cases}\bar{k}, & \text { for } k \text { is even }, \\
\overline{0}, & \text { otherwise }\end{cases}\right.
$$

which implies that,

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{s} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{3}^{2} \alpha_{k} X_{k}, \overline{0}\right)}{\rho}\right)\right)^{2}=\infty, \text { for any fixed } \rho>0
$$

which shows that, $\left(\alpha_{k} X_{k}\right) \notin m\left(M, s, \Delta_{3}^{2}, 2\right)^{F}$. Hence $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is not solid in general, for $0<p<\infty$.

Theorem 3. The sequence space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is not symmetric in general, for $0<p<\infty$.

Proof. Let $m=1, n=1, p=\frac{1}{\underline{2}}$ and $M(x)=x^{2}$, for all $x \in[0, \infty)$. Let $\phi_{s}=s$, for all $s \in N$. Let $X_{k}=\bar{k}$, for all $k \in N$. Then, $\bar{d}\left(\Delta X_{k}, \overline{0}\right)=1$, for all $k \in N$. Hence $\left(X_{k}\right) \in m\left(M, s, \Delta, \frac{1}{2}\right)^{F}$. Let $\left(Y_{k}\right)$ be a rearrangement of $\left(X_{k}\right)$ such that,

$$
\left(Y_{k}\right)=\left(X_{1}, X_{2}, X_{4}, X_{3}, X_{9}, X_{5}, X_{16}, X_{6}, X_{25} \ldots\right)
$$

Then $\bar{d}\left(\Delta Y_{k}, \overline{0}\right) \approx k-(k-1)^{2} \approx k^{2}$, for all $k \in N$, which shows that,

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{s} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta Y_{k}, \overline{0}\right)}{\rho}\right)\right)^{\frac{1}{2}}=\infty
$$

for some $\rho>0$. Hence, $\left(Y_{k}\right) \notin m\left(M, s, \Delta, \frac{1}{2}\right)^{F}$. Thus, $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is not symmetric in general, for $0<p<\infty$.

Proposition 1. The sequence space $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is not convergence-free in general.

Proof. Let $m=4, n=1, p=\frac{1}{2}$. Let $M(x)=x^{4}$, for all $x \in[0, \infty)$. Let $\phi_{s}=s$, for all $s \in N$. Consider the sequence $\left(X_{k}\right)$ defined as follows:

$$
X_{k}(t)= \begin{cases}1+k t & \text { for } t \in[-1 / k, 0] \\ 1-k t & \text { for } t \in[0,1 / k] \\ 0 & \text { otherwise }\end{cases}
$$

Then,

$$
\Delta_{4} X_{k}(t)= \begin{cases}1+\frac{k(k+4)}{2 k+4} t & \text { for } \quad t \in\left[-\frac{2 k+4}{k(k+4)}, 0\right] \\ 1-\frac{k(k+4)}{2 k+4} t & \text { for } t \in\left[0, \frac{2 k+4}{k(k+4)}\right] \\ 0 & \text { otherwise. }\end{cases}
$$

Thus we have that, $\bar{d}\left(\Delta_{4} X_{k}, \overline{0}\right)=\frac{2 k+4}{k(k+4)}=\frac{2}{(k+1)}+\frac{4}{k(k+4)}$. Then it follows that

$$
\sup _{s \geq 1, \sigma \in \wp_{⿱} s} \frac{1}{s} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{4} X_{k}, \overline{0}\right)}{\rho}\right)\right)^{\frac{1}{2}}<\infty, \quad \forall \rho>0
$$

Thus, $\left(X_{k}\right) \in m\left(M, s, \Delta_{4}, \frac{1}{2}\right)^{F}$. Now, let us take another sequence $\left(Y_{k}\right)$ such that,

$$
Y_{k}(t)=\left\{\begin{array}{lll}
1+t / k^{2} & \text { for } & t \in\left[-k^{2}, 0\right] \\
1-t / k^{2} & \text { for } & t \in\left[0, k^{2}\right]
\end{array}\right.
$$

So that,

$$
\Delta_{4} Y_{k}(t)= \begin{cases}1+\frac{t}{2 k^{2}+8 k+16} & \text { for } t \in\left[-\left(2 k^{2}+8 k+16\right), 0\right] \\ 1-\frac{t}{2 k^{2}+8 k+16} & \text { for } t \in\left[0,\left(2 k^{2}+8 k+16\right)\right] \\ 0 & \text { otherwise }\end{cases}
$$

But, $\bar{d}\left(\Delta_{4} Y_{k}, \overline{0}\right)=\left(2 k^{2}+8 k+16\right)$, for all $k \in N$, which implies that,

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{s} \sum_{k \in \sigma}\left(M\left(\frac{\bar{d}\left(\Delta_{4} Y_{k}, \overline{0}\right)}{\rho}\right)\right)^{1 / 2}=\infty
$$

for some $\rho>0$. Thus, $\left(Y_{k}\right) \notin m\left(M, s, \Delta_{4}, \frac{1}{2}\right)^{F}$. Hence $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$ is not convergence-free, in general.

Proposition 2. $m\left(M, \phi, \Delta_{m}^{n}\right)^{F} \subseteq m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$, for all $1 \leq p<\infty$.
Proof. Let $X \in m\left(M, \phi, \Delta_{m}^{n}\right)^{F}$, then we have,

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)=K<\infty
$$

for any fixed $\rho>0$. Hence, for each fixed s and $\sigma \in \wp_{s}$, we have, for $\rho>0$:

$$
\begin{aligned}
& \sum_{k \in \sigma} M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right) \leq K \phi_{s} \Rightarrow\left[\sum_{k \in \sigma}\left\{M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right\}^{p}\right]^{\frac{1}{p}} \leq K \phi_{s}, \\
& \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\left[\sum_{k \in \sigma}\left\{M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right\}^{p}\right]^{\frac{1}{p}} \leq K<\infty,
\end{aligned}
$$

which implies that, $X \in m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$, for $1 \leq p<\infty$. This completes the proof.

Proposition 3. $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F} \subseteq m\left(M, \psi, \Delta_{m}^{n}, p\right)^{F}$, if and only if

$$
\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)<\infty, \quad \text { for } 0<p<\infty
$$

Proof. First, suppose that $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)=K<\infty$, then we have, $\phi_{s} \leq K \psi_{s}$. Now, if $\left(X_{k}\right) \in m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$, then

$$
\begin{aligned}
& \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left\{M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right\}^{p}<\infty \\
& \Rightarrow \sup \\
& \quad s \geq 1, \sigma \in \wp_{s} \frac{1}{K \psi_{s}} \sum_{k \in \sigma}\left\{M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right\}^{p}<\infty,
\end{aligned}
$$

i.e. $\left(X_{k}\right) \in m\left(M, \psi, \Delta_{m}^{n}, p\right)^{F}$. Hence, $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F} \subseteq m\left(M, \psi, \Delta_{m}^{n}, p\right)^{F}$.

Conversely, suppose that $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F} \subseteq m\left(M, \psi, \Delta_{m}^{n}, p\right)^{F}$. We should prove that $\sup _{s \geq 1}\left(\frac{\phi_{s}}{\psi_{s}}\right)=\sup _{s \geq 1}\left(\eta_{s}\right)<\infty$. Suppose that $\sup _{s \geq 1}\left(\eta_{s}\right)=\infty$. Then there exists a subsequence $\left(\eta_{s_{i}}\right)$ of $\left(\eta_{s}\right)$ such that, $\lim _{i \rightarrow \infty}\left(\eta_{s_{i}}\right)=\infty$. Then for $\left(X_{k}\right) \in$ $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$, we have,

$$
\begin{aligned}
& \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\psi_{s}} \sum_{k \in \sigma}\left\{M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right\}^{p} \\
& \geq \sup _{s \geq 1, \sigma \in \wp_{s}}\left(\frac{\eta_{s_{i}}}{\phi_{s_{i}}}\right) \sum_{k \in \sigma}\left\{M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right\}^{p}=\infty
\end{aligned}
$$

i.e.

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\psi_{s}} \sum_{k \in \sigma}\left\{M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right\}^{p}=\infty
$$

which implies that $\left(X_{k}\right) \notin m\left(M, \psi, \Delta_{m}^{n}, p\right)^{F}$, a contradiction. This completes the proof.

Corollary 1. $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}=m\left(M, \psi, \Delta_{m}^{n}, p\right)^{F}$, if and only if

$$
\sup _{s \geq 1}\left(\eta_{s}\right)<\infty \quad \text { and } \sup _{s \geq 1}\left(\eta_{s}^{-1}\right)<\infty
$$

where $\eta_{s}=\phi_{s} / \psi_{s}$, for $0<p<\infty$.
Theorem 4. $\ell_{p}\left(M, \Delta_{m}^{n}\right)^{F} \subseteq m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F} \subseteq \ell_{\infty}\left(M, \Delta_{m}^{n}\right)^{F}$, for $1 \leq p<$ ∞.

Proof. By taking $M(x)=x^{p}$, for $1 \leq p<\infty$ and $\phi_{n}=1$, for all $n \in N$, we get that $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}=\ell_{p}\left(M, \Delta_{m}^{n}\right)^{F}$. So, the first inclusion is proved. Next, suppose that, $\left(X_{k}\right) \in m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}$. This implies that,

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}}\left[\sum_{k \in \sigma}\left\{M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)\right\}^{p}\right]^{\frac{1}{p}}=K<\infty
$$

For $s=1, M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right) \leq K \phi_{1}, k \in \sigma$, which implies that

$$
\sup _{k \geq 1} M\left(\frac{\bar{d}\left(\Delta_{m}^{n} X_{k}, \overline{0}\right)}{\rho}\right)<\infty
$$

Thus we have that $X_{k} \in \ell_{\infty}\left(M, \Delta_{m}^{n}\right)^{F}$. This completes the proof.
Putting $\psi_{n}=1$, for all $n \in N$, in Corollary 1, we get
Proposition 4. $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}=\ell_{p}\left(M, \Delta_{m}^{n}\right)^{F} \quad$ if and only if

$$
\sup _{s \geq 1}\left(\phi_{s}\right)<\infty, \quad \sup _{s \geq 1}\left(\phi_{s}^{-1}\right)<\infty
$$

Corollary 2. $m\left(M, \phi, \Delta_{m}^{n}, p\right)^{F}=\ell_{p}\left(M, \Delta_{m}^{n}\right)^{F}$ if $\lim _{s \rightarrow \infty}\left(\frac{\phi_{s}}{s}\right)>0$, for $0<p<\infty$.

Acknowledgement

The authors thank the referee for the careful reading of the paper and the comments.

References

[1] A. Esi. On some new paranormed sequence spaces of fuzzy numbers defined by Orlicz functions and statistical convergence. Math. Model. Anal., 11:379-388, 2006.
[2] M. Et, Y. Altin and H. Altinok. On almost statistical convergence of generalized difference sequences of fuzzy numbers. Math. Model. Anal., 10(4):345-352, 2005.
[3] O. Kaleva and S. Seikkala. On fuzzy metric spaces. Fuzzy Sets Syst., 12:215-229, 1984.
[4] H. Kizmaz. On certain sequence spaces. Canad. Math. Bull., 24(2):169-176, 1981.
[5] J.S. Kwon. On statistical and p-Cesàro convergence of fuzzy numbers. Korean J. Compute. EJ Appl. Math, 7(1):195-203, 2000.
[6] J. Lindenstrauss and L. Tzafriri. On Orlicz sequence spaces. Israel J. Math., 10:379-390, 1971.
[7] F. Nuray and E. Savas. Statistical convergence of sequences of fuzzy real numbers. Math. Slovaca, 45(3):269-273, 1995.
[8] D. Rath and B.C. Tripathy. Characterization of certain matrix operators. J. Orissa. Math. Soc., 8:121-134, 1989.
[9] W.L.C. Sargent. Some sequence spaces related to ℓ^{p} spaces. J. London Math. Soc., 35:161-171, 1960.
[10] B.C. Tripathy. Matrix maps on the power series convergent on the unit disc. J. Analysis, 6:27-31, 1998.
[11] B.C. Tripathy. A class of difference sequences related to the p-normed space ℓ^{p}. Demonstratio Math., 3694:867-872, 2003.
[12] B.C. Tripathy and A.J. Dutta. Fuzzy real valued double sequence spaces. Soochow J. Math., 32(4):509-520, 2006.
[13] B.C. Tripathy and A. Esi. A new type of difference sequence spaces. International Journal of Science and Technology, 1(1):11-14, 2006.
[14] B.C. Tripathy, A. Esi and B.K. Tripathy. On a new type of generalized difference Cesàro sequence spaces. Soochow J. Math, 31:333-340, 2005.
[15] B.C. Tripathy and S. Mahanta. On a class of sequences related to the ℓ^{p} space defined by Orlicz functions. Soochow J. Math., 29:379-391, 2003.
[16] B.C. Tripathy and M. Sen. On a class of sequences related to the p-normed space. Journal of Beijing University of Technology, 31:112-115, 2005.
[17] B.K. Tripathy and S. Nanda. Absolute value of fuzzy real numbers and fuzzy sequence spaces. Jour. Fuzzy Math., 8(4):883-892, 2000.
[18] L.A. Zadeh. Fuzzy sets. Information and control, 8:338-353, 1965.

[^0]: * The work of the authors was carried under University Grants Commission of India project No.-F. No. $30-240 / 2004$ (RS)

