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1 Introduction

In this paper, we mainly study the following system of fractional elliptic equa-
tions:

(−∆)su− γ u

|x|2s
= λf(x)

|u|q−2u
|x|α

+
1

2∗s(β)

Fu(u, v)

|x|β
, in Ω,

(−∆)sv − γ v

|x|2s
= µg(x)

|v|q−2v
|x|α

+
1

2∗s(β)

Fv(u, v)

|x|β
, in Ω,

u = v = 0, in RN\Ω,

(1.1)

where s ∈ (0, 1), Ω ⊂ RN (N > 2s) is a smooth bounded domain with 0 ∈ Ω,
2∗s(β) := 2(N − β)/(N − 2s) is the fractional Sobolev-Hardy critical exponent,
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and the parameters in (1.1) satisfy the following assumptions:

(H0) N > 2s, 0 < s < 1, 0 ≤ α, β < 2s, λ, µ > 0, 0 ≤ γ < γH , 1 ≤ q < 2.

The operator (−∆)s is the fractional Laplacian which is defined by

(−∆)su(x) = P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy

= lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy, ∀x ∈ RN .

Notice that the typical feature of the fractional Laplacian operator is non-
locality, that is, the value (−∆)su(x) at any point x ∈ Ω depends not only on
the value of u on the Ω, but also on the value of u on the whole RN , which makes
some discussions and calculations difficult. Moreover, the Dirichlet condition
in (1.1) is given in RN\Ω and not simply on ∂Ω, which consistently with
the nonlocal character of the operator (−∆)s, see [1, 3, 16, 17, 19, 21] and the
references therein for further details on the fractional Laplacian.

The starting point on the study of the system (1.1) is its scalar version:(−∆)su− γ u

|x|2s
= λf(x)

|u|q−2u
|x|α

+
|u|2∗s(β)−2u
|x|β

, in Ω,

u = 0, in RN\Ω.
(1.2)

Concerning the nonlocal problems with critical Sobolev-Hardy exponents, there
has been little research up to now, see [18, 20] and the references therein. In
particular, Zhang and Hsu [20] concerned the following fractional elliptic system


(−∆)su− γ u

|x|2s
= λ
|u|q−2u
|x|α

+
2η

η + θ

|u|η−2u|v|θ

|x|β
, in Ω,

(−∆)sv − γ v

|x|2s
= µ
|v|q−2v
|x|α

+
2θ

η + θ

|u|η|v|θ−2v
|x|β

, in Ω,

u = v = 0, in RN\Ω,

(1.3)

where 1 ≤ q < 2, η, θ > 1 satisfying η+θ = 2∗s(β). Using the variational method
and Nehari manifold method, they found that the problem (1.3) has at least
two positive solutions if the parameters λ, µ > 0 satisfied a certain condition.
Problems (1.2) and (1.3) aroused the interesting results due to the lack of
compactness for involving the critical exponent; hence, the associated energy
functionals do not satisfy the Palais-Smale condition in general. Moreover, the
explicit formula of the ground states of limiting problem (2.9) is not clear, the
standard variational argument is not applicable directly, which is the difficulty
for the fractional Laplacian problem with Hardy potential and critical growth.

Motivated by [20], in this paper we focus on the general case f , g possibly
change sign in Ω and F positively 2∗s(β)-homogeneous, we shall complement
the results of [18, 20] and extend the results of [11, 12, 13, 14] to the fractional
Laplacian operator. Our main tool is the Nehari manifold methods which is
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similar to the fibering method of Drabek and Pohozaev [5]. We show that the
system (1.1) has at least two positive solutions when the parameters λ, µ and
weight functions f , g satisfied some certain conditions. It should be mentioned
that in [8, 9, 10, 15, 22], some problems involving fractional Laplacian operator
were investigated by the Nehari manifold and fibering method.

We look for solutions of (1.1) in the Sobolev space

Xs
0(Ω) = {u ∈ Hs(RN ) : u = 0 a.e. in RN\Ω}

with the norm

‖u‖Xs0 (Ω) :=
(∫

RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

.

From (2.2), we employ the following equivalent norm in Xs
0(Ω):

‖u‖γ =
(∫

RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy − γ

∫
Ω

|u|2

|x|2s
dx
) 1

2

.

Denote by W the product space W = Xs
0(Ω) × Xs

0(Ω) endowed with the
norm ‖(u, v)‖2W = ‖u‖2γ + ‖v‖2γ . The corresponding energy functional of prob-
lem (1.1) is defined on W by

Iλ,µ(u, v) =
1

2
‖(u, v)‖2W −

1

2∗s(β)

∫
Ω

F (u, v)

|x|β
dx− 1

q
Qλ,µ(u, v),

where

Qλ,µ(u, v) = λ

∫
Ω

f(x)|u|q

|x|α
dx+ µ

∫
Ω

g(x)|v|q

|x|α
dx.

By standard arguments we can verify Iλ,µ ∈ C1(W,R). It is well-known that
the weak solutions of (1.1) are the critical points of functional Iλ,µ.

For all γ < γH , by (H0), the following best Sobolev-type constants are well
defined and crucial for the study of (1.1):

Λ(s, β) := inf
u∈Xs0 (Ω)\{0}

∫
RN
∫
RN
|u(x)−u(y)|2
|x−y|N+2s dxdy − γ

∫
Ω
|u|2
|x|2s dx( ∫

Ω
|u|2∗s (β)
|x|β dx

) 2
2∗s (β)

,

SF (s, β) := inf
u∈W\{(0,0)}

‖(u, v)‖2W
/(∫

Ω

F (u, v)

|x|β
dx
) 2

2∗s (β) . (1.4)

In order to given the relation between Λ(s, β) and SF (s, β), the following
assumptions on F are needed in this paper:

(F0) F ∈ C1(R2,R+) and F (tu, tv) = t2
∗
s(β) F (u, v), ∀t ≥ 0, (u, v) ∈ R2;

(F1) F (u, 0) = F (0, v) = Fu(u, 0) = Fv(0, v) = 0, ∀u, v ∈ R;

(F2) Fu(u, v), Fv(u, v) are strictly increasing functions for all (u, v) ∈ R2.

Then, we have the following result.

Math. Model. Anal., 25(1):1–20, 2020.
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Theorem 1. Suppose (H0) and (F0)–(F2) hold. Then, SF (s, β) = M−1F Λ(s, β)
and SF (s, β) has the minimizers (θ1Uε(x), θ2Uε(x)), where Uε(x) are defined
as in (2.8), θ1, θ2 are constants given in (2.4), and MF is defined by

MF = max{F (|u|, |v|)
2

2∗s (β) : (u, v) ∈ R2 and |u|2 + |v|2 = 1}. (1.5)

The other main result of this paper is the following existence and multiple
results. To the best of our knowledge, the results are new for the critical
fractional Laplacian problem with Hardy potential and homogeneous term.

Set

Λ0 =

(
2− q

2∗s(β)− q

) 2
2∗s (β)−2

SF (s, β)
2∗s (β)

2∗s (β)−2

(
2∗s(β)− 2

2∗s(β)− q

) 2
2−q

Λ(s, α)
q

2−q .

(1.6)
We assume that f , g : Ω → R satisfy

(H1) f , g ∈ Lp(Ω, |x|−αdx), f± = max{±f, 0} 6= 0 and g± = max{±g, 0} 6= 0,
where p := 2∗s(α)/(2∗s(α)− q).

(H2) For some a0, r0 > 0 such that f(x), g(x) ≥ a0 for x ∈ Br0(0) ⊂ Ω.

Theorem 2. Suppose (H0), (H1)–(H2) and (F0)–(F2) hold. Then,

(i) If λ, µ > 0 satisfy

0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖f‖Lp(Ω,|x|−α))
2

2−q < A0,

then system (1.1) has at least one positive solution in W .

(ii) There exists 0 < A∗ < A0 such that for λ, µ > 0 and

0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖f‖Lp(Ω,|x|−α))
2

2−q < A∗,

then problem (1.1) has at least two positive solutions in W .

Remark 1. There are many homogeneous functions of class C1, for example:

F (t) = (
∑k
i=1 |ti|p)

2∗s (β)
p with p ≥ 1. If we taking F (u) = 2

η+θ |u1|
η|u2|θ with η,

θ > 1, η + θ = 2∗s(β), then Theorems 1.1 and 1.2 in [20] are the special case of
our Theorems 1 and 2.

This paper is organized as follows. In Section 2, we introduce the variational
setting of the problem and present some norm estimates about the ground states
of limiting problem. In Section 3, we investigate the Palais-Smale condition for
the energy functional and given the proof of Theorem 1. Some properties
about the fibering maps and Nehari manifold are established in Section 4, and
Theorem 2 is proved in Sections 5.

Throughout this paper, we will denote by Lq(Ω, |x|αdx) the usual weighted
Lq(Ω) space with the weight |x|α which norm give by ‖ · ‖Lq(Ω,|x|α); O(εt)

denotes |O(εt)|
εt ≤ C and o(εt) means |o(ε

t)|
εt → 0 as ε → 0 for t ≥ 0; on(1)

means on(1)→ 0 as n→∞; The dual space of W will be denoted by W−1; C,
Ci will denote various positive constants which may vary from line to line.
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2 Preliminaries

First, we give some useful results of fractional Sobolev-Hardy inequality. As-
sume that 0 ≤ t ≤ 2s. Then, there exists positive constant C(s, t,N) depending
on s, t and N , such that

C(s, t,N)

(∫
RN

|u|2∗s(t)

|x|t
dx

) 2
2∗s (t)

≤
∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy, (2.1)

where 2∗s(t) = 2(N−t)
N−2s . If we set t = 2s in (2.1), we have

γH

∫
Ω

|u|2

|x|2s
dx ≤

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy, ∀u ∈ Xs

0(Ω), (2.2)

where γH := 22s
Γ 2(N+2s

4 )

Γ 2(N−2s
4 )

is the best fractional Hardy constant.

The following properties about homogeneous function are important and
well known:

Lemma 1. Let σ ≥ 1 and H be a differentiable σ-homogeneous function, then

(i) for all (u, v) ∈ R2, uHu(u, v) + vHv(u, v) = σH(u, v);

(ii) there exists MH > 0 such that |H(u, v)| ≤MH(|u|σ+ |v|σ) for all (u, v) ∈
R2, where

MH = max{H(u, v) : (u, v) ∈ R2, |u|σ + |v|σ = 1};

(iii) the maximum MH is attained for some (u0, v0) ∈ R2, i.e., |u0|σ+|v0|σ = 1
and |H(u0, v0)| = MH ;

(iv) Hu(u, v), Hv(u, v) are (σ − 1) homogenous.

By (F0) and Lemma 1, we have

uFu(u, v)+vFv(u, v)=2∗s(β)F (u, v), F (u, v) ≤
(
MF (|u|2+|v|2)

) 2∗s (β)
2 , (2.3)

whereMF is given in (1.5). Moreover, from Lemma 1 (iii), there exists (θ1, θ2) ∈
R2 such that

θ21 + θ22 = 1 and MF = F (θ1, θ2)
2

2∗s (β) . (2.4)

Now, we will study SF (s, β) and prove Theorem 1.
Proof of Theorem 1. Let {wn} ⊂ Xs

0(Ω) be a minimizing sequence for
Λ(s, β) and (θ1, θ2) be defined as in (2.4). Choosing (un, vn) = (θ1wn, θ2wn) in
(1.4), from (F0) we have

(θ21 + θ22) (
∫
RN
∫
RN
|wn(x)−wn(y)|2
|x−y|N+2s dxdy − γ

∫
Ω
|wn|2
|x|2s dx)

F (θ1, θ2)
2

2∗s (β)
( ∫

Ω
|wn|2

∗
s (β)

|x|β dx
) 2

2∗s (β)
≥ SF (s, β). (2.5)

Math. Model. Anal., 25(1):1–20, 2020.
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Taking n→∞ in (2.5), we have

SF (s, β) ≤M−1F Λ(s, β). (2.6)

On the other hand, let {(un, vn)} ⊂ W\{(0, 0)} be a minimizing sequence
for SF (s, β), from Proposition 1 in [4], we have∫

Ω

F (un, vn)

|x|β
dx =

∫
Ω

F
( un

|x|
β

2∗s (β)
,

vn

|x|
β

2∗s (β)

)
dx

≤ F
(∥∥∥ un

|x|
β

2∗s (β)

∥∥∥
L2∗s (β)

,
∥∥∥ vn

|x|
β

2∗s (β)

∥∥∥
L2∗s (β)

)
.

Set

A = 1/
(∥∥∥ un

|x|
β

2∗s (β)

∥∥∥2
L2∗s (β)

+
∥∥∥ vn

|x|
β

2∗s (β)

∥∥∥2
L2∗s (β)

)1/2
.

We have ∥∥∥ Aun
|x|

β
2∗s (β)

∥∥∥2
L2∗s (β)

+
∥∥∥ Avn
|x|

β
2∗s (β)

∥∥∥2
L2∗s (β)

= 1.

Then, ∫
RN
∫
RN ( |un(x)−un(y)|

2

|x−y|N+2s + |vn(x)−vn(y)|2
|x−y|N+2s )dxdy − γ

∫
Ω
|un|2+|vn|2
|x|2s dx

(
∫
Ω
F (un,vn)
|x|β dx)

2
2∗s (β)

≥
Λ(s, β)(

∫
Ω
|un|2

∗
s (β)

|x|β dx)
2

2∗s (β) + Λ(s, β)(
∫
Ω
|vn|2

∗
s (β)

|x|β dx)
2

2∗s (β)(
F
(∥∥∥ un

|x|
β

2∗s (β)

∥∥∥
L2∗s (β)

,
∥∥∥ vn

|x|
β

2∗s (β)

∥∥∥
L2∗s (β)

)) 2
2∗s (β)

= Λ(s, β)

∥∥∥ un

|x|
β

2∗s (β)

∥∥∥2
L2∗s (β)

+
∥∥∥ vn

|x|
β

2∗s (β)

∥∥∥2
L2∗s (β)(

F
(∥∥∥ un

|x|
β

2∗s (β)

∥∥∥
L2∗s (β)

,
∥∥∥ vn

|x|
β

2∗s (β)

∥∥∥
L2∗s (β)

)) 2
2∗s (β)

= Λ(s, β)

∥∥∥ Aun

|x|
β

2∗s (β)

∥∥∥2
L2∗s (β)

+
∥∥∥ Avn

|x|
β

2∗s (β)

∥∥∥2
L2∗s (β)(

F
(∥∥∥ Aun

|x|
β

2∗s (β)

∥∥∥
L2∗s (β)

,
∥∥∥ Avn

|x|
β

2∗s (β)

∥∥∥
L2∗s (β)

)) 2
2∗s (β)

≥M−1F Λ(s, β).

Passing to the limit in the above inequality, we have

SF (s, β) ≥M−1F Λ(s, β). (2.7)

Hence, (2.6) and (2.7) given the proof of Theorem 1. �
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For the best constant Λ(s, β), from [6, 7], we know that, for all 0 < s < 1
and 0 ≤ γ < γH , the best constant Λ(s, β) is achieved by the form

Uε(x) = ε−
N−2s

2 U(x/ε), ∀ε > 0, (2.8)

where U ∈ C1(RN\{0}) is a positive, radially symmetric, radially decreasing
ground state solution of the limit problem:(−∆)su− γ u

|x|2s
=
u2

∗
s(β)−1

|x|β
, in RN ,

u ≥ 0, u 6≡ 0, in RN .
(2.9)

Moreover, at zero and infinity, the solution U satisfies

lim
|x|→0

|x|a(γ)U(x) = λ0 > 0 and lim
|x|→∞

|x|b(γ)U(x) = λ∞ > 0,

where a(γ) and b(γ) are solutions of the equation

ΨN,s(β) = 22s
Γ (N−β2 )Γ ( 2s+β

2 )

Γ (N−2s−β2 )Γ (β2 )
− γ = 0

and satisfy 0 ≤ a(γ) < N−2s
2 < b(γ) ≤ N − 2s. By a direct computation, we

get∫
RN

∫
RN

|Uε(x)− Uε(y)|2

|x− y|N+2s
dxdy − γ

∫
RN

|Uε|2

|x|2s
dx =

∫
RN

|Uε|2
∗
s(β)

|x|β
dx = Λ(s, β)

2∗s (β)
2∗s (β)−2 .

Take ρ ∈ (0, r0) small enough such that Bρ(0) ⊂ Ω, Bρ(0) = {x ∈ RN :
|x| < ρ}, where r0 be given in (H2). Choose the radial cut-off function ϕ ∈
C∞0 (Ω) such that 0 ≤ ϕ(x) ≤ 1 if Bρ(0), ϕ(x) = 1 in B ρ

2
(0) and ϕ(x) = 0 if

Bρ(0)c. Set

uε(x) = ϕ(x)Uε(x), ∀ε > 0. (2.10)

Proposition 1. (See [20], Proposition 2.3)Assume that 0 < s < 1, 0 ≤ γ <
γH , 0 ≤ α, β < 2s and 1 ≤ q < 2∗s(α). Then, the following estimates hold as
ε→ 0+:

‖uε‖2γ = Λ(s, β)
N−β
2s−β +O(ε2b(γ)+2s−N ); (2.11)∫

Ω

|uε|2
∗
s(β)

|x|β
dx = Λ(s, β)

N−β
2s−β +O(ε2

∗
s(β)b(γ)+β−N ); (2.12)

∫
Ω

|uε|q

|x|α
dx =


CεN−α−

q(N−2s)
2 , if q > (N − α)/b(γ),

CεN−α−
q(N−2s)

2 | ln ε|, if q = (N − α)/b(γ),

Cεq(b(γ)−
N−2s

2 , if q < (N − α)/b(γ).

(2.13)

Math. Model. Anal., 25(1):1–20, 2020.
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3 The Palais-Smale condition

In this section, we show that the functional Iλ,µ satisfies (PS)c conditions.

Definition 1. Let c ∈ R, W be a Banach space and Iλ,µ ∈ C1(W,R). Then
{(un, vn)} is a (PS)c sequence in W for Iλ,µ if Iλ,µ(un, vn) = c + on(1) and
I ′λ,µ(un, vn) = on(1) strongly in W−1 as n→∞. We say that Iλ,µ satisfies the
(PS)c condition if any (PS)c sequence {(un, vn)} for Iλ,µ admits a convergent
subsequence.

By the Hölder and Sobolev-Hardy inequalities, for all u ∈ Xs
0(Ω), we get∫

Ω

f(x)|u|q

|x|α
dx =

∫
Ω

|u|q

|x|
q

2∗s (α)
α
· f(x)

|x|(1−
q

2∗s (α)
)α
dx

≤
(∫

Ω

|f |
2∗s (α)

2∗s (α)−q

|x|α
dx
) 2∗s (α)−q

2∗s (α)
(∫

Ω

|u|2∗s(α)

|x|α
dx
) q

2∗s (α)

= ‖f‖
L

2∗s (α)

2∗s (α)−q (Ω,|x|−α)
Λ(s, α)−

q
2 ‖u‖qγ .

(3.1)

Then,

Qλ,µ(u, v) ≤ Λ(s, α)−
q
2 (λ‖f‖Lp(Ω,|x|−α)‖u‖qγ + µ‖g‖Lp(Ω,|x|−α)‖v‖qγ)

=
([2

q

(1

2
− 1

2∗s(β)

)(1

q
− 1

2∗s(β)

)−1] q2 ‖u‖qγ)
×
([2

q

(1

2
− 1

2∗s(β)

)(1

q
− 1

2∗s(β)

)−1]− q2
Λ(s, α)−

q
2λ‖f‖Lp(Ω,|x|−α)

)
+
([2

q

(1

2
− 1

2∗s(β)

)(1

q
− 1

2∗s(β)

)−1] q2 ‖v‖qγ)
×
([2

q

(1

2
− 1

2∗s(β)

)(1

q
− 1

2∗s(β)

)−1]− q2
Λ(s, α)−

q
2µ‖g‖Lp(Ω,|x|−α)

)
≤
(1

2
− 1

2∗s(β)

)(1

q
− 1

2∗s(β)

)−1
‖(u, v)‖2W

+ C∗

(
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

)
,

(3.2)

where

C∗ =
2− q

2

(2∗s(β)− q
2∗s(β)− 2

) q
2−q

Λ(s, α)−
q

2−q > 0.

Lemma 2. If {(un, vn)} is a (PS)c sequence for Iλ,µ with (un, vn) ⇀ (u, v)
weakly in W . Then, I ′λ,µ(u, v) = 0 and there exists a positive constant C0

depending on q, s, α, β and N such that

Iλ,µ(u, v) ≥ −C0

(
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

)
.

Proof. Since {(un, vn)} is a (PS)c sequence for Iλ,µ with (un, vn) ⇀ (u, v) in
W , it is easy to check that I ′λ,µ(u, v) = 0. In particular, we get that

〈I ′λ,µ(u, v), (u, v)〉 = 0,
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namely

‖(u, v)‖2W =

∫
Ω

F (u, v)

|x|β
dx+Qλ,µ(u, v).

Then, from (3.2), we have

Iλ,µ(u, v) =
(1

2
− 1

2∗s(β)

)
‖(u, v)‖2W −

(1

q
− 1

2∗s(β)

)
Qλ,µ(u, v)

≥ −
(1

q
− 1

2∗s(β)

)
C∗

(
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

)
= −C0

(
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

)
,

where C0 =
(2∗s(β)−q)(2−q)

2q2∗s(β)

(
2∗s(β)−q
2∗s(β)−2

) q
2−q

Λ(s, α)−
q

2−q is a positive constant de-

pending on q, s, α, β and N . ut

Lemma 3. Iλ,µ satisfies the (PS)c condition for all c < c∞, where

c∞ :=
2s− β

2(N − β)
SF (s, β)

2∗s (β)
2∗s (β)−2

− C0

(
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

)
. (3.3)

Proof. Let {(un, vn)} be a (PS)c sequence for c ∈ (−∞, c∞). Similarly to
the proof of [13, Lemma 2.3], it is easy to see that {(un, vn)} is bounded in
W . Then, there exist a subsequence still denoted by {(un, vn)} and (u, v) ∈W
such that (un, vn) ⇀ (u, v) weakly in W , and

un ⇀ u, vn ⇀ v weakly in L2∗s(β)(Ω, |x|−βdx),

un → u, vn → v strongly in Lq(Ω, |x|−αdx), ∀1 ≤ q < 2∗s(α),

un(x)→ u(x), vn(x)→ v(x) a.e. in Ω.

(3.4)

Hence, from (3.4), it is easy to verify that I ′λ,µ(u, v) = 0 and

Qλ,µ(un, vn) = Qλ,µ(u, v) + on(1) (n→∞). (3.5)

Set ũn = un − u, ṽn = vn − v. By Brézis-Lieb lemma [19], we get

‖(un, vn)‖2W = ‖(u, v)‖2W + ‖(ũn, ṽn)‖2W + on(1). (3.6)

By the same methods as in [4, Lemma 8], we obtain∫
Ω

F (un, vn)

|x|β
dx =

∫
Ω

F (u, v)

|x|β
dx+

∫
Ω

F (ũn, ṽn)

|x|β
dx+ on(1). (3.7)

Using (3.5), (3.6) and (3.7), we have

c =
1

2
‖(ũn, ṽn)‖2W −

1

2∗s(β)

∫
Ω

F (ũn, ṽn)

|x|β
dx+ Iλ,µ(u, v) + on(1) (3.8)

Math. Model. Anal., 25(1):1–20, 2020.
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and

on(1) = ‖(ũn, ṽn)‖2W −
∫
Ω

F (ũn, ṽn)

|x|β
dx. (3.9)

Thus, we may assume that∫
Ω

F (ũn, ṽn)

|x|β
dx→ l, ‖(ũn, ṽn)‖2W → l ≥ 0 as n→∞.

If l = 0, the proof is completed. Assume that l > 0, then from (3.9) we have

SF (s, β)l
2

2∗s (β) =SF (s, β)
(

lim
n→∞

∫
Ω

F (ũn, ṽn)

|x|β
dx
) 2

2∗s (β) ≤ lim
n→∞

‖(ũn, ṽn)‖2W = l,

which implies that l ≥ SF (s, β)
2∗s (β)

2∗s (β)−2 . Hence, from (3.8) and Lemma 2, we
have

c = Iλ,µ(un, vn) + on(1) =
(1

2
− 1

2∗s(β)

)
l + Iλ,µ(u, v) + on(1) ≥ 2s− β

2(N − β)

× SF (s, β)
2∗s (β)

2∗s (β)−2 − C0

(
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

)
,

which contradicts c < c∞. The proof is completed. ut

4 Nehari manifold

Since Iλ,µ is not bounded below on W , we need to study Iλ,µ on the Nehari
manifold

Nλ,µ = {(u, v) ∈W\{(0, 0)} : 〈I ′λ,µ(u, v) , (u, v)〉 = 0}.

Note that Nλ,µ contains all nonzero solution of (1.1), and (u, v) ∈ Nλ,µ if and
only if

‖(u, v)‖2W −
∫
Ω

F (u, v)

|x|β
dx−Qλ,µ(u, v) = 0. (4.1)

Lemma 4. Iλ,µ is coercive and bounded below on Nλ,µ.

Proof. Let (u, v) ∈ Nλ,µ, by (3.1), the Sobolev inequality and Hölder in-
equality, we find

Qλ,µ(u, v) ≤ C1‖(u, v)‖qW , (4.2)

where

C1 =
[
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

] 2−q
2

Λ(s, α)−
q
2 > 0.

From (4.1) and (4.2), we get

Iλ,µ(u, v) =
(1

2
− 1

2∗s(β)

)
‖(u, v)‖2W −

(1

q
− 1

2∗s(β)

)
Qλ,µ(u, v)

≥ 2∗s(β)− 2

2 2∗s(β)
‖(u, v)‖2W −

2∗s(β)− q
q 2∗s(β)

C1‖(u, v)‖qW .
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As 1 ≤ q < 2, Iλ,µ is coercive and bounded below on Nλ,µ. ut

Define Ψλ,µ(u, v) := 〈I ′λ,µ(u, v) , (u, v)〉, then for all (u, v) ∈ Nλ,µ, we get

〈Ψ ′λ,µ(u, v) , (u, v)〉 = 2‖(u, v)‖2W − qQλ,µ(u, v)− 2∗s(β)

∫
Ω

F (u, v)

|x|β
dx

= (2− q)‖(u, v)‖2W − (2∗s(β)− q)
∫
Ω

F (u, v)

|x|β
dx (4.3)

= (2∗s(β)− q)Qλ,µ(u, v)− (2∗s(β)− 2)‖(u, v)‖2W . (4.4)

We split Nλ,µ into three parts:

N+
λ,µ = {(u, v) ∈ Nλ,µ : 〈Ψ ′λ,µ(u, v) , (u, v)〉 > 0},
N 0
λ,µ = {(u, v) ∈ Nλ,µ : 〈Ψ ′λ,µ(u, v) , (u, v)〉 = 0},
N−λ,µ = {(u, v) ∈ Nλ,µ : 〈Ψ ′λ,µ(u, v) , (u, v)〉 < 0}.

We now present some important properties of Nλ,µ, N+
λ,µ, N−λ,µ.

Lemma 5. Assume that (u0, v0) is a local minimizer for Iλ,µ on Nλ,µ and
(u0, v0) 6∈ N 0

λ,µ. Then I ′λ,µ(u0, v0) = 0 in W−1.

Proof. The proof is similar to that of [20, Lemma 3.4] and the details are
omitted. ut

Lemma 6. N 0
λ,µ = ∅ for all λ, µ > 0 satisfy 0 < (λ‖f‖Lp(Ω,|x|−α))

2
2−q +

(µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0, where Λ0 is the same as that in (1.6).

Proof. We argue by contradiction. Assume that there exist λ and µ > 0

with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q +(µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0 such that N 0
λ,µ 6= ∅.

Then, by (4.3) and (4.4), for (u, v) ∈ N 0
λ,µ , we have

‖(u, v)‖2W=
2∗s(β)−q

2− q

∫
Ω

F (u, v)

|x|β
dx, ‖(u, v)‖2W=

2∗s(β)−q
2∗s(β)−2

Qλ,µ(u, v). (4.5)

According to (2.3) and the Minkowshi inequality, we obtain that

∫
Ω

F (u, v)

|x|β
dx ≤M

2∗s (β)
2

F

∫
Ω

(|u|2 + |v|2)
2∗s (β)

2

|x|β
dx

≤M
2∗s (β)

2

F

[( ∫
Ω

|u|2∗s(β)

|x|β
dx
) 2

2∗s (β) +
(∫

Ω

|v|2∗s(β)

|x|β
dx
) 2

2∗s (β)
] 2∗s (β)

2

≤M
2∗s (β)

2

F

(
Λ(s, β)−1‖u‖2γ + Λ(s, β)−1‖v‖2γ

) 2∗s (β)
2

=
(Λ(s, β)

MF

)− 2∗s (β)
2
(
‖u‖2γ + ‖v‖2γ

) 2∗s (β)
2

= SF (s, β)−
2∗s (β)

2 ‖(u, v)‖2
∗
s(β)
W , (4.6)

Math. Model. Anal., 25(1):1–20, 2020.
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which and (4.5) leads that

‖(u, v)‖W ≥
( 2− q

2∗s(β)− q
SF (s, β)

2∗s (β)
2

) 1
2∗s (β)−2

. (4.7)

On the other hand, by (4.2) and (4.5), we find that

‖(u, v)‖W ≤
(2∗s(β)− q

2∗s(β)− 2

) 1
2−q

Λ(s, α)−
q

2(2−q)

×
(

(λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q

) 1
2

.

(4.8)

Consequently, (4.7) and (4.8) implies

(λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q ≥ Λ0,

which contradicts to 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0.
This completes the proof of Lemma 6. ut

By Lemmas 4 and 6, for each λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q +

(µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0, we can write Nλ,µ = N+
λ,µ ∪N

−
λ,µ. Define

cλ,µ = inf
(u,v)∈Nλ,µ

Iλ,µ(u, v), c+λ,µ = inf
(u,v)∈N+

λ,µ

Iλ,µ(u, v), c−λ,µ = inf
(u,v)∈N−

λ,µ

Iλ,µ(u, v).

Then, we have the following results.

Lemma 7. The following results hold.

(1) If 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0, then cλ,µ ≤
c+λ,µ < 0.

(2) There exists

Λ1 :=
(q(2∗s(β)− 2)

2(2∗s(β)− q)

) 2
2−q

Λ(s, α)
q

2−q SF (s, β)
2∗s (β)

2∗s (β)−2

( 2− q
2∗s(β)− q

) 2
2∗s (β)−2

such that for all λ, µ > 0 with

0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ1,

then c−λ,µ ≥ c0 for some c0 > 0.

Proof. (1) Suppose (u, v) ∈ N+
λ,µ. By (4.3), we get

(2− q)‖(u, v)‖2W > (2∗s(β)− q)
∫
Ω

F (u, v)

|x|β
dx. (4.9)
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According to (4.1) and (4.9), we get

Iλ,µ(u, v) =
(1

2
− 1

q

)
‖(u, v)‖2W −

( 1

2∗s(β)
− 1

q

)∫
Ω

F (u, v)

|x|β
dx

≤
[(1

2
− 1

q

)
+
(1

q
− 1

2∗s(β)

) 2− q
2∗s(β)− q

]
‖(u, v)‖2W

= − (2− q)(2∗s(β)− 2)

2q2∗s(β)
‖(u, v)‖2W < 0.

Then, by the definition of cλ,µ, c+λ,µ, we can deduce that cλ,µ ≤ c+λ,µ < 0 .

(2) Suppose (u, v) ∈ N−λ,µ. From (4.3), it follows that

(2− q)‖(u, v)‖2W < (2∗s(β)− q)
∫
Ω

F (u, v)

|x|β
dx.

This and (4.6) yield

‖(u, v)‖W >
( 2− q

2∗s(β)− q

) 1
2∗s (β)−2

SF (s, β)
2∗s (β)

2(2∗s (β)−2) . (4.10)

By the proof of Lemma 4 and (4.10), we infer that

Iλ,µ(u, v)

≥ ‖(u, v)‖qW
[(1

2
− 1

2∗s(β)

)
‖(u, v)‖2−qW −

(2∗s(β)− q
q2∗s(β)

)
×
(

(λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q

) 2−q
2

Λ(s, α)−
q
2

]
> ‖(u, v)‖qW

[2∗s(β)− 2

22∗s(β)

( 2− q
2∗s(β)− q

) 2−q
2∗s (β)−2

SF (s, β)
2∗s (β)(2−q)
2(2∗s (β)−2) −

(2∗s(β)− q
q2∗s(β)

)
×
(

(λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q

) 2−q
2

Λ(s, α)−
q
2

]
.

Then, if (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ1, we get Iλ,µ(u, v) ≥
c0 for all (u, v) ∈ N−λ,µ, where c0 = c(q, s, α, β,N) is a positive constant. ut

For t > 0, we define the fibering maps Φu,v(t) = Iλ,µ(tu, tv). Then,

Φ′u,v(t) = t‖(u, v)‖2W − t2
∗
s(β)−1

∫
Ω

F (u, v)

|x|β
dx− tq−1Qλ,µ(u, v).

For (u, v) ∈ Nλ,µ, we get Φ′u,v(1) = 〈I ′λ,µ(u, v) , (u, v)〉, which implies that
(u, v) ∈ Nλ,µ if and only if Φ′u,v(1) = 0, and more generally (tu, tv) ∈ Nλ,µ if
and only if Φ′u,v(t) = 0. That is, the elements in Nλ,µ correspond to stationary
points of the fibering maps Φu,v(t).

For each (u, v) ∈W with
∫
Ω
F (u,v)
|x|β dx > 0, set

tmax =

 (2− q)‖(u, v)‖2W
(2∗s(β)− q)

∫
Ω
F (u,v)
|x|β dx

 1
2∗s (β)−2

> 0.

Then, the following lemma holds.

Math. Model. Anal., 25(1):1–20, 2020.
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Lemma 8. If 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0, then for

every (u, v) ∈ W\{(0, 0)} with
∫
Ω
F (u,v)
|x|β dx > 0 and Qλ,µ(u, v) > 0, there

exist unique t1 and t2 > 0 such that (t1u, t1v) ∈ N+
λ,µ, (t2u, t2v) ∈ N−λ,µ.

Moreover, we have 0 < t1 < tmax < t2, Iλ,µ(t1u, t1v) = inft∈[0,tmax] Iλ,µ(tu, tv)
and Iλ,µ(t2u, t2v) = supt∈[0,∞) Iλ,µ(tu, tv).

Proof. The proof is similar to [20, Lemma 3.2] and the details are omitted.
ut

5 Proof of Theorem 2

Before giving the proof of Theorem 2, we need the following lemma.

Lemma 9. Suppose (H0)–(H2) and (F0)–(F2) hold. The following facts hold.

(i) If 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q +(µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0, then there exists
a (PS)cλ,µ -sequence {(un, vn)} ⊂ Nλ,µ for Iλ,µ.

(ii) If 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q +(µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ1, then there exists

a (PS)c−λ,µ
-sequence {(un, vv)} ⊂ N−λ,µ for Iλ,µ.

Proof. The proof is almost the same as in [18, Proposition 3.8] and the details
are omitted. ut

Now, we establish the existence of a local minimizer for Iλ,µ on N+
λ,µ.

Theorem 3. Assume that (H0)–(H2) and (F0)–(F2). If

0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0,

then Iλ,µ has a minimizer (u1, v1) ∈ N+
λ,µ such that (u1, v1) is a positive solution

of (1.1) and Iλ,µ(u1, v1) = cλ,µ = c+λ,µ < 0.

Proof. By Lemma 9 (i), there exists a minimizing sequence {(un, vn)} ⊂ Nλ,µ
such that

Iλ,µ(un, vn) = cλ,µ + on(1) and I ′λ,µ(un, vn) = on(1). (5.1)

Since Iλ,µ is coercive on Nλ,µ, we get that {(un, vn)} is bounded in W . Passing
to a subsequence, still denoted by {(un, vn)}, we can assume that there exists
(u1, v1) ∈W such that (un, vn) ⇀ (u1, v1) weakly in W and

un ⇀ u1, vn ⇀ v1 weakly in L2∗s(β)(Ω, |x|−βdx),

un → u1, vn → v1 strongly in Lq(Ω, |x|−αdx), ∀ 1 ≤ q < 2∗α(s),

un(x)→ u1(x), vn(x)→ v1(x) a.e. in Ω.

(5.2)

This implies that

Qλ,µ(un, vn) = Qλ,µ(u1, v1) + on(1). (5.3)
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First, we claim that (u1, v1) is a nontrivial weak solution of (1.1). From
(5.1), (5.2) and (5.3), it is easy to verify that (u1, v1) is a weak solution of (1.1).
Moreover, the fact (un, vn) ∈ Nλ,µ implies that

Qλ,µ(un, vn) =
q(2∗s(β)− 2)

2(2∗s(β)− q)
‖(un, vn)‖2W −

q2∗s(β)

2∗s(β)− q
Iλ,µ(un, vn). (5.4)

Let n→∞ in (5.4), by (5.3) and the fact that cλ,µ < 0, we obtain

Qλ,µ(u1, v1) ≥ − q2∗s(β)

2∗s(β)− q
cλ,µ > 0.

Thus, (u1, v1) ∈ Nλ,µ is a nontrivial weak solution of (1.1).

Next, we prove that (un, vn) → (u1, v1) strongly in W and Iλ,µ(u1, v1) =
cλ,µ. From the fact (u1, v1) ∈ Nλ,µ and the Fatou’s lemma, it follows that

cλ,µ ≤ Iλ,µ(u1, v1) =
2∗s(β)− 2

2 2∗s(β)
‖(u1, v1)‖2W −

2∗s(β)− q
q2∗s(β)

Qλ,µ(u1, v1)

≤ lim
n→∞

[
2∗s(β)− 2

2 2∗s(β)
‖(un, vn)‖2W −

2∗s(β)− q
q2∗s(β)

Qλ,µ(un, vn)

]
= lim
n→∞

Iλ,µ(un, vn) = cλ,µ,

which implies that cλ,µ = Iλ,µ(u1, v1) and lim
n→∞

‖(un, vn)‖2W = ‖(u1, v1)‖2W .

Standard argument shows that (un, vn)→ (u1, v1) strongly in W .

Finally, we claim that (u1, v1) ∈ N+
λ,µ. Otherwise, if (u1, v1) ∈ N−λ,µ, then

by Lemma 8, there exist unique t+1 and t−1 > 0 such that (t+1 u1, t
+
1 v1) ∈ N+

λ,µ

and (t−1 u1, t
−
1 v1) ∈ N−λ,µ. In particular, we have t+1 < t−1 = 1. Since

d

dt
Iλ,µ(t+1 u1, t

+
1 v1) = 0,

d2

dt2
Iλ,µ(t+1 u1, t

+
1 v1) > 0,

there exists t∗1 ∈ (t+1 , t
−
1 ) such that Iλ,µ(t+1 u1, t

+
1 v1) < Iλ,µ(t∗1u1, t

∗
1v1). By

Lemma 8, we have

Iλ,µ(t+1 u1, t
+
1 v1) < Iλ,µ(t∗1u1, t

∗
1v1) ≤ Iλ,µ(t−1 u1, t

−
1 v1) = Iλ,µ(u1, v1),

which contradicts Iλ,µ(u1, v1) = cλ,µ. Moreover, from

Iλ,µ(u1, v1) = Iλ,µ(|u1|, |v1|), (|u1|, |v1|) ∈ N+
λ,µ

and the strong maximum principle [2], we conclude that u1, v1 > 0. Hence,
(u1, v1) is a positive solution for (1.1). ut

Proof of Theorem 2 (i). By Theorem 3, we obtain that for all λ, µ > 0

with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0, problem (1.1) has

a positive solution (u1, v1) ∈ N+
λ,µ. �

Math. Model. Anal., 25(1):1–20, 2020.
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Remark 2. From Lemma 7 (i) and (4.2), for this positive solution (u1, v1), we
have

0 > cλ,µ = Iλ,µ(u1, v1) =
(1

2
− 1

2∗s(β)

)
‖(u1, v1)‖2W

−
(1

q
− 1

2∗s(β)

)
Qλ,µ(u1, v1) ≥ −2∗s(β)− q

q 2∗s(β)
Qλ,µ(u1, v1)

≥ −2∗s(β)− q
q 2∗s(β)

Λ(s, α)−
q
2 ‖(u1, v1)‖qW

×
(

(λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q

) 2−q
2

.

This implies that Iλ,µ(u1, v1)→ 0 as λ→ 0+ and µ→ 0+.

Next, we establish the existence of a local minimum for Iλ,µ on N−λ,µ.

Lemma 10. Under the assumptions of Theorem 2, there exist a nonnegative
function (u0, v0) ∈W\{(0, 0)} and Λ̂ > 0 such that

sup
t≥0

Iλ,µ(tu0, tv0) < c∞ (5.5)

for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ̂,

where c∞ is the constant given in (3.3). In particular, c−λ,µ < c∞.

Proof. Now, we first consider the functional J : W → R defined by

J(u, v) =
1

2
‖(u, v)‖2W −

1

2∗s(β)

∫
Ω

F (u, v)

|x|β
dx.

From Lemma 1, there exists (e1, e2) ∈ R2 such that e21 + e22 = 1 and MF =

F (e1, e2)
2

2∗s (β) . Set u0 = e1uε, v0 = e2uε, where uε(x) = ϕ(x)Uε(x), ε > 0,
given by (2.10). Then, by SF (s, β) = M−1F Λ(s, β), (2.11), (2.12) and the fact

max
t≥0

(
t2

2
B1 −

t2
∗
s(β)

2∗s(β)
B2

)
=

2∗s(β)− 2

22∗s(β)

(
B1B

− 2
2∗s (β)

2

) 2∗s (β)
2∗s (β)−2

, B1 B2 > 0,

we conclude that

sup
t≥0

J(tu0, tv0) ≤ 2∗s(β)− 2

22∗s(β)

 (e21 + e22)‖uε‖2γ( ∫
Ω
F (e2uε,e2uε)

|x|β dx
) 2

2∗s (β)


2∗s (β)

2∗s (β)−2

=
2∗s(β)−2

22∗s(β)

 (e21 + e22)‖uε‖2γ(
M

2∗s (β)
2

F

∫
Ω
|uε|2

∗
s (β)

|x|β dx
) 2

2∗s (β)


2∗s (β)

2∗s (β)−2

≤ 2∗s(β)−2

22∗s(β)

(
1

MF

) 2∗s (β)
2∗s (β)−2
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×

 Λ(s, β)
2∗s (β)

2∗s (β)−2 +O(ε2b(γ)+2s−N )(
Λ(s, β)

2∗s (β)
2∗s (β)−2 +O(ε2

∗
s(β)b(γ)+β−N )

) 2
2∗s (β)


2∗s (β)

2∗s (β)−2

≤ 2s− β
2(N − β)

SF (s, β)
2∗s (β)

2∗s (β)−2 +O(ε2b(γ)+2s−N ). (5.6)

Let C0 be a positive constant given in Lemma 2, we can choose Λ2 > 0

small enough such that c∞ > 0 for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q +

(µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ2. Using the definition of Iλ,µ(u, v), we have

Iλ,µ(tu0, tv0) ≤ t2

2
‖(u0, v0)‖2W ≤ Ct2, ∀t ≥ 0, λ, µ > 0,

which implies that there exists t0 ∈ (0, 1) such that

sup
t∈[0,t0]

Iλ,µ(tu0, tv0) < c∞ (5.7)

for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ2.
Next, we prove that sup

t∈[t0,∞)

Iλ,µ(tu0, tv0) < c∞. Since f(x), g(x) ≥ a0 for

all x ∈ Br0(0) ⊂ Ω, we have

Qλ,µ(u0, v0) = λeq1

∫
Ω

f(x)|uε|q

|x|α
dx+ µeq2

∫
Ω

g(x)|uε|q

|x|α
dx

≥ a0M(λ+ µ)

∫
Bρ(0)

|uε|q

|x|α
dx,

(5.8)

where M = min{eq1, e
q
2}. Combining (5.6), (5.8) and (2.13), for all t ≥ t0, we

get

sup
t≥t0

Iλ,µ(tu0, tv0) = sup
t≥t0

(
J(tu0, tv0)− tq

q
Qλ,µ(u0, v0)

)
≤ 2s− β

2(N−β)
SF (s, β)

2∗s (β)
2∗s (β)−2 +O(ε2b(γ)+2s−N )− tq0

q
a0M(λ+ µ)

∫
Bρ(0)

|uε|q

|x|α
dx

≤ 2s− β
2(N − β)

SF (s, β)
2∗s (β)

2∗s (β)−2 +O(ε2b(γ)+2s−N )

− (λ+ µ)


CεN−α−

q(N−2s)
2 , if q > (N − α)/b(γ),

CεN−α−
q(N−2s)

2 )| ln ε|, if q = (N − α)/b(γ),

Cεq(b(γ)−
N−2s

2 ), if q < (N − α)/b(γ).
(5.9)

(i) If 1 ≤ q < N−α
b(γ) . Since b(γ) > N−2s

2 , we get 2b(γ)+2s−N > q(b(γ)− N−2s
2 ).

Then, for ε small enough, we can choose Λ3 > 0 such that

O(ε2b(γ)+2s−N )− C(λ+ µ)εq(b(γ)−
N−2s

2 )

< −C0

(
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

) (5.10)

Math. Model. Anal., 25(1):1–20, 2020.
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for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ3.

Set Λ4 = min{Λ2, Λ3}, then for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q +

(µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ4, (5.7), (5.9) and (5.10) show that

sup
t≥0

Iλ,µ(tu0, tv0) < c∞.

(ii) If N−α
b(γ) ≤ q < 2. From b(γ) > N−2s

2 and N−α
b(γ) ≤ q, we can obtain

2b(γ) + 2s − N > N − α − q(N−2s)
2 . Then, for ε small enough, there exists a

Λ5 > 0 such that

O(ε2b(γ)+2s−N )− C(λ+ µ)εN−α−
q(N−2s)

2

< −C0

(
(λ‖f‖Lp(Ω,|x|−α))

2
2−q + (µ‖g‖Lp(Ω,|x|−α))

2
2−q

) (5.11)

for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ5.
Similarly, let Λ6 = min{Λ2, Λ5}, by (5.7), (5.9) and (5.11), one can get

sup
t≥0

Iλ,µ(tu0, tv0) < c∞

for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ6.

Set Λ̂ = min{Λ4, Λ6}, from cases (i) and (ii), (5.5) holds by taking (u0, v0) =

(e1 uε, e2 uε) and for all 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ̂.
Recalling that (u0, v0) = (e1 uε, e2 uε), it is easy to see that∫

Ω

F (u0, v0)

|x|β
dx > 0 and Qλ,µ(u0, v0) > 0. (5.12)

Then, from (5.12) and Lemma 8, we get that there exists t− > 0 such that
(t−u0, t

−v0) ∈ N−λ,µ. Thus, it follows from the definition of c−λ,µ and (5.5) that

c−λ,µ ≤ Iλ,µ(t−u0, t
−v0) ≤ sup

t≥0
Iλ,µ(tu0, tv0)) < c∞ for all λ, µ > 0 with 0 <

(λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ̂. The proof is thus complete.
ut

Now, we establish the existence of a local minimum of Iλ,µ on N−λ,µ.

Theorem 4. Set Λ∗ = min{Λ1, Λ̂}, under the assumptions of Theorem 2, the
problem (1.1) has a positive solution (u2, v2) ∈ N−λ,µ and Iλ,µ(u2, v2) = c−λ,µ for

all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ∗.

Proof. Set Λ∗ = min{Λ1, Λ̂}. By Proposition 9 (ii), Lemmas 3 and 10, for

all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ∗, Iλ,µ
satisfies the (PS)c−λ,µ

condition for all c−λ,µ ∈ (0, c∞). Since Iλ,µ is coercive

on N−λ,µ, we get that the (PS)c−λ,µ
-sequence {(un, vn)} is bounded. Therefore,

there exist a subsequence still denoted by {(un, vn)} and (u2, v2) ∈W\{(0, 0)}
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such that (un, vn) ⇀ (u2, v2) weakly in W . Arguing as in the proof of Theorem
3, we obtain (un, vn)→ (u2, v2) strongly in W and (u2, v2) is a positive solution

of (1.1) for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q +(µ‖g‖Lp(Ω,|x|−α))
2

2−q <
Λ∗.

Finally, we prove that (u2, v2) ∈ N−λ,µ. Arguing by contradiction, we as-

sume (u2, v2) ∈ N+
λ,µ. Since N−λ,µ is closed in W , we have ‖(u2, v2)‖W <

lim inf
n→∞

‖(un, vn)‖W . Moreover, by Lemma 8, there exists a unique t−2 such that

(t−2 u2, t
−
2 v2) ∈ N−λ,µ. This and (un, vn) ∈ N−λ,µ deduce that

c−λ,µ ≤ Iλ,µ(t−2 u2, t
−
2 v2) < lim

n→∞
Iλ,µ(t−2 un, t

−
2 vn) ≤ lim

n→∞
Iλ,µ(un, vn) = c−λ,µ.

So, (u2, v2) ∈ N−λ,µ. This completes the proof of Theorem 4. ut

Proof of Theorem 2 (ii). By Theorem 3, the system (1.1) has a positive

solution (u1, v1) ∈ N+
λ,µ for all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))

2
2−q +

(µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ0. On the other hand, from Theorem 4, we can

get the second positive solution (u2, v2) ∈ N−λ,µ for all λ, µ > 0 with 0 <

(λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ∗. Since N+
λ,µ ∩ N

−
λ,µ = ∅ and

Λ∗ < Λ0, we get (u1, v1), (u2, v2) are distinct positive solutions of (1.1) for

all λ, µ > 0 with 0 < (λ‖f‖Lp(Ω,|x|−α))
2

2−q + (µ‖g‖Lp(Ω,|x|−α))
2

2−q < Λ∗. This
completes the proof of Theorem 2 (ii). ut
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