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Abstract. Reduced-order models based on Proper orthogonal decomposition are
known to suffer from a lack of accuracy due to the truncation effect introduced by
keeping only the most energetic modes. In this paper, we propose a new regularized
calibration method aiming at minimizing a weighted average of normalized error, and
a term measuring the change of the coefficients from their value obtained by Galerkin
projection. We also determine the optimal value of the regularization parameter
by analogy of the L-curve method. This paper is a sequel of [8] in which we com-
pared various methods of calibration and introduced a Tikhonov-based regularization
method. The proposed approach is assessed for a two dimensional wake flow around
a cylinder, characteristic of the configurations of interest.
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1 Introduction

A reduced-order modeling strategy is crucial to achieve optimization and mo-
del-based control in a wide class of complex flow configurations [2]. Indeed, if
these tasks can always be reduced to constrained optimization problems, their
numerical resolution is generally so expensive in terms of CPU and memory
storage that strongly limits the applications to simplified configurations [4].
The development of flow control for three-dimensional turbulent flows encoun-
tered in many engineering applications or real-life systems is thus conditioned
by the use of Reduced-Order Models (ROMs). The objective of these mod-
els is to capture the essence of the physics of the system while reducing the
costs associated to the solution of non-linear state equations. In fluid me-
chanics, ROMs are mostly derived by Galerkin projection of first-principles
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equations, the Navier-Stokes equations, onto the Proper Orthogonal Decom-
position (POD) modes. These POD ROMs are known to be relatively fragile
when used for control design. This is partly due to the lack of adaptation of
the POD modes when the flow conditions are changing but this is also strongly
linked to the intrinsic truncation effect introduced by keeping only the most
energetic modes in the model [9]. For these reasons, it is necessary to develop
specific numerical methods for improving the accuracy of these reduced-order
models, the goal being to determine part or all of their coefficients.

This paper is a sequel of [8] in which we have compared different calibration
methods found in the literature and treated the ill-conditioned system by devel-
oping a Tikhonov-based regularization technique that was extending the ideas
of [1]. Here, we introduce a new regularized optimization problem aiming at
minimizing a weighted average of a normalized error, and a term measuring the
variation of the coefficients from their value obtained by Galerkin projection.
Moreover, by analogy of the L-curve method [17], we calculate the optimal
value of the regularization parameter by determining an expression for the in-
flection point of the curve. Finally, we bench mark our method with respect
to the Tikhonov-based calibration technique for a two-dimensional wake flow
around a cylinder.

This manuscript is organized as follows. Section 2 presents the Proper
Orthogonal Decomposition and describes how to derive a POD-based reduced-
order model for the Navier-Stokes equations. In Section 3.1, we define the
calibration as a minimization problem and introduce a regularized framework
in order to reduce the ill-conditioning of the linear system. Then, in Section 3.2,
we introduce the concept of filter factors for explaining the ill-conditioning and
detail how to calculate optimally the regularization parameter by determining
the inflection point of the L-curve. In Section 4, we then describe the bench
mark flow configuration used in this study and compare our approach to the
Tikhonov-based regularization method introduced in [8]. Finally, we conclude
and mention some perspectives (Section 5).

2 POD-based Reduced-Order Model

Reduced-order modeling is a way to remove un-necessary redundancies present
in a physical system to describe with a sufficient level of accuracy the dynamics
of a large-scale dynamical system with a low-order dynamical system. There is
a large variety of ROMs in the literature depending on the targeted applications
and on the flow physics. Here, we are focusing on those based on the Proper
Orthogonal Decomposition.

2.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) [18] is a powerful and efficient met-
hod introduced in Turbulence for extracting from a high-dimensional data set
obtained numerically or experimentally a low-dimensional approximation that
captures much of the phenomena of interest. The mathematical framework at
the heart of POD is developed in detail in [6] and two typical applications of
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POD to fluid flows is described in [7]. Here, for self-consistency of the paper, we
summarize the most important properties of POD for reduced-order modeling.

Let U = {u(x, tm) = um}m=1,...,Ns be a set of Ns snapshots taken over a
time interval [0, T ], with x ∈ Ω, the spatial domain of interest. The main idea
of POD is to determine a subspace S of dimension NPOD � Ns, such that the
error E (‖u− PSu‖H) is minimized. Here, || · ||H denotes a norm induced by
the inner product (·, ·)H defined on a Hilbert space H, PS is the orthogonal
projection onto the subspace S, and E(·) is an average operator over the snap-

shots, for instance an ensemble average (E (u) = 1
Ns

∑Ns

m=1 um). Note that

minimizing E
(
‖u− PSu‖2H

)
is equivalent to maximizing E

(
‖PSu‖2H

)
, since

‖u‖2H = ‖u − PSu‖2H + ‖PSu‖2H for any orthogonal projection PS . For our
purposes, the space H corresponds to L2(Ω), the space of square-integrable
functions on Ω. The POD procedure is then equivalent to minimize the ex-
pression:

1

Ns

Ns∑
m=1

∥∥∥∥um − PSum∥∥∥∥2
H

=
1

Ns

Ns∑
m=1

∥∥∥∥um − NPOD∑
j=1

aPj (tm)Φj

∥∥∥∥2
H

,

where {Φj}j=1,...,NPOD is a basis for the subspace S and {aPj }j=1,...,NPOD refer
to the temporal coefficients corresponding to the POD expansion (as indicated
by the superscript P ).

Solving this optimization problem leads [6] to the eigenvalue problem:

RΦj = λjΦj , j = 1, · · · , NPOD (2.1)

with R = E (u⊗ u∗), the two-point spatial correlation tensor. Here, ⊗ denotes
the dyadic product bewteen two vectors u and u∗ where the superscript ∗
indicates complex conjugate.

It can be shown [6] that the operator R is linear, self-adjoint and positive
semi-definite on H. If we further assume that R is compact, then there exists
a countable set of decreasing non-negative eigenvalues λj (j = 1, · · · , NPOD)
associated to Φj . These eigenfuntions may be chosen to be orthonormal for
the inner product defined on L2(Ω), i.e.

(Φj ,Φk)Ω =

∫
Ω

Φj(x) ·Φk(x) dx = δjk

with · the notation of the standard Euclidean inner product and δjk the Kro-
necker delta. The POD modes are ranked according to the magnitude of their
eigenvalue, with λ1 equal to the largest eigenvalue and λNPOD

equal to the
smallest one.

When the input data come from numerical simulations, it is in general much
more efficient in terms of computational cost to use the method of snapshots
introduced by [23] than the direct method defined in (2.1). The method of
snapshots consists of writing the POD eigenfunctions Φj as linear combinations
of the snapshots. After inserting this expression in (2.1), a new eigenvalue

problem for aPj =
(
aPj (t1), · · · , aPj (tNs

)
)T

is obtained:

CaPj = λja
P
j , j = 1, · · · , NPOD,

Math. Model. Anal., 21(1):47–62, 2016.
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where C is the two-point temporal correlation tensor. This tensor is defined as
Cij= 1

Ns

(
ui,uj

)
Ω

.

2.2 Galerkin projection

For deriving the reduced-order model, the next step is to project the governing
physical equations onto the POD basis. For incompressible flows, the motion
of the fluid is described by the incompressibility condition (∇ · u = 0) and the
Navier-Stokes equations are given by:

∂tu = N (u)−∇p with N (u) = − (u · ∇) u +
1

Re
∆u. (2.2)

In these equations, all the variables (the velocity vector u and the pressure
p) are assumed to be non-dimensional and Re is the Reynolds number. The
expansion of u over the POD modes Φj writes:

u(x, t) = um(x) +

NPOD∑
j=1

aj(t)Φj(x), (2.3)

where um = E(u). By substituting (2.3) into the Navier-Stokes equations (2.2),
and using the eigenfunctions Φi (i = 1, . . . , NGal � NPOD) as test functions
for a variational formulation, we obtain:

ȧRi (t) = AGPi +

NGal∑
j=1

BGPij aRj (t) +

NGal∑
j=1

NGal∑
k=1

CGPijk a
R
j (t)aRk (t) + Pi(t), (2.4)

aRi (0) = aPi (0) = (u(x, 0)− um(x),Φi)Ω . (2.5)

NGal corresponds to the number of Galerkin modes retained in the reduced-
order model. This number is determined based on the energetic content of the
first NGal POD modes as defined by the ratio

∑NGal

i=1 λi/
∑NPOD

i=1 λi.
The coefficients AGPi , BGPij , CGPijk and the pressure term Pi depend explicitly

on Φ and um and are given in Appendix. If the snapshots um contained in
the database are equal to zero on the boundary, then by linear combinations
Φi = 0 on ∂Ω and the pressure term Pi vanishes in (2.4). In most of the
applications [3, 10, 14], the contribution of Pi is simply neglected as a first
approximation. In the traditional POD Galerkin approach, the coefficients
AGPi , BGPij and CGPijk are then determined and the POD ROM (2.4) integrated

in time from (2.5). A set of predicted time histories for aRi (t) is obtained
and compared to aPi (t). In general, the original dynamics is not reproduced
perfectly well. This can be explained [8] by the structural instability of the
Galerkin projection, the truncation effect introduced in the Galerkin projection
and to a lower level to the neglect of the pressure term. For this reason, it is
then necessary to identify, or calibrate, whole or part of the coefficients.

To simplify the presentation, the POD Galerkin system (2.4) is written as:

ȧRi (t) = fi(Ai, Bi,:, Qi,:,:︸ ︷︷ ︸
yi

,aR(t)) for i = 1, . . . , NGal (2.6)
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with

fi(yi,a
R(t)) = Ai +

NGal∑
j=1

Bij a
R
j (t) +

NGal∑
j=1

j∑
k=1

Qijk a
R
j (t)aRk (t)

and aR(t) =
(
aR1 (t), · · · , aRNGal

(t)
)T

. The coefficients Qijk correspond to the
symmetric part of Cijk i.e. Qijk = 1/2 (Cijk + Cikj) for i, j = 1, · · · , NGal and
k = 1, · · · , j. Therefore, yi ∈ RNyi with Nyi = (NGal + 1)(NGal + 2)/2.

The POD Galerkin system (2.6) can be further simplified as follows:

ȧR(t) = f(y, aR(t)),

where

f =


f1
f2
...

fNGal

 ∈ RNGal and y =


y1
y2
...

yNGal

 ∈ RNy , Ny = NGalNyi .

3 Calibration method

3.1 General formulation

The aim of the POD-based reduced-order model is to reproduce accurately
the original dynamics given by the POD temporal eigenfunctions. It can be
shown [8] that this is equivalent of solving the minimization problem given by:

min
y
J (y) = 〈‖e(y, t)‖2Λ〉To , (3.1)

where the error e(y, t) is defined as follows:

e(·, t) : RNy → RNGal , y 7→ E(t)y︸ ︷︷ ︸
−f(y,aP (t))

+ e(0, t)︸ ︷︷ ︸
ȧP (t)

.

In (3.1), 〈·〉To
is a time average operator over [0, To] (To ≤ T ) and ‖ · ‖Λ is a

norm of RNGal . In this paper, 〈·〉To
corresponds to the arithmetic time-average

on Nt equally spaced elements of the interval [0, To]:

〈g(t)〉To
=

1

Nt

Nt∑
k=1

g(tk) with tk = (k − 1)∆t and ∆t =
To

Nt − 1
.

For the norm, we introduce Λ ∈ RNGal×NGal the symmetric definite positive
matrix associated to ‖ · ‖Λ and define for any e ∈ RNGal :

‖e‖2Λ = eTΛe.

Λ acts as a weight function by allowing to balance the importance of specific
POD modes. When Λ = INGal

, all the POD modes have the same importance
in terms of error.

Math. Model. Anal., 21(1):47–62, 2016.
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If Λ is a symmetric matrix, then the minimization problem (3.1) gives rise [8]
to the linear system

Ay = b, (3.2)

where

A = 〈ET (t)ΛE(t)〉To and b = −〈ET (t)Λe(0, t)〉To .

In practice, the matrix A is often ill-conditioned leading to solutions of (3.2)
that are very sensitive to perturbations [8]. To overcome this difficulty, an idea
is to determine the coefficients of calibration y as solutions of a regularized op-
timization problem aiming at minimizing a weighted average of the normalized
error, and a term measuring the variation of the coefficients from their value
obtained by POD Galerkin. Consequently, we introduce a new optimization
problem defined as:

min
y
Jα(y) =

J (y)

J (yGP )︸ ︷︷ ︸
I(y)

+α2 ‖y − yGP ‖2Π
‖yGP ‖2Π︸ ︷︷ ︸
E(y)

, (3.3)

where α ∈ [0, 1] is a weighting parameter. For α = 0, the calibrated model is
fully optimized whereas for α = 1, the coefficients from the Galerkin projection
are recovered. In (3.3), Π ∈ RNy×Ny is a semi-norm on the polynomial vector
space. For any y ∈ RNy , we have

‖y‖2Π = yTΠy,

where Π ∈ RNy×Ny is a non-negative symmetric matrix. For Π = INy , all the
coefficients are calibrated and have the same weight in the calibration.

Finally, it can be shown [8] that the minimization of Jα amounts to solve
the linear system:

Aαyα = bα, (3.4)

where

Aα =
1

J (yGP )
A+

α2

‖yGP ‖2Π
Π, bα =

1

J (yGP )
b +

α2

‖yGP ‖2Π
ΠyGP .

The parameter α which sets the level of regularization must be chosen with
care. In the next section, the optimal value of α is determined by adapting the
L-curve method proposed by [17] to our case.

3.2 Choice of the regularization parameter

3.2.1 Filter factors

To emphasize the role of the regularization parameter α in the calibration
procedure, we introduce in this section the concept of filter factors through
the use of the Singular Value Decomposition [15]. Hereafter, we consider to
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simplify the particular case where1 Λ = INGal
and Π = INy . Equivalently, the

solution yα of (3.4) is also solution of

A′αyα = b′α,

where
A′α = A+ α̃2I, b′α = b + α̃2yGP .

The coefficient α̃ is equal to αc with c2 =
J (yGP )

‖yGP ‖2 . Furthermore, the

matrix A can be written as:

A =
〈
ET (t)E(t)

〉
To

=
1

Nt

Nt∑
k=1

ET (tk)E(tk) = BTB,

where

B =
1√
Nt


E(t1)
E(t2)

...
E(tNt

)

 ∈ RNtNy×Ny .

We now apply the SVD to the matrix B. By definition, it comes:

B = UΣV T =

Ny∑
j=1

ujσjv
T
j ,

where U =
(
u1, · · · ,uNy

)
and V =

(
v1, · · · ,vNy

)
are orthogonal matrices con-

taining the left uj and right vj singular vectors. Here Σ = diag
(
σ1, · · · , σNy

)
is a diagonal matrix with the singular values σj arranged in non-increasing
order (σ1 ≥ σ2 ≥ · · · ≥ σNy ≥ 0).

By inserting the SVD of B into the expression of A′α, we obtain:

A′α = BTB + α̃2I

= (V ΣTUT )(UΣV T ) + α̃2I = V
(
Σ2 + α̃2I

)
V T .

Finally, the regularized solution is given by:

yα = V
(
Σ2 + α̃2I

)−1
V T

(
b + α̃2yGP

)
=

Ny∑
j=1

(
σ2
j

σ2
j + α̃2

)(
vTj b

σ2
j

)
vj +

(
α̃2

σ2
j + α̃2

)
vTj yGPvj

=

Ny∑
j=1

ϕj

(
vTj b

σ2
j

)
vj + ψj

(
vTj yGP

)
vj ,

(3.5)

where

ϕj =
σ2
j

σ2
j + α̃2

and ψj =
α̃2

σ2
j + α̃2

(3.6)

1 For sake of clarity, the subscripts corresponding to the weighting matrices and to the size
of the identity matrix are omitted.
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are the filter factors. For α = 0 (no regularization), the solution (3.5) becomes

yα =

Ny∑
j=1

vTj b

σ2
j

vj .

This expression clearly illustrates what happens numerically if the linear system
is not regularized. Indeed, if the Fourier coefficients

∣∣vTj b
∣∣, corresponding to

the smallest singular values σj do not decrease sufficiently fast compared to
the singular values, then the solution yα is dominated by the terms in the sum
corresponding to the smallest σj .
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Figure 1. Discrete Picard condition corresponding to the minimization of J (y) with
determination of all the coefficients (constant, linear and quadratic) for the cylinder wake

configuration presented in Section 4.

This behavior can be assessed by inspecting the discrete Picard condition
plotted in Figure 1 and discussed in [16]. The singular values decay faster than
the Fourier coefficients and, as a result, the solution presents many oscillations
around zero, and thus appears to be completely random. To regularize the
problem, we then filter out the contributions to the solution corresponding
to the smallest singular values by using the filter factor ϕj . Obviously, as

σj decreases, ϕj tends to zero, meaning that the contributions
|vT

j b|
σ2
j

to the

solution yα from the smallest σj are damped. In addition, as σj decreases, ψj
tends to one, so that each solution component filtered out by ϕj is replaced
by (vTj yGP )vj . As a consequence, if the majority of the singular values are
approximately equal to zero (ϕj ≈ 0, ψj ≈ 1), then

yα ≈
Ny∑
j=1

(
vTj yGP

)
vj = yGP

and we recover the coefficients determined by Galerkin projection.
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3.2.2 Optimal value of α

A critical aspect of any regularization method is how to determine optimally
the weighting parameter α or in other words how to find a fair balance between
the minimization of the residual norm of (3.4) and the norm of yα. By analogy
of the so-called L-curve method introduced by [17], a way is to display in log-log
scale the variation of I(y) with respect to E(y). As long as the uncorrelated
noise in bα dominates the more highly correlated noise in Aα, this plot exhibits
a typical “L” shape, and the optimal value of the regularization parameter α
is considered intuitively to be at the corner of the L wherein both the residual
and the norm simultaneously attain low values (see Figure 2). In [5], different
iterative methods were used for the determination of a suitable value of the
regularization parameter. Hereafter, we determine directly the curvature of
the L-curve.
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y
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Figure 2. L-curve corresponding to the minimization of Jα(y) with determination of all
the coefficients (constant, linear and quadratic) for the cylinder wake configuration

presented in Section 4.

The corner may be defined as a point where the curve (log(I(y)), log(E(y)))
has its maximum curvature. Let us introduce some notations:

ρ = I(yα), η = E(yα), ρ̂ = log(ρ), η̂ = log(η).

The signed curvature of the L-curve is given by:

κ(α) =
ρ̂′η̂′′− ρ̂′η̂′′

[(ρ̂′)2 + (η̂′)2]
3/2

,

where ρ̂′, η̂′, ρ̂′′, η̂′′ are the first and second derivatives of ρ̂ and η̂ with respect
to α. The goal is now to derive the expressions of these different derivatives
for estimating κ for our linear problem.

The first and second logarithmic derivatives of η and ρ are given by:

ρ̂′ =
ρ′

ρ
, η̂′ =

η′

η
, ρ̂′′ =

ρ′′ρ− (ρ′)
2

ρ2
, η̂′′ =

η′′η − (η′)
2

η2
.

Math. Model. Anal., 21(1):47–62, 2016.
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The next step involves the computation of the first and second derivatives
of ρ and η with respect to α. For ρ, we obtain:

ρ′ =
2

J (yGP )

〈
eT (yα, t)

∂

∂α
(e(yα, t))

〉
To

=
2

J (yGP )

〈
eT (yα, t)E(t)

〉
To

∂yα
∂α

=
2

J (yGP )
(Ayα − b)T

∂yα
∂α

and

ρ′′ =
2

J (yGP )

(
(Ayα − b)T

∂2yα
∂2α

+

(
∂yα
∂α

)T (
∂yα
∂α

))
,

whereas for η, we find:

η′ =
2

‖yGP ‖2
(
yα − yGP

)T ∂yα
∂α

,

η′′ =
2

‖yGP ‖2
((

yα − yGP
)T ∂2yα

∂2α
+

(
∂yα
∂α

)T (
∂yα
∂α

))
.

Finally, the computation of the first and second derivative of yα with respect
to α is straightforward since in (3.5), only the filter factors ϕj and ψj depend
on α.

4 Numerical results

The calibration approach presented in Section 3 is now applied to a two-
dimensional incompressible cylinder wake flow at Re = 200. The database
was computed using a finite-element code (DNS code Icare, see [13] for details)
and consists of Ns = 200 snapshots of the flow velocity taken evenly over a time
horizon Ts = 6 i.e. over more than one period of vortex shedding (Tvs = 5).
Typical iso-values of the longitudinal velocity are shown in Figure 3.

Figure 3. Cylinder wake flow at Re = 200. Iso-values of the longitudinal velocity
fluctuation where the Bénard von-Kármán vortex shedding is clearly visible.

The method of snapshots [23] is then applied to the velocity fluctuation.
The relative kinetic energy is plotted in logarithmic scale for the first 40 POD
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modes in Figure 4. Arbitrarily, 99.9% of the flow energy contained in the
cylinder wake is judged sufficient for describing correctly the original dynamics
with a reduced-order model. This figure indicates clearly that the first six POD
modes meet this criterion. For this reason, we consider NGal = 6 to derive the
POD ROM.
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Figure 4. POD eigenvalues in logarithmic scale. ENs corresponds to twice the energy

contained in the database (ENs =
∑Ns
j=1 λj).

After determination of the Galerkin coefficients of (2.4), the POD ROM
is integrated in time with a classical fourth-order Runge-Kutta scheme and a
time step of 10−3Ts. A set of predicted time histories aRi (t) is obtained for
i = 1, · · · , NGal, and compared to the POD temporal eigenfunctions aPi (t). As
shown in Figure 5, the original dynamics is globally well reproduced but the
accuracy is not perfect.
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Figure 5. Comparison between the temporal evolutions of the projected (POD) and
predicted (POD ROM) mode amplitudes when the Galerkin coefficients are used for

integrating the POD ROM.

Depending on the targeted application of the reduced-order model, these
representation errors may have no consequence or may lead to the failure of
the application as it is the case for a model-based control approach.

To assess the numerical efficiency of the calibration procedure presented in
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Section 3, we now use the coefficients obtained as solution of the minimization
problem (3.3) where α is determined as in Section 3.2.2.
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Figure 6. Comparison between the temporal evolutions of the projected (POD) and
predicted (POD ROM) mode amplitudes. The POD ROM is calibrated by minimizing Jα,

with the determination of all the coefficients (constant, linear and quadratic). The
regularization parameter α is determined at the inflection point of the L-curve.

In Figure 6, the temporal evolutions of the POD modes are compared with
those predicted by the calibrated reduced-order model. Contrary to the results
presented in Figure 5 there is no visible difference in the dynamics. The im-
mediate consequence is that the modal energy distribution associated to the
calibrated model now corresponds perfectly to the POD energy (see Figure 7).

The difference between different methods of calibration can be analyzed
precisely by introducing the modal errors Ji defined for Λ = INGal

as:

J (y) =

NGal∑
i=1

Ji(y).

In Figure 8, we compare the modal errors obtained with the proposed cal-
ibration method to those determined with the calibration method based on
Tikhonov regularization developed in [8]. We obtain that for the two first
POD modes (the most energetic) the Tikhonov-based regularization method
performs better than the proposed method, whereas for the higher modes the
opposite behavior is found.

These slight reductions of the modal errors for the higher POD modes are an
important feature of our method. Indeed, in the practical configurations (3-D
turbulent flow obtained by numerical simulations or challenging experimental
data) many more POD modes are active and then necessary to derive a realistic
POD ROM. It is then critical to have a calibration method that does not only
perform well for the higher energetic modes but also for the lower ones.
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regularization developed in [8].

5 Conclusions

We have introduced a new regularized calibration method by defining a cost
functional aiming at minimizing a weighted combination of normalized error,
and a term measuring the variation of the coefficients from their value ob-
tained classically by Galerkin projection. The efficiency of our approach was
demonstrated for a two-dimensional cylinder wake flow by comparing it with
the Tikhonov-based calibration method introduced in [8]. An important fea-
ture of our approach is that it performs better for the higher POD modes (less
energetic) that are known to be calibrated with more difficulties. The suc-
cess of our approach is strongly related to the optimal determination of the
regularization parameter inspired by the L-curve method.
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As perspectives, we propose to reformulate the proposed method as a multi-
criteria optimization problem and to use a Nash equilibrium concept to solve
it. The main idea is to search for the solution as the equilibrium point of a sim-
ulated dynamic game in which the set of parameters is split into subsets, each
subset being considered as the strategy or territory of a given functional. This
framework was already used in [11,20,22] to optimize a business-jet wingshape.
We aim also to extend the concept of parametrization adaptivity, introduced
and demonstrated in [12,19,21,24,25], in this context of reduced-order models.
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Appendix: POD ROM coefficients

The coefficients of the POD ROM (2.4) obtained by Galerkin projection (GP)
are:

AGPi =− (Φi, (um · ∇)um)Ω −
1

Re

(
(∇⊗Φi)

T , ∇⊗ um
)
Ω

+
1

Re
[(∇⊗ um)Φi]∂Ω ,

BGPij =− (Φi, (um · ∇)Φj)Ω − (Φi, (Φj · ∇)um)Ω

− 1

Re

(
(∇⊗Φi)

T , ∇⊗Φj

)
Ω

+
1

Re
[(∇⊗Φj)Φi]∂Ω ,

CGPijk =− (Φi, (Φj · ∇)Φk)Ω ,

Pi =− (∇p,Φi)Ω = [pΦi]∂Ω ,

with [u]∂Ω =

∫
∂Ω

u · n dx and
(
P ,Q

)
Ω

=

∫
Ω

P : Qdx =

nc∑
i,j=1

∫
Ω

PijQji dx.

Here, n is the outward unit normal at the boundary surface ∂Ω and nc is the
number of components of u.
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