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Abstract. In order to bring a broader outlook on some unusual irregularities ob-
served in wave motions and liquids’ movements, we explore the possibility of extending
the analysis of Korteweg–de Vries–Burgers equation with two perturbation’s levels to
the concepts of fractional differentiation with no singularity. We make use of the
newly developed Caputo-Fabrizio fractional derivative with no singular kernel to es-
tablish the model. For existence and uniqueness of the continuous solution to the
model, conditions on the perturbation parameters ν, µ and the derivative order α are
provided. Numerical approximations are performed for some values of the perturba-
tion parameters. This shows similar behaviors of the solution for close values of the
fractional order α.

Keywords: Caputo-Fabrizio fractional derivative, non-linear Korteweg-de Vries-Burgers

equation, existence and uniqueness, perturbation, numerical solutions.

AMS Subject Classification: 26A33; 34A12; 35D05.

1 Introduction

Most of real and complex world problems appearing in many branches of en-
gineering, natural sciences and technology are mathematically described via
nonlinear partial differential equations, often very hard to handle in terms of
providing their exact behavior or expressing their exact solutions. However, to-
day it is widely known that the Newtonian concept of derivative can no longer
satisfy all the complexity of real life problems and many of those problems re-
main unsolved and open [1, 2, 9, 10, 12, 15, 19, 20]. Among those complex issues
we count phenomena related to the study of chaos in waves motion and soli-
tary waves. Hence, the Korteweg–de Vries–Burgers (KDVB) equation is used
to describe and analyze some physical contexts related to liquids and waves
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dynamics. For example, it has be used in [14] to investigate the propagation of
waves in an elastic tube filled with a viscous fluid, in [4] to analyze the propa-
gation of undular bores in shallow water and in [11, 13] to study the behavior
of weakly nonlinear plasma waves with certain dissipative effects. The authors
in [8] performed a qualitative analysis to a two-dimensional autonomous KDVB
equation and pointed out that under certain conditions, the Korteweg-de Vries-
Burgers equation has neither nontrivial bell-profile solitary waves, nor periodic
waves.

However, due to increasing irregularities and nonlinearities observed in liq-
uids and waves motion in general [5,8,11,13,16,21], it is necessity to establish
broader outlooks on them. This is why there is a growing volition to extend
classical models to new models with time fractional derivative and investigate
them with various and different techniques. In this paper, we investigate the
possibility of extending the analysis of the KDVB equation to the concept of
time fractional differentiation. The derivative in use here is not any one, but the
newly introduced time fractional order derivative without singular kernel [7,17].

2 History of fractional order derivatives with no singular
kernel

One of the greatest attempts to enhance nonlinear mathematical models was
to introduce the concept of derivative with fractional order. The literature
comprises many definitions of fractional derivative ranging from local to non-
local type [6, 10, 19, 20]. The most popular remain the Riemann–Liouville and
the Caputo derivatives respectively defined as

Dα
x (u(x)) =

1

Γ (n− α)

(
d

dx

)n ∫ x

0

(x− t)n−α−1u (t) dt, n− 1 < α ≤ n

and

Dα
x (u(x)) =

1

Γ (n− α)

∫ x

0

(x− t)n−α−1
(
d

dt

)n
u (t) dt, n− 1 < α ≤ n.

However, they appear to be particularly suitable to describe physiscal phe-
nomena, related to fatigue, damage and electromagnetic hysteresis, but are in-
capable of properly describing some behavior observed in materials with huge
heterogeneities and structures with different scales. Hence, Caputo and Fab-
rizio [7] developed and proposed a new version of derivative with fraction order
that is defined as follows:

Definition 1 [Caputo-Fabrizio derivative with fractional order
(CFFD)]. Let u be a function in H1(a; b); b > a; α ∈ [0; 1] then, the new
Caputo derivative of fractional order α is defined as:

cfDα
t u(t) =

M(α)

(1− α)

∫ t

0

u̇ (τ) exp

(
−α(t− τ)

1− α

)
dτ,
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where M(α) is a normalization function such that M(0) = M(1) = 1 . But, for
the function that does not belong to H1(a; b), we defined its Caputo-Fabrizio
fractional as

cfDα
t u(t) =

αM(α)

(1− α)

∫ t

0

(u(t)− u (τ)) exp

(
−α(t− τ)

1− α

)
dτ.

The definition of the CFFD was improved by Losada and Nieto [17] to become

cfDα
t u(t) =

(2− α)M(α)

2 (1− α)

∫ t

0

u̇ (τ) exp

(
−α(t− τ)

1− α

)
dτ. (2.1)

Unlike the classical version of Caputo fractional order derivative [6, 18], the
new CFFD has no singular kernel due to the substitution of the kernel 1

(t−τ)α
appearing in the classical definition. Moreover the CFFD satisfies the following
relations for any suitable function u:

lim
α→1

cfDα
t u(t) = u̇ (t) , lim

α→0

cfDα
t u(t) = u (t)− u(a), (2.2)

where a is the starting point of the integro-differentiation. The fractional inte-
gral (anti-derivative) associated to the CFFD was proposed as well by Losada
and Nieto and proved to be:

cfIαt u(t) =
2(1− α)

(2− α)M(α)
u(t) +

2α

(2− α)M(α)

∫ t

0

u (τ) dτ, (2.3)

α ∈ [0, 1] t ≥ 0. This is anti-derivative is seen as kind of an average between
function u and its integral of order one. The Laplace transform of the Caputo-
Fabrizio fractional derivative (CFFD) is given by

L (Dα
t u(t), s) =

sũ(x, s)− u0(x)

s+ α(1− s)
,

where ũ(x, s) is the Laplace transform L(u(x, t), s) of u(x, t).
Moreover, in reaction to the newly introduced Caputo-Fabrizio fractional

derivative without singular kernel and being aware of the conflicting situations
that exist between the classical Riemann-Liouville and Caputo derivatives,
Doungmo Goufo and Atangana recently developed a new definition of frac-
tional derivative generated by modification of the classical Riemann-Liouville
definition and called the new Riemann-Liouville fractional derivative without
singular kernel (NRLFD) expressed for α ∈ [0, 1] as

aD
α
t u(t) =

M(α)

1− α
d

dt

∫ t

a

u (τ) exp

(
− α

1− α
(t− τ)

)
dτ.

Again, contrary to the classical version of Riemann-Liouville fractional deriva-
tive, the NRLFD is without any singularity at t = τ and satisfies

lim
α→1

aD
α
t u(t) = u̇ (t) , lim

α→0
aD

α
t u(t) = u (t) .
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The Laplace transform of the NRLFD was proved to be

L
(
D−αt u(t), s

)
=

sM(α)

s+ α(1− s)
L(u(t), s).

The analyzis in this paper is performed making use of the new Caputo-Fabrizio
fractional derivative without any singularity.

3 Existence and uniqueness

We aim to show in this section the existence and uniqueness of the Korteweg–de
Vries–Burgers (KDVB) equation with two perturbation’s levels using the new
Caputo-Fabrizio fractional derivative with no singular kernel. We make use of
the improved version (2.1) because of its anti-derivative (2.3) that is explicitly
and fully given. Hence, the equation reads as

cfDα
t u(x, t) = νuxx − 2uux − µuxxx, (3.1)

where ν and µ are the perturbation parameters, cfDα
t is the CFFD given

in (2.1) with initial condition

u(x, 0) = h(x). (3.2)

To proceed with existence results for the model (3.1)–(3.2), we exploit the
expression of integral (2.3). Then,

u(x, t)− u(x, 0) =cf Iαt (νuxx − 2uux − µuxxx) .

Equivalently,

u(x, t)− u(x, 0) =
2(1− α)

(2− α)M(α)
(νuxx − 2uux − µuxxx) (3.3)

+
2α

(2− α)M(α)

∫ t

0

(νuxx − 2uux − µuxxx) dτ.

Let us now put

N (x, t, u, ν, µ) = νuxx − 2uux − µuxxx.

We have to find a positive real number L such that

‖N (x, t, u, ν, µ)−N (x, t, v, ν, µ)‖ ≤ L‖u− v‖.

In fact

N (x, t, u, ν, µ)−N (x, t, v, ν, µ)

= (νuxx − 2uux − µuxxx)− (νvxx − 2vvx − µvxxx)

= ν(uxx − vxx) + 2(vvx − uux) + µ(vxxx − uxxx).

Math. Model. Anal., 21(2):188–198, 2016.
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Exploiting the norm’s properties leads to

‖N (x, t, u, ν, µ)−N (x, t, v, ν, µ)‖
= ‖ν(uxx − vxx) + 2(vvx − uux) + µ(vxxx − uxxx)‖
≤ ν‖uxx − vxx‖+ 2‖vvx − uux‖+ µ‖vxxx − uxxx‖
≤ ν‖∂xx(u− v)‖+ ‖∂x(v2 − u2)‖+ µ‖∂xxx(v − u)‖.

Because of assumption that u and v are bounded, there is a positive constant
c > 0 such that ‖u‖ ≤ c and ‖v‖ ≤ c. Then, their first order derivative function
∂x satisfies the Lipschitz condition and there is a number L1 ≥ 0 such that

‖N (x, t, u, ν, µ)−N (x, t, v, ν, µ) ‖
≤ νL2

1‖u− v‖+ L1‖v2 − u2‖+ µL3
1‖u− v‖

≤ νL2
1‖u− v‖+ L1‖u+ v‖ · ‖u− v‖+ µL3

1‖u− v‖
≤
[
νL2

1 + 2cL1 + µL3
1

]
‖u− v‖ ,

where we have used the bounded condition (3.2). Hence,

‖N (x, t, u, ν, µ)−N (x, t, v, ν, µ)‖ ≤ L‖u− v‖

with L = νL2
1 + 2cL1 + µL3

1. This shows the Lipschitz condition for N . Now
we can state the following theorem.

Proposition 1. Under the condition that 2L(1−α)
(2−α)M(α) + 2Ltα

(2−α)M(α) < 1, then the

non-linear time fractional Korteweg–de Vries–Burgers model with two pertur-
bation’s levels and no singular kernel{

cfDα
t u(x, t) = νuxx − 2uux − µuxxx

u(x, 0) = h(x)
(3.4)

admits a unique solution that is continuous.

Proof. To prove it, we consider (3.3):

u(x, t)− u(x, 0)

=
2(1− α)

(2− α)M(α)
N (x, t, u, ν, µ) +

2α

(2− α)M(α)

∫ t

0

N (x, τ, u, ν, µ)dτ,

that suggests the following recurrence formula

u0(x, t) = u(x, 0),

un(x, t) =
2(1− α)

(2− α)M(α)
N (x, t, un−1, ν, µ)

+
2α

(2− α)M(α)

∫ t

0

N (x, τ, un−1, ν, µ)dτ.
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Let
ū(x, t) = lim

n→∞
un(x, t). (3.5)

We aim to show that ū(x, t) = u(x, t) is a solution that is continuous. Let us
set

Gn(x, t) = un(x, t)− un−1(x, t).

It is obvious that

un(x, t) =

n∑
m=0

Gm(x, t).

Furthermore, in a more detailed way we have

Gn(x, t) =
2(1− α)

(2− α)M(α)
[N (x, t, un−1, ν, µ)−N (x, t, un−2, ν, µ)]

+
2α

(2− α)M(α)

∫ t

0

(N (x, τ, un−1, ν, µ)−N (x, τ, un−2, ν, µ)) dτ.

Taking the norm of the later equation gives

‖Gn(x, t)‖ = ‖un(x, t)− un−1(x, t)‖

≤ 2(1− α)

(2− α)M(α)
‖N (x, t, un−1, ν, µ)−N (x, t, un−2, ν, µ)‖

+
2α

(2− α)M(α)

∥∥∥∥∫ t

0

[N (x, τ, un−1, ν, µ)−N (x, τ, un−2, ν, µ)] dτ

∥∥∥∥
≤ 2(1− α)

(2− α)M(α)
‖N (x, t, un−1, ν, µ)−N (x, t, un−2, ν, µ)‖

+
2α

(2− α)M(α)

∫ t

0

‖N (x, τ, un−1, ν, µ)−N (x, τ, un−2, ν, µ)‖ dτ.

Using the Lipschitz condition for N yields

‖Gn(x, t)‖ ≤ 2(1− α)

(2− α)M(α)
L‖un−1−un−2‖+

2Lα

(2− α)M(α)

∫ t

0

‖un−1−un−2‖dτ

equivalent to

‖Gn(x, t)‖ ≤ 2(1− α)L

(2− α)M(α)
‖Gn−1‖+

2Lα

(2− α)M(α)

∫ t

0

‖Gn−1‖dτ. (3.6)

The recursive’s principle from (3.6) gives

‖Gn(x, t)‖ ≤
[(

2(1− α)L

(2− α)M(α)

)n
+

(
2Lαt

(2− α)M(α)

)n]
u(x, 0),

which proves that the solution exists and is continuous. To show that

u(x, t) = lim
n→∞

un(x, t)

Math. Model. Anal., 21(2):188–198, 2016.
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is the solution of the model (3.4), we let

Zn(x, t) = ū(x, t)− un(x, t) for n ∈ N.

Hence, from (3.5), the difference Zn(x, t) between ū(x, t) and un(x, t) should
tend to zero as n→∞. Indeed

ū− un−1 =
2(1− α)

(2− α)M(α)
[N (x, t, u, ν, µ)−N (x, t, un, ν, µ)]

+
2α

(2− α)M(α)

∫ t

0

(N (x, τ, u, ν, µ)−N (x, τ, un, ν, µ)) dτ,

giving

‖ū(x, t)− un+1‖ ≤
2(1− α)

(2− α)M(α)
‖N (x, t, u, ν, µ)−N (x, t, un, ν, µ)‖

+
2α

(2− α)M(α)

∫ t

0

‖N (x, τ, u, ν, µ)−N (x, τ, un, ν, µ)‖dτ

≤ 2L(1− α)

(2− α)M(α)
‖u− un‖+

2Ltα

(2− α)M(α)

∫ t

0

‖u− un‖dτ

≤ 2L(1− α)

(2− α)M(α)
‖Zn‖+

2Ltα

(2− α)M(α)

∫ t

0

‖Zn‖dτ.

Then indeed when n→∞, then Zn → 0 and the right hand side gives

lim
n→∞

un = ū.

We can take u(x, t) = ū(x, t) as a solution of (3.4) that is continuous. Further-
more, applying the lipschitz condition for N , we have the following:

u(x, t)− 2(1− α)

(2− α)M(α)
N (x, t, u, ν, µ)− 2α

(2− α)M(α)

∫ t

0

N (x, t, u, ν, µ)dτ

= Rn(x, t) +
2(1− α)

(2− α)M(α)
(N (x, τ, un−1, ν, µ)−N (x, t, u, ν, µ))

+
2α

(2− α)M(α)

∫ t

0

(N (x, τ, un−1, ν, µ)−N (x, t, u, ν, µ)) dτ.

This yields∥∥∥∥u(x, t)− 2(1− α)

(2− α)M(α)
N (x, t, u, ν, µ)− 2α

(2− α)M(α)

∫ t

0

N (x, t, u, ν, µ)dτ

∥∥∥∥
= ‖Gn(x, t)‖+

(
2(1− α)

(2− α)M(α)
+

2θtα

(2− α)M(α)

)
‖Gn−1(x, t)‖ .

Passing to the limit when n→ 0 and considering the initial condition, we have

u(x, t)=u(x, 0)+
2(1− α)

(2−α)M(α)
N (x, t, u, ν, µ)+

2α

(2−α)M(α)

∫ t

0

N (x, t, u, ν, µ)dτ.
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For uniqueness we consider u and v be two different solutions of the model (3.4)
then, the Lipschitz condition for N yields

‖u− v‖ ≤ 2L(1− α)

(2− α)M(α)
‖u− v‖+

2Ltα

(2− α)M(α)
‖u− v‖

rearranged to be

‖u− v‖
(

1− 2L(1− α)

(2− α)M(α)
− 2Ltα

(2− α)M(α)

)
≤ 0.

Then, ‖u− v‖ = 0 if

1 >
2L(1− α)

(2− α)M(α)
+

2Ltα

(2− α)M(α)

and the proposition is proved. ut

3.1 Numerical approximations scheme

In order to perform some simulations of the solution to the model (3.4) and com-
pare with existing ones, we make use of the numerical approximation scheme
in space and time of the new Caputo-Fabrizio fractional derivative that was
recently developed in [3] where the stability and convergence analysis are dis-
cussed. In the following lines, we recall important points of the scheme. Indeed,
for the finite difference scheme, we take into account a positive integer N ∈ N
so as to define the grids’ sizes to be s = 1/N and the time grid points tk = ks
taken in the time interval [0, T ] with k = 0, 1, 2, · · ·M . The function u takes
the value uk = u(tk) at the grid point tk. Using the following formula at tk,

Dα
t u(tk) =

(2− α)αM(α)

2 (1− α)

∫ tk

0

u̇(τ) exp

(
− α

1− α
(tk − τ)

)
dτ

and using the first order approximation du
dt = u(tk+1)−u(tk)

s +O(s) in

Dα
t u(tk) =

(2− α)αM(α)

2 (1− α)

×

[
k∑
i=1

∫ is

(i−1)s

(
ui+1 − ui

k
+O(s)

)
exp

(
− α

1− α
(tk − τ)

)
dτ

]
,

the authors in [3] were able to prove the following theorem:

Theorem 1. Let u(: (a, b) −→ R an arbitrary real and locally integrable func-
tion, tk ∈ (a, b) and α a number in [0, 1] then, the first order approximation of
the new Caputo-Fabrizio time fractional derivative with no singular kernel at a
point tk is given by

Dα
t u(tk) =

M(α)

α

[
k∑
i=1

(
ui+1 − ui

s

)
θi,s

]
+O(s2) (3.7)

Math. Model. Anal., 21(2):188–198, 2016.



196 E.F. Doungmo Goufo

with the coefficients

θi,s = exp

(
−αs
1− α

(k − i)
)
− exp

(
−αs
1− α

(k − i+ 1)

)
.

Now, applying the scheme (3.7) to the model (3.4), approximate solutions are
plotted in Figure 1) for M = 100, s = 0.02 according to the initial condition
h(x) = cos(πx) with the two perturbation parameters taking the values ν = 5,
µ = 3 and a) α = 0.05, b) α = 0.15, c) α = 0.85, d) α = 0.95.

a) b)

c) d)

Figure 1. Solution u(x, t) for ν = 5, µ = 3 and: a) α = 0.05, b) α = 0.15, c) α = 0.85,
d) α = 0.95

4 Concluding Remarks

We have proved that it is possible to extend the analysis of the Korteweg–de
Vries–Burgers equation with two perturbation’s levels to the concepts of frac-
tional differentiation, using the newly introduced Caputo-Fabrizio time frac-
tional derivative with no singularity. We established conditions on the per-
turbation parameters ν, µ and the derivative order α, under which the model
admits a unique solution that is continuous. Numerical approximations have
been provided, clearly showing similar behavior of the solutions for closely
different values of the parameters involved. This work is different from the
ones presented in the previous literature and provides the new Caputo-Fabrizio
derivative with a precious and promising recognition in mathematical and en-
gineering modeling.
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