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Abstract. This paper studies a fourth-order parabolic equation ut + ε(unuxxx)x −
δ|uxx|muxx = 0 with the boundary conditions uxx = 0, u = l and the initial condition
u(x, 0) = u0(x). The existence of solutions is obtained from the semidiscretization
method. When the initial function is close to a constant steady state solution, the
uniqueness of the bounded solutions is obtained. Finally, by the iteration technique
from its semi-discrete problem, the solution exponentially converges to a constant
steady state solution as the time tends to infinity.
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1 Introduction

In recent years, the research of nonlinear fourth-order parabolic equations has
become a hot topic. Specially, the typical models include the Cahn-Hilliard
equation and the thin film equation, which can be used to describe the evolution
of a conserved concentration field during phase separation and analyze the
motion of a very thin layer of viscous incompressible fluids along an inclined
plane, respectively.

The Cahn-Hilliard equation(see [9]) has the form ut + ∇ · (k∇(ε2∆u +
A′(u))) = 0 where the constants k, A, ε2 denote the atomic mobility, the free
energy, the parameter proportional to the interface energy respectively and
−(ε2∆u + A′(u)) is a kind of chemical potential. Elliott, Zheng and Garcke
in the paper [11,12] have studied this equation with a linear and a degenerate
mobility respectively. Xu, Zhou in [18,19] and Liang, Zheng in [14] applied the
semi-discrete method to get the existence and stability results to this kind of
model with a gradient mobility.
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For the thin film equation, it can be described by a class of fourth order
degenerate parabolic equations(see [15]):

ut + (m(u)uxxx + f(u, ux, uxx))x = 0

with the function m(u) = 0 when u = 0. Appropriate forms have been applied
in modeling fluid flows such as draining of foams and the movement of contact
lenses. For example, the surface tension driven thin film flows can be modeled
by using the following fourth order degenerate parabolic equation:

∂u

∂t
+

∂

∂x

(
u3

3
(Chxxx − δBhx cosα+B sinα) +A

ux
u

+
M

2
σxu

2

)
= 0.

The first result in mathematics was given by Bernis and Friedman [3] to the
equation ut + (unuxxx)x = 0 and they proved the existence and nonnegativity
of weak solutions. The existence in the distributional sense and the long time
decay were studied by Bertozzi and Pugh [5] for the thin film equation with a
second-order diffusion term in the one-dimensional space. Boutat, Hilout, J.
E. Rakotoson and J. M. Rakotoson [8] studied a generalized thin-film equation
with period boundary in multidimensional space. Moreover, the paper [13]
investigated the existence of the weak solutions and strong solutions with the
initial function near a positive constant steady state solution. For other results,
the readers may refer to the papers [1, 2, 4, 7, 16].

For the semi-discretization method, the paper [10] has developed a unifying
method to prove the existence and uniqueness of weak solutions for a non-
uniformly parabolic equation. The reader may also see [13], [14] and [6] to
know about the applications of semi-discretization method in the fourth order
parabolic equations and the p-Laplacian equations. For this paper, we can
obtain some accurate estimates by applying the semi-discretization method
and we will show the effect of the second order nonlinear diffusion term for the
fourth order parabolic equation.

In this paper, we mainly concern the following thin film model with a
second-order diffusion term:

ut + ε(unuxxx)x − δ|uxx|muxx = 0 in QT , (1.1)

uxx = 0, u = l on Γ, (1.2)

u(x, 0) = u0(x) on Ω, (1.3)

where Ω = (0, 1), QT = Ω × (0, T ), Γ = ∂Ω × (0, T ), n, ε, δ, l are all positive
constants and m is a nonnegative constant. If letting V = −uxx, the equation
(1.1) can be considered as a second-order elliptic-parabolic system. The form
is as the following

ut − ε(unVx)x + δ|V |mV = 0 in QT , (1.4)

− uxx = V in QT , (1.5)

V = 0, u = l on Γ, (1.6)

u(x, 0) = u0(x) on Ω. (1.7)
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Our elementary idea is to use the system (1.4)–(1.5) as a transition to get the
existence and regularity for the equation (1.1). From the condition (1.6), we
know that the solution u is positive near the boundary ∂Ω. Thus, we want to
show that the positivity of the solution can be preserved if the initial function
u0 is close to the constant boundary l. In order to get the existence of the
system (1.4)–(1.7), we will introduce a semi-discrete problem and construct a
class of approximating solutions.

The weak solutions are shown as follow:

Theorem 1. (Existence) Let γ be a positive constant such that ‖u0−l‖H1
0 (Ω) ≤

γ < l. Then there exists a positive weak solution of (1.4)-(1.7) satisfying

(1) ∂u
∂t ∈ L

m+2
m+1 (0, T ;H−1(Ω)), u ∈ L∞(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)), u ≥

l − γ > 0, V ∈ L2(0, T ;H1
0 (Ω)), V ∈ Lm+2(QT );

(2) For each φ ∈ C∞0 (QT ),∫ T

0

〈∂u
∂t
, φ
〉
dt+ ε

∫∫
QT

unVxφxdxdt+ δ

∫∫
QT

|V |mV φdxdt = 0,

−
∫∫

QT

uxxφdxdt =

∫∫
QT

V φdxdt,

u(0) = u0(x) a.e. in Ω,

where < ·, · > denotes the inner product between H−1 and H1
0 .

Remark 1. By the condition ‖u0 − l‖H1
0 (Ω) ≤ γ < l and the embedding ‖u0 −

l‖L∞(Ω) ≤ ‖u0 − l‖H1
0 (Ω), we have u0 ≥ l − γ > 0. It means that the method

in Theorem 1 can not be applied in multidimensional space directly.

Substituting the relation V = −uxx into (1.4) in the sense of distribution,
we can get the existence for the original equation (1.1).

Corollary 1. Suppose that the conditions of Theorem 1 hold and the estimate
‖u0 − l‖H1

0 (Ω) ≤ γ < l is valid. Then there exists a weak solution of (1.1)-(1.3)
satisfying

(1) ∂u
∂t ∈ L

m+2
m+1 (0, T ;H−1(Ω)), u ∈ L∞(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)),

u ≥ l − γ > 0, uxx ∈ L2(0, T ;H1
0 (Ω)) ∩ Lm+2(QT );

(2) For each φ ∈ C∞0 (QT ),∫ T

0

〈∂u
∂t
, φ
〉
dt− ε

∫∫
QT

unuxxxφxdxdt− δ
∫∫

QT

|uxx|muxxφdxdt = 0,

u(0) = u0(x) a.e. in Ω.

If γ (see Theorem 1) is proper small, we can get the uniqueness as following.

Theorem 2. (Uniqueness) The solution of (1.1)-(1.3) satisfying ‖u−l‖H1
0 (Ω) ≤

γ is unique for small γ.

In the following theorem, we will apply the entropy functional method to
show that the solutions of (1.1)-(1.3) decay exponentially to the constant steady
state l in H1-norm as t→∞.

Math. Model. Anal., 21(1):1–15, 2016.
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Theorem 3. (Exponential decay) Suppose that the conditions of Theorem 1
hold. Then ‖u− l‖H1(Ω) ≤ ρ0e−Ct, where ρ0 =

∫
Ω

(u0 − l)2xdx.

The paper is arranged as follows. We will prove the existence of solutions
in Section 2. The uniqueness will be established in Section 3. Finally, the
asymptotic limit for t→∞ will be proved in Section 4.

2 Existence of solutions

To prove the Theorem 1, it is necessary to solve the following semi-discrete
problem

1

h
(uk − uk−1)− ε(|uk−1|nVkx)x + δ|Vk|mVk = 0 in Ω, (2.1)

−ukxx = Vk in Ω, (2.2)

uk = l, Vk = 0 on ∂Ω, (2.3)

where uk = u(x, kh), Vk = V (x, kh), h = T
N and k = 1, 2, . . . , N .

We prove the existence of (2.1)–(2.3) at first.

Lemma 1. For given uk−1 ∈ H2(Ω), there exists a unique weak solution
(uk, Vk) ∈ H2(Ω)×H2(Ω) ∩H1

0 (Ω) of (2.1)-(2.3).

Proof. Firstly, we need to prove the existence of uk and Vk for the problem
(2.1)–(2.3) for given uk−1. It is convenient to consider the following problem:

1

h
(u− w)− ε(|w|nVx)x + δ|V |mV = 0 in Ω,

−uxx = V in Ω,

u = l, V = 0 on ∂Ω,

where w is a known function and ‖w − l‖H1
0 (Ω) ≤ γ. The weak solution is

defined as following. For any test function φ ∈ C∞0 (Ω),

1

h

∫
Ω

(u− w)φdx+ ε

∫
Ω

|w|nVxφxdx+ δ

∫
Ω

|V |mV φdx = 0, (2.4)

−
∫
Ω

uxxφdx =

∫
Ω

V φdx. (2.5)

In order to apply the fixed point theorem, we consider the following system:

σ
1

h
(u− w)− ε(|w|nVx)x + δ|v|mV = 0 in Ω, (2.6)

−uxx = σv in Ω, (2.7)

u = l, V = 0 on ∂Ω, (2.8)

where σ ∈ [0, 1]. For v ∈ H1
0 (Ω), there exists a unique strong solution u ∈

H2(Ω) by the equation (2.7). Next we will show that there exists a unique
solution V ∈ H2(Ω) for (2.6) and thus we introduce a bilinear functional

a(V, φ) = ε

∫
Ω

|w|nVxφxdx+ δ

∫
Ω

|v|mV φdx,



A Fourth Order Parabolic Equation 5

and a linear functional

F (φ) = −σ 1

h

∫
Ω

(u− w)φdx.

By applying Hölder inequality and the boundedness of w, it is easy to show
that

|a(V, φ)| ≤ε
∣∣∣ ∫
Ω

|w|nVxφxdx
∣∣∣+ δ

∣∣∣∣∫
Ω

|v|mV φdx
∣∣∣∣

≤C‖Vx‖L2(Ω)‖φx‖L2(Ω) + δ‖V ‖L2(Ω)‖φ‖L2(Ω)

≤C‖V ‖H1
0 (Ω)‖φ‖H1

0 (Ω),

which means a(V, φ) is bounded. Furthermore, it is coercive in that

|a(V, V )| =ε
∫
Ω

|w|n|Vx|2dx+ δ

∫
Ω

|v|m|V |2dx ≥ C‖V ‖2H1
0 (Ω).

On the basis of Lax-Milgram theorem, there exists a unique weak solution
V ∈ H1

0 (Ω) for (2.6) such that

F (φ) = a(V, φ).

Thus we can define the fixed point operator

T : [0, 1]×H1
0 (Ω) −→ H1

0 (Ω),

(σ, v) 7−→ V.

For all v ∈ H1
0 (Ω) satisfying T (v, σ) = v, we want to prove that ‖v‖H2(Ω) ≤ C

here C > 0 is independent of v and σ. Using (2.7), we get ‖u‖H1(Ω) ≤ ‖v‖L2(Ω).
Furthermore, by (2.6), we have the elliptic estimate

‖v‖H2(Ω) ≤ C(1 + ‖σ 1

h
(u− w) + δ|v|mv‖L2(Ω))

≤ C(1 + ‖v‖L2(Ω) + ‖v‖m+1
L2(m+1)(Ω)

).

On the other hand, by taking −(u− l)xx as a test function, we get

1

2h

∫
Ω

(u− l)2xdx+ ε

∫
Ω

|w|n|vx|2dx+δ

∫
Ω

|v|m+2dx ≤ 1

2h

∫
Ω

(w − l)2xdx. (2.9)

Thus, one has ‖v‖L2(Ω) + ‖v‖m+1
L2(m+1)(Ω)

≤ C by the embedding H1(Ω) ↪→
L∞(Ω) and then we have ‖v‖H2(Ω) ≤ C. With the help of the compact embed-
ding H2(Ω) ↪→ H1

0 (Ω), T is continuous and compact. Leray-Schauder’s fixed
point theorem ensures the existence of (2.6)-(2.8).

Furthermore, according to (2.9), we have

‖u− l‖H1(Ω) ≤ γ,

and so by the Sobolev imbedding theorem H1(Ω) ↪→ Cα(Ω) for some α ∈ (0, 1),
it follows that

u ≥ l − γ > 0.

Math. Model. Anal., 21(1):1–15, 2016.
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Now for given uk−1 ∈ H2(Ω) and ‖uk−1 − l‖H1(Ω) ≤ γ, the semi-discrete
problem (2.1)–(2.3) admits a solution

(uk, Vk) ∈ H2(Ω)× (H2(Ω) ∩H1
0 (Ω)).

Besides, we can conclude that uk−1, uk and Vk also satisfy the weak form (2.4)-
(2.5), i. e.

1

h

∫
Ω

(uk − uk−1)φdx+ε

∫
Ω

|uk−1|nVkxφxdx+δ

∫
Ω

|Vk|mVkφdx = 0, (2.10)

−
∫
Ω

ukxxφdx =

∫
Ω

Vkφdx (2.11)

for any test function φ ∈ C∞0 (Ω).
Finally, we prove the uniqueness. Let (uk, Vk) and (u′k, V

′
k) be two different

solutions of (2.1)–(2.3). Taking (uk − u′k)xx = −(Vk − V ′k) as a test function in
the difference of the corresponding equations, we get

1

h

∫
Ω

|(uk − u′k)x|2dx+ ε

∫
Ω

|uk−1|n|(Vk − V ′k)x|2dx

+ δ

∫
Ω

(|Vk|mVk − |V ′k|mV ′k)(Vk − V ′k)dx = 0.

By the inequality (|x|mx − |y|my)(x − y) ≥ 0 with any real numbers x, y, we
have the uniqueness. ut

In order to obtain the existence of solutions, we need to define some ap-
proximate solutions:

w(N)(x, t) =

N∑
k=1

χk(t)uk(x), w̃(N)(x, t) =

N∑
k=1

χk(t)uk−1(x),

u(N)(x, t) =

N∑
k=1

χk(t)[λk(t)uk(x) + (1− λk(t))uk−1(x)],

V (N)(x, t) =

N∑
k=1

χk(t)Vk(x),

where χk(t) is a characteristic function on the time interval ((k − 1)h, kh]

(k = 1, . . . , n) and λk(t) =

{
t/h− (k − 1), if t ∈ ((k − 1)h, kh],

0, otherwise.
In the following, we establish some uniform estimates for those approxima-

tion solutions.

Lemma 2. The following uniform estimates hold for w(N), V (N) and u(N):

‖w(N)‖L∞(0,T ;H1(Ω)) + ‖V (N)‖L2(0,T ;H1
0 (Ω)) +

∥∥∥∂u(N)

∂t

∥∥∥
L

m+2
m+1 (0,T ;H−1(Ω))

+
∥∥u(N)

∥∥
L∞(0,T ;H1(Ω))

+ ‖V (N)‖Lm+2(QT ) ≤ C.
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Furthermore, there exists a subsequence(not relabeled) and two functions u and
ξ such that the following limits can be performed:

w(N) ∗⇀ u weakly* in L∞(0, T ;H1(Ω)),

V (N) ⇀ V in L2(0, T ;H1
0 (Ω)) ∩ Lm+2(QT ),

|V (N)|mV (N) ⇀ ξ in L
m+2
m+1 (QT ),

∂u(N)

∂t
⇀

∂u

∂t
weakly in L

m+2
m+1 (0, T ;H−1(Ω)),

u(N) ∗⇀ u weakly* in L∞(0, T ;H1(Ω)),

u(N) → u strongly in C([0, T ];L2(Ω)), u(N) → u a.e. in QT .

Proof. By (2.10)-(2.11), we get

1

h

N∑
k=1

∫ kh

(k−1)h

∫
Ω

χk(t)(uk − uk−1)φdxdt+ ε

N∑
k=1

∫ kh

(k−1)h

×
∫
Ω

χk(t)|uk−1|nVkxφxdxdt+ δ

N∑
k=1

∫ kh

(k−1)h

∫
Ω

χk(t)|Vk|mVkφdxdt = 0.

Taking φ = Vk = −ukxx yields

−
N∑
k=1

∫
Ω

(uk − uk−1)ukxxdx+ ε

∫∫
QT

|w̃(N)|n|V (N)
x |2dxdt

+ δ

∫∫
QT

|V (N)|m+2dxdt = 0,

and then ∫
Ω

|(uN − l)x|2dx+ ε

∫∫
QT

|w̃(N)|n|V (N)
x |2dxdt

+ δ

∫∫
QT

|V (N)|m+2dxdt ≤
∫
Ω

|(u0 − l)x|2mdx.

On the other hand, for any (x, t), we get

w̃(N)(x, t) =

N∑
k=1

χk(t)uk−1(x) ≥ l − γ,

and then

‖V (N)‖L2(0,T ;H1
0 (Ω)) ≤ C, ‖V (N)‖Lm+2(QT ) ≤ C.

For any t ∈ (0, T ), there exists some k ∈ {1, . . . , n} such that, for t ∈ ((k −
1)h, kh], one has

‖w(N)
x (x, t)‖2L2(Ω) = ‖ukx(x)‖2L2(Ω) ≤ C.

Math. Model. Anal., 21(1):1–15, 2016.
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It implies

‖w(N)‖L∞(0,T ;H1(Ω)) ≤ C.

By the definition of u(N)(x, t), it is easy to get

∂u(N)

∂t
=

1

h

N∑
k=1

χk(uk − uk−1)

and then∫ T

0

∣∣∣〈∂u(N)

∂t
, φ
〉∣∣∣dt =

∫ T

0

∣∣∣〈 1

h

N∑
k=1

χk(uk − uk−1), φ
〉∣∣∣dt

≤ C
∫ T

0

∣∣∣ N∑
k=1

χk(t)

∫
Ω

|uk−1|nVkxφxdx
∣∣∣dt+C ∫ T

0

∣∣∣ N∑
k=1

χk(t)

∫
Ω

|Vk|mVkφdx
∣∣∣dt

≤ C
∫ T

0

(∫
Ω

|V (N)
x φx|dx

)
dt+ C

∫ T

0

∣∣∣ ∫
Ω

|V (N)|mV (N)φdx
∣∣∣dt ≤ C,

where φ is any test function in the space Lm+2(0, T ;H1
0 (Ω)). It follows that∥∥∥∥∂u(N)

∂t

∥∥∥∥
L

m+2
m+1 (0,T ;H−1(Ω))

≤ C.

On the basis of the definition of u(N), we have

∥∥u(N)
∥∥q
Lq(0,T ;H1

0 (Ω))
≤ Cq

∫ T

0

(∫
Ω

|u(N)
x |2dx

) q
2

dt

= Cq
∫ T

0

(∫
Ω

∣∣∣∣ n∑
k=1

χk(t)[λk(t)ukx(x) + (1− λk(t))u(k−1)x(x)]

∣∣∣∣2dx)
q
2

dt

= Cq
N∑
k=1

∫ (kh)

(k−1)h

(∫
Ω

∣∣[λk(t)ukx(x) + (1− λk(t))u(k−1)x(x)]
∣∣2dx) q

2

dt

≤ 2
q
2Cq

N∑
k=1

h

(∫
Ω

(|ukx(x)|2 + |uk−1x(x)|2)dx

) q
2

≤ 2
q
2CqC

q
2
1 T

with C > 0 independent of q > 1, where we have applied the fact λk(t) ∈ [0, 1]
and the estimate (2.9). Thus we have∥∥u(N)

∥∥
L∞(0,T ;H1

0 (Ω))
= lim
q→∞

∥∥u(N)
∥∥
Lq(0,T ;H1

0 (Ω))
≤ C.

By the preceding energy estimates, there exists a subsequence of w(N) such
that

w(N) ∗⇀ u weakly* in L∞(0, T ;H1(Ω)),

V (N) ⇀ V in L2(0, T ;H1
0 (Ω))
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as N →∞. By Aubin’s lemma [17] and the embedding

H1(Ω)
compact
↪→ L

m+2
m+1 (Ω) ↪→ H−1(Ω), we can infer the existence of a subse-

quence of u(N) such that, as N →∞,

∂u(N)

∂t
⇀

∂ρ

∂t
weakly in L

m+2
m+1 (0, T ;H−1(Ω)),

u(N) ∗⇀ ρ weakly* in L∞(0, T ;H1(Ω)),

u(N) → ρ strongly in C([0, T ];L2(Ω)),

u(N) → ρ a.e. in QT , |V (N)|mV (N) ⇀ ξ in L
m+2
m+1 (QT ).

Finally, we need to show ρ = u. For any φ ∈ C∞0 (QT ), we have∣∣∣ ∫ T

0

∫
Ω

(w(N) − u(N))ϕdxdt
∣∣∣

=
∣∣∣ ∫ T

0

∫
Ω

N∑
k=1

χk(t)(1− λk(t))(uk − uk−1)ϕdxdt
∣∣∣

≤
N∑
k=1

∫ T

0

χk(t)h
(∣∣∣ ∫

Ω

|uk−1|nVkxφxdx
∣∣∣+
∣∣∣ ∫
Ω

|Vk|mVkφdx
∣∣∣)dt

≤ Ch
(∫∫

QT

∣∣∣V (N)
x φx

∣∣∣dx+

∫
Ω

|V (N)|m|V (N)φ|dx
)
dt ≤ Ch→ 0

as N →∞. It has ρ = u a.e. in QT . ut

Lemma 3. It follows that∫∫
QT

(w̃(N))nV (N)
x φxdxdt→

∫∫
QT

unVxφxdxdt

and
ξ = |V |mV a.e. in QT

for any test function φ.

Proof. Taking Vk − Vk−1 = −(uk − uk−1)xx as a test function, we get

1

h

∫
Ω

|(uk − uk−1)x|2dx+ ε

∫
Ω

|uk−1|nVkx(Vk − Vk−1)xdx

+ δ

∫
Ω

|Vk|mVk(Vk − Vk−1)dx = 0,

which implies

N∑
k=1

∫
Ω

|(uk − uk−1)x|2dx ≤ Ch
N∑
k=1

∣∣∣∣∫
Ω

|uk−1|nVkx(Vk − Vk−1)xdx

∣∣∣∣
+ Ch

N∑
k=1

∣∣∣∣∫
Ω

|Vk|mVk(Vk − Vk−1)dx

∣∣∣∣ ≤ CT.
Math. Model. Anal., 21(1):1–15, 2016.
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Therefore, we get∫∫
QT

|w(N) − u(N)|2dxdt ≤ h
N∑
k=1

∫
Ω

|uk − uk−1|2dx

≤ Ch
N∑
k=1

∫
Ω

|(uk − uk−1)x|2dx ≤ Ch.

Letting N →∞, we have

w(N) → u strongly in L2(QT ).

On the other hand, we will prove that w̃(N) → u strongly in the sense of
L2(QT ). A direct calculation shows that∫∫

QT

|w̃(N) − w(N)|2dxdt =

∫∫
QT

∣∣∣ N∑
k=1

χk(t)(uk − uk−1)
∣∣∣2dxdt

≤ h
N∑
k=1

∫
Ω

|uk − uk−1|2dx ≤ CTh.

Hence, by the mean value theorem, we obtain∣∣∣ ∫∫
QT

((w̃(N))n − un)V (N)
x φxdxdt

∣∣∣ =
∣∣∣ ∫∫

QT

nϑn−1(w̃(N) − u)V (N)
x φxdxdt

∣∣∣
≤ C‖w̃(N) − u‖L2(QT )‖V (N)

x φx‖L2(QT ),

where ϑ is between u and w̃(N) and it is bounded from the boundedness of
w̃(N) and u. Here w̃(N) is bounded since, for any q > 1,(∫∫

QT

|w̃(N)|qdxdt
) 1

q

=

(∫∫
QT

∣∣∣∣∣
N∑
k=1

χk(t)uk−1(x)

∣∣∣∣∣
q

dxdt

) 1
q

≤

(
N∑
k=1

∫ kh

(k−1)h

∫
Ω

|uk−1|qdxdt

) 1
q

≤ T
1
q

(∫
Ω

|uk−1|qdx
) 1

q

≤ CT
1
q ,

and then by letting q →∞, we have w̃(N) ∈ L∞(QT ).
Now we can perform the limit N →∞ to get∣∣∣∣∫∫

QT

((w̃(N))n − un)V (N)
x φxdxdt

∣∣∣∣→ 0.

Thus we obtain∣∣∣ ∫∫
QT

((w̃(N))nV (N)
x − unVx)φxdxdt

∣∣∣
=
∣∣∣ ∫∫

QT

(
(w̃(N))nV (N)

x − unV (N)
x + unV (N)

x − unVx
)
φxdxdt

∣∣∣
≤
∣∣∣ ∫∫

QT

(
(w̃(N))nV (N)

x − unV (N)
x

)
φxdxdt

∣∣∣+∣∣∣ ∫∫
QT

(unV (N)
x −unVx)φxdxdt

∣∣∣
→ 0.
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Now for each φ ∈ C∞0 (QT ), we can perform the limit N →∞ in the form∫ T

0

〈∂u(N)

∂t
, φ
〉
dt+ ε

∫∫
QT

w̃nV (N)
x φxdxdt

+ δ

∫∫
QT

|V (N)|mV (N)φdxdt = 0, (2.12)

−
∫∫

QT

u(N)
xx φdxdt =

∫∫
QT

V (N)φdxdt (2.13)

to get ∫ T

0

〈∂u
∂t
, φ
〉

dt+ ε

∫∫
QT

unVxφxdxdt+ δ

∫∫
QT

ξφdxdt = 0, (2.14)

− uxx = V a.e. in QT . (2.15)

By taking φ = V (N) = −u(N)
xx in (2.12), we have

1

2

∫
Ω

|w(N)
x (x, T )|2dx− 1

2

∫
Ω

|u0x|2dx+ ε

∫∫
QT

w̃n|V (N)
x |2dxdt

+ δ

∫∫
QT

|V (N)|m+2dxdt = 0. (2.16)

Besides, from the fact∫∫
QT

(|V (N)|mV (N) − |(V − εφ)|m(V − εφ))(V (N) − (V − εφ))dxdt ≥ 0,

we have

δ

∫∫
QT

|V (N)|m+2dxdt− δ
∫∫

QT

|V (N)|mV (N)(V − εφ)dxdt

− δ
∫∫

QT

|V−εφ|m(V−εφ)V (N)dxdt+δ

∫∫
QT

|V−εφ|m+2dxdt ≥ 0. (2.17)

Substituting (2.16) into (2.17) and taking N →∞, we get

1

2

∫
Ω

|ux(x, T )|2dx− 1

2

∫
Ω

|u0x|2dx+ ε

∫∫
QT

un|Vx|2dxdt

+ δ

∫∫
QT

ξ(V − εφ)dxdt+ δ

∫∫
QT

|V − εφ|m(V − εφ)V dxdt

− δ
∫∫

QT

|V − εφ|m+2dxdt ≤ 0. (2.18)

Taking φ = V = −uxx in (2.14) and applying (2.18), we have∫∫
QT

(|V − εφ|m(V − ε)− ξ)φdxdt ≤ 0.

By letting ε→ 0 and the arbitrariness of φ, one has ξ = |V |mV a.e. in QT . ut

From Lemma 1-Lemma 3, we can prove the results of Theorem 1 and Corol-
lary 1.

Math. Model. Anal., 21(1):1–15, 2016.
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3 Uniqueness

In this section, we prove the uniqueness and then gives the proof of Theorem 3.

It follows from the conditions of Theorem 2, any solutions u of (1.1) have
the lower bound (l − γ) > 0. Using uxx as a test function in (1.1), we get

1

2

∫
Ω

u2x(x, T )dx+ε

∫∫
QT

un|uxxx|2dxdt+δ
∫∫

QT

|uxx|m+2dxdt =
1

2

∫
Ω

u20xdx,

and then ∫∫
QT

|uxxx|2dxdt ≤
Cγ2

ε(l − γ)n
, (3.1)

where the constant C is independent of γ.

Assume that v is another solution which also satisfying (3.1) and let w =
u − v. Taking wxx as a test function in the differential equations for u, v, we
obtain, for any 0 < t < T ,

1

2

∫
Ω

w2
x(x, t)dx+ ε(l−γ)n

∫∫
QT

w2
xxxdxdt+ ε

∫∫
QT

(un−vn)vxxxwxxxdxdt

+ δ

∫∫
QT

(|uxx|muxx − |vxx|mvxx)(uxx − vxx)dxdt = 0.

In view of the mean value theorem, we have for n ≥ 1∣∣∣∣ε∫∫
QT

(un − vn)vxxxwxxxdxdt

∣∣∣∣ ≤ Cε∫∫
QT

|u− v||vxxx||wxxx|dxdt

≤ ε(l − γ)n

2

∫∫
QT

w2
xxxdxdt+

Cε

(l − γ)n

∫∫
QT

|u− v|2|vxxx|2dxdt,

and for 0 < n < 1∣∣∣ε ∫∫
QT

(un−vn)vxxxwxxxdxdt
∣∣∣ ≤ Cε(l−γ)n−1

∫∫
QT

|u− v||vxxx||wxxx|dxdt

≤ ε(l − γ)n

2

∫∫
QT

w2
xxxdxdt+

Cε

l − γ

∫∫
QT

|u− v|2|vxxx|2dxdt.

Hence, for all n > 0 and 0 < t < T , we have

1

2

∫
Ω

w2
x(x, t)dx+

ε(l − γ)n

2

∫∫
QT

w2
xxxdxdt

≤ Cε

Θ(l − γ)

∫∫
QT

|u− v|2|vxxx|2dxdt,

≤ Cε

Θ(l − γ)
sup

0<t<T

∫
Ω

w2
xdx

∫∫
QT

|vxxx|2dxdt,
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where we have used the embedding H1(Ω) ↪→ C0(Ω) and the function

Θ(s) =

{
sn, n ≥ 1;
s, 0 < n < 1.

Since the solution v satisfies (3.1), we have

sup
0<t<T

∫
Ω

w2
x(x, t)dx ≤ Cε

Θ(l−γ)
sup

0<t<T

∫
Ω

w2
xdx

∫∫
QT

|vxxx|2dxdt,

≤ Cγ2

(l − γ)nΘ(l − γ)
sup

0<t<T

∫
Ω

w2
x(x, t)dx.

We can conclude that wx ≡ 0 for small γ. This yields the uniqueness.

4 Exponential decay

In this section, we prove the long time behavior under the conditions of Theo-
rem 2. Taking Vk = −(uk − l)xx as a test function in (2.10)–(2.11), we get

1

2h

∫
Ω

(uk − l)2xdx+ ε

∫
Ω

|uk−1|n|ukxxx|2dx+ δ

∫
Ω

|ukxx|m+2dx

≤ 1

2h

∫
Ω

(uk−1 − l)2xdx.

Apply uk−1 > l − γ > 0 to have

1

2h

∫
Ω

(uk − l)2xdx ≤ −C
∫
Ω

|ukxxx|2dx+
1

2h

∫
Ω

(uk−1 − l)2xdx,

where C is independent of k. Poincaré inequality yields

1

2h

∫
Ω

(uk − l)2xdx ≤ −C
∫
Ω

(uk − l)2xdx+
1

2h

∫
Ω

(uk−1 − l)2xdx.

Letting

ρk =

∫
Ω

(uk − l)2xdx, k = 0, · · · , N,

we can establish an iteration

ρk ≤
1

1 + Ch
ρk−1

and then for any t ∈ ((k − 1)h, kh],

ρk ≤ ρ0(1 + Ch)−k ≤ ρ0(1 + Ch)−t/h, k = 0, · · · , N.

The definition of w(N) implies∫
Ω

(w(N) − l)2xdx =

∫
Ω

(

N∑
k=1

χk(t)uk − l)2xdx

=

∫
Ω

(uk − l)2xdx = ρk ≤ ρ0(1 + Ch)−t/h.

Math. Model. Anal., 21(1):1–15, 2016.
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Applying the results of Section 3 and the weak lower semi-continuity for the
space H1, we obtain the exponential decay∫

Ω

(u− l)2xdx ≤ ρ0e−Ct

as h→ 0 (i.e. N →∞).
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