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Abstract. We present an analytical solution of a mixed boundary value problem for
an unbounded 2D doubly periodic domain which is a model of a composite material
with mixed imperfect interface conditions. We find the effective conductivity of the
composite material with mixed imperfect interface conditions, and also give numerical
analysis of several of their properties such as temperature and flux.
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1 Introduction

The use of composite materials is growing very fast. In part, this is due to
the circumstance of being possible to choose their specific properties so that
they exactly meet the requirements of a particular application. In view of this,
detailed knowledge about different types of properties of composite materials
(upon some of their characteristics) has a key role in the ongoing research being
conducted in this field.

The present work is concerned with an analytical analysis of a 2D compos-
ite material model. The theory and technique for such analysis of composite
material properties are under development. Recently, in [16], it was derived an
explicit formula allowing to compute the sensitivity of large scale conductivity
of a composite material to parameters describing its microstructure (such as
material microstructure properties or a set of data describing the geometrical
shape of inclusions). By means of the asymptotic homogenization method, ana-
lytical formulae were obtained in [11] for the effective thermoelastic coefficients
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of a fiber-reinforced periodic elastic composite with hexagonal cell, where the
constituents exhibit transverse isotropic properties. On the base of the two-
scale asymptotic homogenization method, the effect of the interface properties
on the effective conductivity and temperature/flux field of a granular composite
with a simple cubic array of spherical inclusions was analytically studied in [2].

According to homogenization theory (cf. [1,12]), fibrous composite materials
with a large number of cylindrical unidirectional inclusions can be geometri-
cally represented as a 2D doubly periodic model with disjoint inclusions, and
their properties can be studied on the basis of a representative cell contain-
ing all material features. From the mathematical point of view, a 2D model
with disjoint inclusions is a multiply connected domain. In case of steady-state
conduction, the problem of determination of material properties is equivalent
to the problem of finding a potential function satisfying the Laplace equa-
tion in each inner point of the model and satisfying certain conditions on the
boundary of a considered domain. Ideal, imperfect or other contact conditions
can be considered as boundary conditions. In several different situations, the
obtained mixed boundary value problem can be equivalently reduced to a con-
jugation problem for analytical functions. To solve this conjugation problem,
the method of functional equations, developed in [14], has proven to be a very
powerful technique.

Indeed, the method of functional equations was earlier used in some pa-
pers devoted to analytical solution of mixed boundary value problems for the
Laplace equation. Mixed boundary value problems with ideal contact condi-
tions have been investigated e.g. in [4,13,15,17,18]. In [6,10], mixed boundary
value problems with soft imperfect contact conditions were analytically solved
using also a consequent adaptation of this method. Moreover, in the recent
paper [5], the authors modified the method of functional equations in the case
of stiff contact conditions.

The novelty of the present work is centred on the fact that we are consid-
ering even more involved stiff imperfect conditions by admitting mixed (soft
and stiff) imperfect contact conditions. In this case, we find in explicit form
material characteristics such as temperature, flux and the effective conductiv-
ity for a 2D composite material model with circular disjoint inclusions. The
obtained formula contains all parameters of the considered model such as the
conductivity, radii, centers of the inclusions, the conductivity of the matrix,
and also special Eisenstein functions.

The structure of the obtained formulae allows us to implement a detailed
numerical analysis of those properties, by using the Maple 14 software. Here,
as of particular significance, we emphasize the obtained detailed description of
the associated temperature and flux distributions.

2 Formulation of the problem

We consider a lattice in the complex plane C ∼= R2 of a complex variable
z = x+ ıy. The representative cell is the unit square

Q(0,0) :=

{
z = t1 + ıt2 ∈ C : −1

2
< tp <

1

2
, p = 1, 2

}
.
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Let E :=
⋃

m1,m2

{m1 + ım2} be the set of the lattice points, where m1,m2 ∈ Z.

The cells corresponding to the points of the lattice E will be denoted by

Q(m1,m2) = Q(0,0) +m1 + ım2 :=
{
z ∈ C : z −m1 − ım2 ∈ Q(0,0)

}
.

It is considered the situation when mutually disjoint disks (inclusions) of dif-
ferent radii Dk := {z ∈ C : |z− ak| < rk} with the boundaries ∂Dk := {z ∈ C :
|z−ak| = rk} (k = 1, 2, . . . , N) are located inside the cell Q(0,0) and periodically
repeated in all cells Q(m1,m2). Let us denote by

D0 := Q(0,0) \

(
N⋃
k=1

Dk ∪ ∂Dk

)

the connected domain obtained by removing of the inclusions from the cell
Q(0,0) (see Fig. 1).

l
m

l
i

Figure 1. The representative cell Q(0,0) within doubly periodic composite.

Let us consider the problem of determination of the effective conductivity
of an unbounded doubly periodic composite material with matrix

Dmatrix =
⋃

m1,m2

((D0 ∪ ∂Q(0,0)) +m1 + ım2)

and inclusions

Dinc =
⋃

m1,m2

N⋃
k=1

(Dk +m1 + ım2)
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occupied by materials of conductivities λm > 0 and λk > 0, respectively.
This problem is equivalent to the determination of the potential of the

corresponding fields, i.e., a function T satisfying the Laplace equation in each
component of the composite material,

∆T (z) = 0, z ∈ Dmatrix ∪Dinc, (2.1)

which have to satisfy the following boundary conditions on all ∂Dk, k =
1, 2, . . . , N :

γk(Tm(t)− Tk(t)) = λk
∂Tk
∂n

(t), (2.2)

λm
∂Tm
∂n

(t)− λk
∂Tk
∂n

(t) = βk
∂2Tk
∂s2

(t), t ∈
⋃

m1,m2

∂Dk, (2.3)

where γk > 0, βk < 0 are given parameters (the so-called resistent coefficients),
the vector n = (n1, n2) is the outward unit normal vector to ∂Dk, the vector s
is the outward unit tangent vector to ∂Dk, and

Tm(t) := lim
z→t,z∈D0

T (z), Tk(t) := lim
z→t,z∈Dk

T (z).

The conditions (2.2)–(2.3) form the mixed imperfect contact conditions.
Let us mention that the usually adopted ideal contact conditions consist in

demanding the continuity of the temperature and the thermal flux. Here, we
use a relaxation of these conditions and allow certain discontinuities. Namely,
in (2.2), according to the Fourier’s law, we assume that the temperature jump
across the boundary is proportional to the thermal flux of an inclusion. The
second condition (2.3) comes from the influence of some “hidden” small thick-
ness interface layer between the inclusions and the matrix. More precisely, in
accordance to the first law of thermodynamics we allow that some thermal
flux – in fact the difference of the incoming and outgoing thermal fluxes – is
accumulated across the interface. And we assume that it is proportional to the
speed of change of the thermal flux within the tangent direction.

It is worth mentioning that our boundary value problem can be used for
the characterization of other physical or mechanical processes. The analogous
boundary contact conditions known as “membrane type” interface conditions
can be found in classical problems of solid mechanics for elastic media. For more
details, we refer to [3] where different types of boundary contact conditions are
described.

In addition, we assume that the heat flux is periodic on y. Thus,

λm
∂Tm
∂y

(
x,

1

2

)
= λm

∂Tm
∂y

(
x,−1

2

)
= −A sin θ + q1(x), (2.4)

where A is the intensity of an external flux. The heat flux is also periodic on
x, and, consequently,

λm
∂Tm
∂x

(
−1

2
, y
)

= λm
∂Tm
∂x

(1

2
, y
)

= −A cos θ + q2(y). (2.5)
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To complement the average flux conditions at infinity, the latter immediately
proves that the equalities ∫ 1/2

−1/2
qj(ξ)dξ = 0

are valid for the unknown functions qj (j = 1, 2). The unknown functions q1
and q2 mean that the flux in the boundaries of the cell is not constant, but on
the assumption of source or sink absence inside the cell it should disappear in
average. As a result of (2.4) and (2.5), the heat flux has a zero mean value
along the boundary of the cell∫

∂ Q(m1,m2)

∂Tm(s)

∂n
ds = 0,

∫
∂Dk+m1+ım2

∂Tm(s)

∂n
ds = 0. (2.6)

The condition (2.6) is a consequence of the fact that no source (sink) exists in
the cells.

3 Solvability result and effective properties

We will solve the problem (2.1)-(2.6) using the same approach as in [5]. We
shall now outline some basic facts which we apply.

Let us introduce complex potentials ϕ(z) and ϕk(z) which are analytic
in D0 and Dk, and continuously differentiable in the closures of D0 and Dk,
respectively, by using the following relations

T (z) =


Re (ϕ(z) +Bz), z ∈ Dmatrix,

2λm

λm+λk
Reϕk(z), z ∈ Dinc,

(3.1)

where B is an unknown constant belonging to C. Besides, we assume that the
real part of ϕ is doubly periodic in D0, i.e.,

Reϕ(z + 1)− Reϕ(z) = 0, Reϕ(z + ı)− Reϕ(z) = 0.

It is shown in [13] that ϕ is a single-valued function in Dmatrix. The harmonic
conjugate to T is a function v which has the following form:

v(z) =


Im (ϕ(z) +Bz), z ∈ Dmtrix,

2λm

λm+λk
Imϕk(z), z ∈ Dinc,

(3.2)

with the same unknown constant B.
For the determination of the flux ∇T (x, y), we introduce the derivatives of

the complex potentials:

ψ(z) := ∂ϕ
∂z = ∂Tm

∂x − ı
∂Tm

∂y −B, z ∈ D0,

ψk(z) := ∂ϕk

∂z = λm+λk

2λm

(
∂Tk

∂x − ı
∂Tk

∂y

)
, z ∈ Dk.

Math. Model. Anal., 21(3):283–303, 2016.
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As it was shown in [5], the boundary value of the normal derivative can be
written in the form

∂Tk(t)

∂n
= Re

(
(n1 + ın2)

(
∂Tk
∂x
− ı∂Tk

∂y

))
=

2λm
rk(λm + λi)

Re [(t− ak)(ϕk)′(t)]

and the boundary value of the tangent derivative is

∂Tk(t)

∂s
= Im

(
−(n1 + ın2)

(
∂Tk
∂x
− ı∂Tk

∂y

))
= − 2λm

rk(λm + λi)
Im [(t− ak)(ϕk)′(t)]. (3.3)

Applying the Cauchy-Riemann equations ∂Tm

∂n = ∂vm
∂s ,

∂Tk

∂n = ∂vk
∂s the equal-

ity (2.3) can be written as

λm
∂vm
∂s

(t)− λk
∂vk
∂s

(t) = βk
∂2Tk
∂s2

, |t− ak| = rk.

Integrating the last equality on s, we arrive at the relation

λmvm(t)− λkvk(t) = βk
∂Tk
∂s

+ c,

where c is an arbitrary constant. We put c = 0 since the imaginary part of the
function ϕ is determined up to an additive constant which does not impact on
the form of T . Using (3.2) and (3.3), we have

Imϕ(t) = −ImBt+
2λk

λm + λk
Imϕk(t)− 2βk

rk(λm + λk)
Im [(t−ak)(ϕk)′(t)]. (3.4)

Using (3.1), we are able to write the equality (2.2) in the following form:

Reϕ(t) = −ReBt+
2λm

λm + λm
Reϕk+

2λmλk
γkrk(λm + λk)

Re [(t−ak)(ϕk)′(t)]. (3.5)

Adding the relation (3.5) and (3.4) multiplied by ı, and using Reϕk = ϕk+ϕk

2 ,

Imϕk = ϕk−ϕk

2ı , t − ak =
r2k
t−ak

, we rewrite the conditions (2.2) and (2.3) in

terms of the complex potentials ϕ(z) and ϕk(z):

ϕ(t) = ϕk(t)− ρkϕk(t) + µk(t− ak)(ϕk)′(t) + ηk
r2k

t− ak
(ϕk)′(t)−Bt, (3.6)

where

ρk =
λk − λm
λm + λk

, µk =
λmλk − βkγk
rkγk(λm + λk)

, ηk =
λmλk + βkγk
rkγk(λm + λk)

. (3.7)
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Representing the function ϕk in the form ϕk(z) =
∞∑
l=0

αk(z−ak)l, |z−ak| ≤ rk,

and by using the relation t =
r2k
t−ak

+ ak on the boundary |t− ak| = rk, one get

[ϕ(t)]′ = −
(

rk
t− ak

)2

ϕ′(t), [ϕ′(t)]′ = −
(

rk
t− ak

)2

ψ′(t).

Thus, after differentiating (3.6), we arrive at the following R-linear boundary
value problem on each contour |t− ak| = rk:

ψ(t) = (1 + µk)ψk(t) + (ρk − ηk)

(
rk

t− ak

)2

ψk(t) + µk(t− ak)ψ′k(t)

− ηkr
4
k

(t− ak)3
ψ′k(t)−B (3.8)

with the unknown constant B.

The problem (3.8) is solved in [5] with small changes in real coefficients.
Note that the parameters ρk, µk defined in (3.7) satisfy the inequalities |ρk| < 1
and µk > 0, for which all solvability theorems stated in [5] hold true.

In order to find the functions ψ and ψk inside the matrix and inclusions,
respectively, we need some of the results from [6].

Let the functions ψ̃(1) and ψ̃
(1)
k be solutions of an auxiliary problem (2.1)-

(2.3) with a constant jump corresponding to the external field applied in the
x-direction

T (z + 1) = T (z) + 1, T (z + ı) = T (z)

(instead of conditions (2.4), (2.5)) corresponding to the following R-linear con-
jugation boundary value problem

ψ̃(1)(t) = (1 + µk)ψ̃
(1)
k (t) + (ρk − ηk)

(
rk

t− ak

)2

ψ̃
(1)
k (t)

+µk(t− ak)(ψ̃
(1)
k (t))′ − ηk

r4k
(t− ak)3

(ψ̃
(1)
k (t))′ − 1,

and let functions ψ̃(2) and ψ̃
(2)
k be solutions of an auxiliary problem (2.1)-

(2.3) with a constant jump corresponding to the external field applied in the
y-direction

T (z + 1) = T (z), T (z + ı) = T (z)− 1

(instead of conditions (2.4), (2.5)) corresponding to the problem

ψ̃(2)(t) = (1 + µk)ψ̃
(2)
k (t) + (ρk − ηk)

(
rk

t− ak

)2

ψ̃
(2)
k (t)

+µk(t− ak)(ψ̃
(2)
k (t))′ − ηk

r4k
(t− ak)3

(ψ̃
(2)
k (t))′ − ı.

Math. Model. Anal., 21(3):283–303, 2016.
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The functions ψ̃⊥(z) := ıψ̃(2)(ız) and ψ̃⊥k (z) := ıψ̃
(2)
k (ız) satisfy the following

R-linear conjugation boundary value problem

ψ̃⊥(t) = (1 + µk)ψ̃⊥k (t) + (ρk − ηk)

(
rk

t− bk

)2

ψ̃⊥k (t)

+µk(t− bk)(ψ̃⊥k (t))′ − ηk
r4k

(t− bk)3
(ψ̃⊥k (t))′ + 1,

where |t− bk| = rk, bk = −ıak. We introduce

I :=

∫ 1
2

− 1
2

Re ψ̃(1)
(1

2
+ ıy

)
dy, I⊥ :=

∫ 1
2

− 1
2

Re ψ̃⊥
(1

2
+ ıy

)
dy.

Then, by using the same techniques as in [6], the following results hold.

Theorem 1. Let Tm = Tm(x, y) and Tk = Tk(x, y) be the solution of the prob-
lem (2.2)-(2.3), (2.4) and (2.5). The temperature distribution can be found up
to an arbitrary constant and is defined in the form (3.1), where

B =
−A cos θ

λm(I + 1)
− A sin θ

λm(I⊥ − 1)
ı,

ϕ(z) =
−A cos θ

λm(I + 1)
ϕ̃(1)(z)− A sin θ

λm(I⊥ − 1)
ϕ̃⊥(−ız),

ϕk(z) =
−A cos θ

λm(I + 1)
ϕ̃
(1)
k (z)− A sin θ

λm(I⊥ − 1)
ϕ̃⊥k (−ız).

Theorem 2. Let Tm = Tm(x, y) and Tk = Tk(x, y) be the solution of the prob-
lem (2.2)-(2.3), (2.4) and (2.5). The temperature flux is defined in the following
form:

∂T (x, y)

∂x
− ı∂T (x, y)

∂y
=


ψ(z) +B, z = x+ ıy ∈ Dmatrix,

2λm

λm+λk
ψk(z), z = x+ ıy ∈ Dinc,

with

B =
−A cos θ

λm(I + 1)
− A sin θ

λm(I⊥ − 1)
ı,

and

ψ(z) :=
−A cos θ

λm(I + 1)
ψ̃(1)(z) + ı

A sin θ

λm(I⊥ − 1)
ψ̃⊥(−ız), z ∈ Dmatrix,

ψk(z) :=
−A cos θ

λm(I + 1)
ψ̃
(1)
k (z) + ı

A sin θ

λm(I⊥ − 1)
ψ̃⊥k (−ız), z ∈ Dinc, (3.9)

where the functions ψ̃(1), ψ̃⊥, ψ̃
(1)
k and ψ̃⊥k are derivatives of the functions ϕ̃(1),

ϕ̃⊥, ϕ̃
(1)
k and ϕ̃⊥k , respectively.
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The proofs of these theorems are direct consequences of the results obtained
in [6], where an analogous to (3.6), (3.8) problems are analytically solved using
the method of functional equations. Here, we use some facts and notations of

the paper [6] to show briefly how to find the functions ψ̃(1) and ψ̃
(1)
k contained

in (3.9). The functions ψ̃⊥ and ψ̃⊥k can be analogously found.
Notice that we have N contours ∂Dk and N complex conjugation conditions

on each contour ∂Dk but we need to find N + 1 functions ψ̃(1), ψ̃
(1)
1 , . . . , ψ̃

(1)
N .

This means that we need one additional condition to close up the system. For
this reason we introduce a new doubly periodic function Φ which is sectionally

analytic in Q(0,0) and in
N⋃
k=1

Dk and has zero jumps along each ∂Dk, k =

1, 2, . . . , N . Such consideration will give an additional condition on ψ̃(1), ψ̃
(1)
k .

In fact, we will show that Φ ≡ 0.
Let us introduce the sectionally analytic doubly periodic function Φ by the

following formula:

Φ(z) =

 Φ(k)(z), |z − ak| ≤ rk,

Φ(0)(z), z ∈ D0,

where

Φ(k)(z) = (1 + µk)ψ̃
(1)
k (z) + µk(z − ak)(ψ̃

(1)
k )′(z)−

N∑
m=1

∑
m1,m2

∗ (ρm − ηm)

×Wm1,m2,mψ̃
(1)
m (z) +

N∑
m=1

∑
m1,m2

∗ ηmW
′
m1,m2,m(ψ̃(1)

m )′(z)− 1,

Φ(0)(z) = ψ̃(1)(z)−
N∑
m=1

∑
m1,m2

(ρm − ηm)Wm1,m2,mψ̃
(1)
m (z)

+

N∑
m=1

∑
m1,m2

ηmW
′
m1,m2,m(ψ̃(1)

m )′(z).

Here,

Wm1,m2,kψ̃
(1)
k (z) =

(
rk

z−ak−m1 − ım2

)2

ψ̃
(1)
k

(
r2k

z − ak −m1 − ım2
+ ak

)
,

W ′m1,m2,k(ψ̃
(1)
k )′(z)=

r4k
(z − ak −m1 − ım2)3

(ψ̃
(1)
k )′

(
r2k

z−ak−m1−ım2
+ ak

)
,

N∑
m=1

∑
m1,m2

∗ (ρm − ηm)Wm1,m2,m :=
∑
m 6=k

∑
m1,m2

(ρm − ηm)Wm1,m2,m

+
∑
m1,m2

′ (ρk − ηk)Wm1,m2,k.

Math. Model. Anal., 21(3):283–303, 2016.
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The “prime” notation in
∑

m1,m2

′ means that the summation occurs in all m1

and m2 except at (m1,m2) = (0, 0).
Applying the Analytic Continuation Principle and Liouville’s theorem for

doubly periodic functions, we have that Φ = c. Besides, it is possible to show
that Φ = 0 (cf. [6]). Writing Φ(z) ≡ 0, we obtain the following system of linear
functional equations

ψ̃
(1)
k (z) = − µk

1 + µk
(z − ak)(ψ̃

(1)
k )′(z) +

1

1 + µk

N∑
m=1

∑
j

∗(ρm − ηm)

×Wj,mψ̃
(1)
m (z)− 1

1 + µk

N∑
m=1

∑
j

∗ηmW
′
j,m(ψ̃

(1)
m )′(z) +

1

1 + µk
(3.10)

(for k = 1, 2, . . . , N) which is uniquely solvable with respect to ψ̃
(1)
k in the space

of analytical functions (for more details cf. [7]).

The function ψ̃(1) has the form

ψ̃(1)(z) =

N∑
m=1

∑
j

(ρm − ηm)Wj,mψ̃
(1)
m (z)−

N∑
m=1

∑
j

ηmW
′
j,m(ψ̃

(1)
m )′(z). (3.11)

Let us expand ψ̃
(1)
k (z) into Taylor series,

ψ̃
(1)
k (z) =

∞∑
l=0

ψ̃
(1)
lk (z − ak)l, (ψ̃

(1)
k )′(z) =

∞∑
l=1

ψ̃
(1)
lk l(z − ak)l−1, (3.12)

in order to sum upWm1,m2,kψ̃
(1)
k (z) andW ′m1,m2,k

(ψ̃
(1)
k )′(z) over all translations

m1 + ım2.
The series

∑
j

Wj,kψ̃
(1)
k (z), where j = (m1,m2) and k is a fixed number, can

be represented via elliptic Eisenstein functions El(z) of order l (see [7, 19]):

∑
j

Wj,kψ̃
(1)
k (z) =

∞∑
l=0

ψ̃
(1)
lk r

2(l+1)
k El+2(z − ak),

∑
j

W ′j,k(ψ̃
(1)
k )′(z) =

∞∑
l=1

ψ̃
(1)
lk l r

2(l+1)
k El+2(z − ak).

The series∑
j

′Wj,kψ̃
(1)
k (z) :=

∑
j

Wj,kψ̃
(1)
k (z)−

(
rk

z − ak

)2

ψ̃
(1)
k

(
r2k

z − ak
+ ak

)
and∑

j

′W ′j,k(ψ̃
(1)
k )′(z) :=

∑
j

W ′j,k(ψ̃
(1)
k )′(z)− r4k

(z − ak)3
(ψ̃

(1)
k )′

(
r2k

z − ak
+ ak

)
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can be written in the form∑
j

′Wj,kψ̃
(1)
k (z) =

∞∑
l=0

ψ̃
(1)
lk r

2(l+1)
k σl+2(z − ak),

∑
j

′W ′j,k(ψ̃
(1)
k )′(z) =

∞∑
l=1

ψ̃
(1)
lk l r

2(l+1)
k σl+2(z − ak),

where σl is the modified Eisenstein function defined by the formula σl(z) :=
El(z)−z−l. The Eisenstein functions El converge absolutely and uniformly for
l = 3, 4, . . . and conditionally for l = 2 (cf. [19]).

Thus, we can rewrite the equations (3.10) and (3.11), for ψ̃
(1)
k and ψ̃(1), as

follows:

ψ̃
(1)
k (z) = − µk

1 + µk
(z − ak)(ψ̃

(1)
k )′(z) +

1

1 + µk

N∑
m6=k

∞∑
l=0

(ρm − ηm)

× ψ̃(1)
lm r2(l+1)

m El+2(z − am) +
ρk − ηk
1 + µk

∞∑
l=0

ψ̃
(1)
lk r

2(l+1)
k σl+2(z − ak)

− 1

1 + µk

N∑
m6=k

∞∑
l=1

ηmψ̃
(1)
lm l r2(l+1)

m El+2(z − am)

− ηk
1 + µk

∞∑
l=1

ψ̃
(1)
lk l r

2(l+1)
k σl+2(z − ak) +

1

1 + µk
, (3.13)

ψ̃(1)(z) =

N∑
m=1

∞∑
l=0

(ρm − ηm)ψ̃
(1)
lm r2(l+1)

m El+2(z − am)

−
N∑
m=1

∞∑
l=1

ηmψ̃
(1)
lm l r2(l+1)

m El+2(z − am). (3.14)

Using (3.12), we have

ψ̃
(1)
k (z) +

µk
1 + µk

(z − ak)(ψ̃
(1)
k )′(z) =

∞∑
l=0

ψ̃
(1)
lk (z − ak)l

(
1 +

lµk
1 + µk

)
.

Now we need to find the numerical coefficients ψ̃
(1)
lm of the system (3.13). Note

that the equation (3.14) for ψ̃(1) has the same coefficients ψ̃
(1)
lm . Taking a partial

sum of the Taylor series with the first M terms

ψ̃
(1)
k (z) = ψ̃

(1)
0k + ψ̃

(1)
1k (z − ak) + ψ̃

(1)
2k (z − ak)2 + · · ·+ ψ̃

(1)
Mk(z − ak)M

and collecting the coefficients of the consequent powers of z−ak, we obtain the

formula for the definition of ψ̃
(1)
jk :

ψ̃
(1)
jk =

1 + µk
j!(1 + (1 + j)µk)

ψ̃
(j)
k

∣∣∣
z=ak

,

where ψ̃
(j)
k is the derivative of order j of the function ψ̃

(1)
k .
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Theorem 3. For the parameters µk > 0, k = 1, . . . , N , the equation (3.13)
has a unique solution in H2.

Here, H2(Dk) is the generalized Hardy space of analytic functions on Dk sat-
isfying the condition

sup
0<r<rk

∫ 2π

0

|ψk(reıθ + ak)|2 dθ <∞

and endowed with the norm

‖ψk‖2H2(Dk)
:= sup

0<r<rk

∫ 2π

0

|ψk(reıθ + ak)|2 dθ.

As far as the authors know, the first results devoted to functional equations in
Hardy spaces appeared in [9] and [8]. The ideas of these papers were applied
to modified equations in [7], where one can find the proof of the Theorem 3.

Remark 1. It directly follows from Theorem 3 and (3.7) that the system (3.13),
(3.14) always has a unique solution, as since γk > 0 and βk < 0, according to
the statement of the problem.

Now the components of the effective conductivity tensor

Λe =

(
λxe λxye
λxye λye

)

can be found from the well-known equation

〈q〉 = −Λe · 〈∇T 〉,

where 〈q〉 = (q1, q2) is the average flux, and 〈∇T 〉 = (T1, T2) is the average
temperature gradient with

q1 = λm

∫∫
D0

∂Tm
∂x

dxdy +

N∑
k=1

λk

∫∫
Dk

∂Tk
∂x

dxdy,

q2 = λm

∫∫
D0

∂Tm
∂y

dxdy +

N∑
k=1

λk

∫∫
Dk

∂Tk
∂y

dxdy,

T1 =

∫∫
D0

∂Tm
∂x

dxdy +

N∑
k=1

∫∫
Dk

∂Tk
∂x

dxdy,

T2 =

∫∫
D0

∂Tm
∂y

dxdy +

N∑
k=1

∫∫
Dk

∂Tk
∂y

dxdy.
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Thus, by using the same arguments as in [5], we derive

q1 = λm

( ∮
∂Q(0,0)

x
∂Tm
∂n

ds−
N∑
k=1

∮
∂Dk

x
∂Tm
∂n

ds
)

+

N∑
k=1

λk

∮
∂Dk

x
∂Tk
∂n

ds

= −A cos θ −
N∑
k=1

βk

∮
∂Dk

x
∂2Tk
∂s2

ds.

q2 = −A sin θ −
N∑
k=1

βk

∮
∂Dk

y
∂2Tk
∂s2

ds,

T1 − ıT2 =
−Ae−ıθ

λm
+ 2

N∑
k=1

λm − λk
λm + λk

∫∫
Dk

ψk(z) dxdy

− 1

λm

N∑
k=1

βk

∮
∂Dk

(x− ıy)
∂2Tk
∂s2

ds

=
−Ae−ıθ

λm
− 2π

N∑
k=1

ρkr
2
k ψk(ak)− 1

λm

N∑
k=1

βk

∮
∂Dk

(x− ıy)
∂2Tk
∂s2

ds.

4 Numerical results and discussions

In this section, we present numerical calculations of the material characteristics.
This will be the case for temperature, flux and the effective conductivity. Here,
we are using the Maple 14 software.

Figure 2. Configuration of the unit cell with four inclusions considered in computation.

First, we discuss the accuracy of our calculations, as well as their imple-
mentation. We choose a non-symmetrical configuration of non-overlapping in-
clusions with the centers

a1 = −0.18 + 0.2ı, a2 = 0.33− 0.34ı, a3 = 0.33 + 0.35ı, a4 = −0.18− 0.2ı (4.1)

and the same radius rk = R of value 0.145 when the inclusions are situated
very close to inclusions of the adjoin cells (see Fig. 2). It is the worst situation
for accuracy in comparison with symmetrical configurations of the inclusions.
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We suppose that a heat flux of fixed intensity A = −1 flows in different
directions with respect to the main axis depending on the angle θ. The con-
ductivity of the matrix is λm = 1, and the conductivity of the inclusions λk
and parameters γk, βk take different values.

We calculate the temperature and flux components for different M , showing
how many terms are selected for computations in the Taylor series (cf. (3.13)
and (3.14)). Computations are given in the Table 1-2 for the first ten con-
secutive values of M = 0, 1, . . . , 9 and show that taking M = 9 the accuracy
is between five or six valid units depending on where the flux is computed.
Note that here, for the same configuration, we need more terms M to get the
same accuracy as in the case of soft or stiff imperfect contact conditions on the
boundaries of material components (cf. [5, 6]).

Table 1. Temperature in two points of the model for different numbers of M , while other
problem parameters are: θ = 0, λk = 100 , γk = 0.01, βk = −0.01 and the configuration of
the inclusions being defined by (4.1).

M T (0) T (a1)

0 0.072495448 −0.320878065
1 0.085684757 −0.326260214
2 0.085696009 −0.327640325
3 0.085538235 −0.328182808
4 0.085472394 −0.328505039
5 0.085437191 −0.328623251
6 0.085425520 −0.328663509
7 0.085421809 −0.328677550
8 0.085420760 −0.328690413
9 0.085420530 −0.328695796

Table 2. The flux components for different numbers of M , while other problem parameters
are: θ = 0, λk = 100 , γk = 0.01, βk = −0.01 and the configuration of the inclusions being
defined by (4.1).

M Q
(m)
x (0) Q

(m)
y (0) Q

(1)
x (a1) Q

(1)
y (a1)

0 1.509808994 0.007462211 0.004195435 0.000030973
1 1.499794388 0.007529382 0.004282506 0.000036271
2 1.486223434 0.007493638 0.004293984 0.000035871
3 1.487420074 0.007613907 0.004294395 0.000036244
4 1.488001338 0.007614627 0.004296148 0.000036448
5 1.488494705 0.007626770 0.004296825 0.000036491
6 1.488689358 0.007630776 0.004296991 0.000036510
7 1.488753276 0.007632135 0.004297042 0.000036520
8 1.488804042 0.007633012 0.004297138 0.000036524
9 1.488825099 0.007633360 0.004297179 0.000036526

We represent the temperature and flux distribution T (x, y) in Figs. 3–10
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for the fixed parameters R = 0.145, λm = 1 and different θ = 0, π4 ; λk =
100, 0.01; βk = −0.01,−100; γk = 0.01, 100. The temperature changes faster
or slower within the representative cell in dependence on the different values
of the parameters λk, γk and βk as it is shown in Figs. 3–6.

(a) θ = 0 (b) θ = π/4

Figure 3. The temperature distribution inside Q(0,0) for λk = 0.01, γk = 100,
βk = −0.01, θ = 0;π/4.

(a) θ = 0 (b) θ = π/4

Figure 4. The temperature distribution inside Q(0,0) for λk = 100, γk = 100,
βk = −0.01, θ = 0;π/4.

Note that if the parameter βk = 0, we arrive at soft imperfect contact
conditions where the flux intensity in the matrix and inclusions depends not
only on λk, with fixed λm = 1, but also on the parameter γk (cf. [6]). In our
case of mixed imperfect contact conditions, the parameter βk also influences
on the flux. For instance, it is shown in Figs. 7–10 that for fixed λm = 1 and
γk = 100, in order to get a more intensive flux in the inclusions in comparison
with the flux in the matrix, we need not only to increase λk but also to decrease
the absolute value of the parameter βk. We obtain the same effect when we fix

Math. Model. Anal., 21(3):283–303, 2016.
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λk = 1, γk = 100 and decrease λm and the absolute value of βk. For all other
values of the parameters λm, λk, γk and βk, the flux in the matrix is more
intensive than the flux in the inclusions.

(a) θ = 0 (b) θ = π/4

Figure 5. The temperature distribution inside Q(0,0) for λk = 0.01, γk = 100,
βk = −100, θ = 0;π/4.

(a) θ = 0 (b) θ = π/4

Figure 6. The temperature distribution inside Q(0,0) for λk = 100, γk = 100, βk = −100,
θ = 0;π/4.

The values of all components of the tensor Λe as a function on the radius
R are presented in Tables 3-6 for different parameters λk, γk and βk. The
calculations were performed with the found accuracy between five or six valid
units.
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(a) θ = 0 (b) θ = π/4

Figure 7. The flux distribution inside Q(0,0) for λk = 0.01, γk = 100, βk = −0.01,
θ = 0;π/4.

(a) θ = 0 (b) θ = π/4

Figure 8. The flux distribution inside Q(0,0) for λk = 100, γk = 100, βk = −0.01,
θ = 0;π/4.

Table 3. The components of the effective conductivity tensor Λe for the configuration of
the inclusions given in (4.1) for the material constants λk = 0.01, γk = 100, βk = −0.01,
M = 9.

R λxe λxye λyxe λye

0.01 0.998768 0 0 0.998768
0.05 0.949348 1.2 · 10−7 1.2 · 10−7 0.950053
0.11 0.746523 3.4 · 10−6 3.4 · 10−6 0.765421
0.135 0.624851 8.2 · 10−6 8.2 · 10−6 0.666135
0.145 0.569849 1.2 · 10−5 1.2 · 10−5 0.624544

Math. Model. Anal., 21(3):283–303, 2016.
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(a) θ = 0 (b) θ = π/4

Figure 9. The flux distribution inside Q(0,0) for λk = 0.01, γk = 100, βk = −100,
θ = 0;π/4.

(a) θ = 0 (b) θ = π/4

Figure 10. The flux distribution inside Q(0,0) for λk = 100, γk = 100, βk = −100,
θ = 0;π/4.

Table 4. The components of the effective conductivity tensor Λe for the configuration of
the inclusions given in (4.1) for the material constants λk = 100, γk = 100, βk = −0.01,
M = 9.

R λxe λxye λyxe λye

0.01 1.001233 0 0 1.001233
0.05 1.052572 1.4 · 10−7 1.4 · 10−7 1.053354
0.11 1.306471 6.0 · 10−6 6.0 · 10−6 1.339544
0.135 1.501195 2.0 · 10−5 2.0 · 10−5 1.600389
0.145 1.601164 3.3 · 10−5 3.3 · 10−5 1.754900
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Table 5. The components of the effective conductivity tensor Λe for the configuration of
the inclusions given in (4.1) for the material constants λk = 0.01, γk = 100, βk = −100,
M = 9.

R λxe λxye λyxe λye

0.01 0.9999998 −3.8 · 10−14 −3.8 · 10−14 0.9999998
0.05 0.999968 −1.3 · 10−10 −1.3 · 10−10 0.999968
0.11 0.999631 −9.3 · 10−9 −9.3 · 10−9 0.999581
0.135 0.999270 −3.8 · 10−8 −3.8 · 10−8 0.999089
0.145 0.999063 −7.2 · 10−8 −7.2 · 10−8 0.998751

Table 6. The components of the effective conductivity tensor Λe for the configuration of
the inclusions given in (4.1) for the material constants λk = 100, γk = 100, βk = −100,
M = 9.

R λxe λxye λyxe λye

0.01 1.000024 3.6 · 10−12 3.6 · 10−12 1.000024
0.05 1.002995 1.2 · 10−8 1.2 · 10−8 1.003062
0.11 1.032965 8.1 · 10−7 8.1 · 10−7 1.037322
0.135 1.063832 3.3 · 10−6 3.3 · 10−6 1.079309
0.145 1.081262 6.0 · 10−6 6.0 · 10−6 1.107558

Conclusions

As a result of our analysis the following conclusions can be formulated:

• We explicitly solved a complicated mixed boundary value problem for
the Laplace equation with mixed soft and stiff imperfect contact condi-
tions, serving as a model for a composite material structure.

• On the basis of this solution, we obtained in explicit form the material
characteristics (such as temperature, flux and the effective conductivity)
for a 2D composite material model with circular disjoint inclusions. The
derived formulas contain all parameters of the considered model such
as the conductivity, resistent coefficients, radii, centers of the inclusions,
the conductivity of the matrix, and also special Eisenstein functions. It
was illustrated that these formulas can be implemented in computational
software.

• We also have shown the possibility to make the analysis of the model’s
properties by using their analytical representations.
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