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Abstract. In this paper, we consider the fourth-order linear differential equation
u(4) +f(x)u = g(x) subject to the mixed boundary conditions u(0) = u(1) = u′′(0) =
u′′(1) = 0. We first establish sufficient conditions on f(x) that guarantee a unique
solution of this problem in the Hilbert space by using an a priori estimate. Accurate
analytic solutions in series forms are obtained by a new variation of the Duan-Rach
modified Adomian decomposition method (DRMA), and then extend this approach
to some boundary value problems of fourth-order nonlinear beam equations. Also, a
comparison of the two approximate solutions by the ADM with the Green function
approach is presented.

Keywords: fourth-order equation, a priori estimate, Duan-Rach modified Adomian decom-

position method, Adomian polynomials.
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1 Introduction

Consider the real-valued two-point fourth-order linear boundary problem [6,
17,20]

u(4)(x) + f(x)u(x) = g(x), 0 < x < 1, (1.1)

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0, (1.2)
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where f and g are continuous functions on [0, 1]. This problem naturally arises
in various areas of physics, engineering and mathematics such as the plate
deflection theory. The analytical solution of problem (1.1)–(1.2) is given by
Timoshenko and Woinowsky-Krieger [16] provided that the functions f(x) and
g(x) are constants.

In [17], the author established a sufficient condition inf f(x) = −α > −π4,
that is −f(x) < α, that guarantees a unique solution for problem (1.1)-(1.2).
Also, the existence and uniqueness theorem for the positivity (or negativity) of
solutions is given in [6].

In the present work, we study the above problem with sufficient conditions
on f(x) that guarantee a unique solution in the Hilbert space. Also, accurate
analytic solutions in series form for fourth-order linear and some nonlinear
beam equations are obtained by a new variation of the Duan-Rach modified
Adomian decomposition method (DRMA) [7,8, 9, 10].

For the sake of comparison, we will solve two of the proposed examples by
the standard Adomian decomposition method [1,2,3,5,9,18,19] and [7,8,9,10].

2 The uniqueness theorem

The purpose of this section is to establish sufficient conditions on f(x) that
guarantee a unique solution for a linear operator equation of the form

zu = g, u ∈ U,

where z : D(z) ⊂ U → V,

zu = u(4) + f(x)u,

and where U is a Hilbert space:

U =
{
u : u,

diu

dxi
∈ L2(0, 1), i = 1, 2, 3, 4

}
with respect to the norm

‖u‖2U =

∫ 1

0

[
u2 +

(
du

dx

)2

+

(
d2u

dx2

)2

+

(
d3u

dx3

)2

+

(
d4u

dx4

)2
]
dx <∞,

D(z) = {u ∈ U, u(0) = u(1) = 0 and u′′(0) = u′′(1) = 0}

and V = L2(0, 1) is a Hilbert space with respect to the norm

‖g‖2L2
=

∫ 1

0

g2(x)dx.

For u ∈ U, we define the operator M by

Mu ≡ u− d2u

dx2
.
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Firstly, consider the scalar product (zu, u)L2
. Employing integration by parts,

and taking into account that u(0) = u(1) = 0 and u′′(0) = u′′(1) = 0, we obtain

(zu, u)L2
=

∫ 1

0

(
d2u

dx2

)2

dx+

∫ 1

0

f(x)u2dx. (2.1)

Now, consider

(
zu,−d

2u

dx2

)
L2

. Employing integration by parts, and taking

into account the aforementioned boundary conditions, we obtain(
zu,−d

2u

dx2

)
L2

=

∫ 1

0

(
d3u

dx3

)2

dx+

∫ 1

0

f(x)

(
du

dx

)2

dx−1

2

∫ 1

0

f ′′(x)u2dx. (2.2)

Adding (2.1) and (2.2), we obtain

(zu, Mu)L2
=

∫ 1

0

(
d2u

dx2

)2

dx+

∫ 1

0

f(x)u2dx+

∫ 1

0

(
d3u

dx3

)2

dx

+

∫ 1

0

f(x)

(
du

dx

)2

dx− 1

2

∫ 1

0

f ′′(x)u2dx.

The scalar product (zu, Mu)L2
can be estimated by means of the Cauchy-

Schwarz-Bunyakovski inequality and the ε− inequality

2uv ≤ εu2 +
1

ε
v2, u, v ≥ 0, ε > 0,

| (zu, Mu)L2
|≤ 1

2ε1

∫ 1

0

g2(x)dx+
ε1
2

∫ 1

0

u2(x)dx

+
1

2ε2

∫ 1

0

g2(x)dx+
ε2
2

∫ 1

0

(
d2u

dx2

)2

dx.

If we suppose that α1 ≤ f(x) ≤ α2 and −f ′′(x) > β > 0 for all x ∈ [0, 1], then

(α1 +
β

2
− ε1)

∫ 1

0

u2dx+ α1

∫ 1

0

(
du

dx

)2

dx+ (1− ε2)

∫ 1

0

(
d2u

dx2

)2

dx

+

∫ 1

0

(
d3u

dx3

)2

dx ≤ (
1

2ε1
+

1

2ε2
)

∫ 1

0

g2(x)dx. (2.3)

From equation (1.1), we have

d4u

dx4
= g(x)− f(x)u

and therefore it follows that

ε3

∫ 1

0

(
d4u

dx4

)2

dx ≤ 2ε3

(∫ 1

0

g2(x)dx+ α2
2

∫ 1

0

u2dx

)
, ε3 > 0.
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Adding this estimate with inequality (2.3), we obtain

(α1+
β

2
−ε1−2ε3α

2
2)

∫ 1

0

u2dx+ α1

∫ 1

0

(
du

dx

)2

dx+ (1− ε2)

∫ 1

0

(
d2u

dx2

)2

dx

+

∫ 1

0

(
d3u

dx3

)2

dx+ ε3

∫ 1

0

(
d4u

dx4

)2

dx ≤
(

2ε3 +
1

2ε1
+

1

2ε2

)∫ 1

0

g2(x)dx.

Choosing εi, i = 1, 2, 3 to be sufficiently small so that α1 + β
2 − ε1−2ε3α

2
2 > 0.

Hence∫ 1

0

[
u2 +

(
du

dx

)2

+

(
d2u

dx2

)2

+

(
d3u

dx3

)2

+

(
d4u

dx4

)2
]
dx ≤ C

∫ 1

0

g2(x)dx,

that is
||u||U ≤ C1||g||L2

, (2.4)

where C1 = C
1
2 and C =

2 + 1/(2ε1) + 1(2ε2)

min(α+ β/2− ε1 − 2ε3α2
2, α, 1− ε2, ε3)

.

Thus we have proved the following statement.

Theorem 1. Suppose that α1 ≤ f(x) ≤ α2 and −f ′′(x) > β > 0 for all
x ∈ [0, 1]. Then for g ∈ L2[0, 1], there exists a constant C1 > 0 such that the
obtained a priori estimate (2.4) holds.

Notice that the uniqueness of the solution follows from the stability estimate
(2.4).

3 Approximate analytic solution by the Duan-Rach
modified Adomian decomposition method (DRMA)

We propose here to solve this fourth-order linear boundary value problem by
the Duan-Rach modified Adomian decomposition method (DRMA) [7,8,9,10].

3.1 The linear problem

Consider equation (1.1) with the general nonhomogeneous mixed boundary
conditions

u(0) = α1, u(1) = α2, u
′′(0) = β1, u

′′(1) = β2. (3.1)

This problem can be converted into the following system of two-coupled bound-
ary value problems{

u′′ = v, u(0) = α1, u(1) = α2,
v′′ + f(x)u = g(x), v(0) = β1, v(1) = β2.

Next we rewrite this system in Adomian’s operator-theoretic notation as{
Lu = v, u(0) = α1, u(1) = α2,

Lv +Ru = g, v(0) = β1, v(1) = β2,
(3.2)

Math. Model. Anal., 21(3):304–318, 2016.
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where

L(·) =
d2

dx2
(·) and Ru = f(x)u.

Applying the inverse operator

L−1(·) =

∫ x

0

∫ y

0

(·)dtdy

to both sides of the two equations of system (3.2) and taking into account
u(0) = α1 and v(0) = β1, we obtain{

u(x) = α1 +Ax+
∫ x
0

∫ y
0
v(t)dtdy,

v(x) = β1 +Bx−
∫ x
0

∫ y
0
f(t)u(t)dtdy +

∫ x
0

∫ y
0
g(t)dtdy,

(3.3)

where A = u′(0) and B = v′(0) = u′′′(0) are unknowns constants. The values
of A and B can be determined by using the remaining boundary conditions
u(1) = α2 and u′′(1) = β2.

Evaluation of u(x) and v(x) at x = 1 yields{
u(1) = α1 +A+

∫ 1

0

∫ y
0
v(t)dtdy = α2,

v(1) = β1 +B −
∫ 1

0

∫ y
0
f(t)u(t)dtdy +

∫ 1

0

∫ y
0
g(t)dtdy = β2.

Thus {
A = α2 − α1 −

∫ 1

0

∫ y
0
v(t)dtdy,

B = β2 − β1 +
∫ 1

0

∫ y
0
f(t)u(t)dtdy −

∫ 1

0

∫ y
0
g(t)dtdy.

Upon substitution of these values into system (3.3), we have
u(x) = α1 +

[
α2 − α1 −

∫ 1

0

∫ y
0
v(t)dtdy

]
x+

∫ x
0

∫ y
0
v(t)dtdy,

v(x) = β1 +
[
β2 − β1 +

∫ 1

0

∫ y
0
f(t)u(t)dtdy −

∫ 1

0

∫ y
0
g(t)dtdy

]
x

−
∫ x
0

∫ y
0
f(t)u(t)dtdy +

∫ x
0

∫ y
0
g(t)dtdy,

which is the equivalent linear Fredholm-Volterra integral system without any
undetermined constants of integration.

Define the solutions u(x) and v(x) by their respective infinite series of com-
ponents in the form

u(x) =
∞∑
n=0

un(x) and v(x) =
∞∑
n=0

vn(x).

Thus, the components un and vn can be elegantly determined by setting the
new modified recursion scheme

u0 = α1 + (α2 − α1)x, v0 = β1 + (β2 − β1)x+
∫ x
0

∫ y
0
g(t)dtdy,

un+1 = −
[∫ 1

0

∫ y
0
vn(t)dtdy

]
x+

∫ x
0

∫ y
0
vn(t)dtdy, n ≥ 0,

vn+1 =
[∫ 1

0

∫ y
0
f(t)un(t)dtdy

]
x−

∫ x
0

∫ y
0
f(t)un(t)dtdy, n ≥ 0.

(3.4)
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3.2 The nonlinear problem

Consider the nonlinear problem [20]

u(4) = f(x, u, u′′), 0 < x < 1, (3.5)

subject to the set of the nonhomogeneous mixed boundary conditions (3.1).
In [20], the author established the following general result for this problem.

Theorem 2. Suppose that f(x, y, z) is continuous on [0, 1]×R×R and there
are constants a, b, c > 0 such that

| f(x, y, z) |≤ a | y | +b | z | +c,

where a
π4 + b

π2 < 1. Then problem (3.5), (3.1) has a solution.

Also, a class of this type of boundary value problems can be found in [4],
where the authors studied the existence, uniqueness and multiplicity of positive
solutions.

In a similar manner, this problem can be converted into the following system{
u′′ = v, u(0) = α1, u(1) = α2,
v′′ = f(x, u, v), v(0) = β1, v(1) = β2

and therefore in Adomian’s operator-theoretic notation as{
Lu = v, u(0) = α1, u(1) = α2,
Lv = Nu, v(0) = β1, v(1) = β2,

where Nu = f(x, u, u′′). The Adomian decomposition method admits the use
of the infinite decomposition series

u =

∞∑
n=0

un and v =

∞∑
n=0

vn

for the solutions u(x) and v(x), respectively, and the infinite series

N(u) =

∞∑
n=0

An(u0, u1, ..., un)

for the nonlinear term N(u), where the An are the Adomian polynomials [1,2,
3, 18,19], which can be obtained from the definitional formula

An =
1

n!

dn

dλn

[
f

(
n∑
i=0

λi yi

)]
λ=0

, n = 0, 1, 2, ....

Consequently the components un and vn of the solution u(x) and v(x), respec-
tively, will be determined recursively by setting the new modified recursion
scheme

u0 = α1 + (α2 − α1)x, v0 = β1 + (β2 − β1)x,

un+1 = −
[∫ 1

0

∫ y
0
vn(t)dtdy

]
x+

∫ x
0

∫ y
0
vn(t)dtdy, n ≥ 0,

vn+1 = −
[∫ 1

0

∫ y
0
An(t)dtdy

]
x+

∫ x
0

∫ y
0
An(t)dtdy, n ≥ 0.

Math. Model. Anal., 21(3):304–318, 2016.
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3.3 A three-point boundary value problem

Consider the fourth-order beam equation [11]

u(4) = g(x)f(u(x)), 0 < x < 1,

subject to the boundary conditions

u(0) = α1, u
′(0) = α2, u

′′(β) = γ1, u
′′(1) = γ2,

where g(x) 6= 0 on [0, 1] and β ∈ [2/3, 1) is a constant. This type of problems
was considered in [11] as a three-point boundary value problem for the beam
equation with αi = γi = 0, i = 1, 2, where the authors established some a
priori estimates to the positive solutions and established sufficient conditions
for the existence and nonexistence of positive solutions.

We rewrite this problem as an equivalent system{
L1u ≡ u′′ = v, u(0) = α1, u

′(0) = α2,
L2v ≡ v′′ = g(x)f(u), v(β) = γ1, v(1) = γ2.

We can proceed as before with

L−11 (.) =

∫ x

0

∫ y

0

(.)dtdy and L−12 (.) =

∫ x

1

∫ y

0

(.)dtdy

to obtain {
u(x) = α1 + α2x+

∫ x
0

∫ y
0
v(t)dtdy,

v(x) = γ2 +A(x− 1) +
∫ x
1

∫ y
0
g(t)f(u(t))dtdy,

where A = v′(0) = u′′′(0) is an unknown constant and can be determined by
using the remaining boundary condition v(β) = u′′(β) = γ1. Thus

A =
1

β − 1

(
γ1 − γ2 −

∫ β

1

∫ y

0

g(t)f(u(t))dtdy
)
.

Consequently, the components un and vn can be elegantly determined by set-
ting the new modified recursion scheme

u0 = α1 + α2x, v0 = γ2 + 1
β−1 (γ2 − γ1) + 1

β−1 (γ1 − γ2)x,

un+1 =
∫ x
0

∫ y
0
vn(t)dtdy, n ≥ 0,

vn+1 = 1
β−1

[∫ β
1

∫ y
0
g(t)An(t)dtdy

]
(1−x)+

∫ x
1

∫ y
0
g(t)An(t)dtdy, n ≥ 0,

where the An are the Adomian polynomials for the nonlinear term Nu = f(u).

3.4 Examples

Example 1. Consider the following fourth-order boundary value problem

y(4) + (1− x2

2
)y = −x

4

2
+
x3

2
+ x2 − x, 0 < x < 1,

y(0) = 0, y(1) = 0, y′′(0) = 2, y′′(1) = 2.
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First of all, we begin our approach by replacing the inhomogeneous boundary
conditions by the corresponding homogeneous conditions. To do this, we in-
troduce a new unknown function u(x) such that y(x) = u(x) + x2 − x. Then u
satisfies the following boundary value problem

u(4) + (1− x2

2
)u = 0, 0 < x < 1,

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0.

Here f(x) = 1 − x2

2 and g(x) = 0. A simple calculation leads to −f ′′(x) = 1.
Thus the conditions of Theorem 1 are satisfied. The recursion scheme (3.4)
produces a rapidly convergent series as{

u0 = 0, v0 = 0,
un = 0, vn = 0, n ≥ 1.

Consequently, the intermediate solution u(x) = 0. Returning to the original
dependent variable, we obtain y(x) = x2 − x, which is the exact solution to
this problem.

Using the standard Adomian decomposition method. For the sake of
comparison, we will solve this proposed example by the standard Adomian
decomposition method.

In an operator form, we rewrite this equation as

Ly + (1− x2

2
)y = −x

4

2
+
x3

2
+ x2 − x, 0 < x < 1 (3.6)

with the given boundary conditions, where L is a fourth-order differential o-
perator, where we assume that the corresponding integral operator L−1 exists.
Applying the inverse operator L−1 to both sides of (3.6) gives

y(x) = αx+ x2 +
βx3

6
x3 − x8

3360
+

x7

1680
+

x6

360
− 5x5

120
− L−1

(
1− x2

2

)
y,

where the unknown constants α = y′(0), β = y′′′(0) will be determined later by
using the other boundary conditions.

The ADM admits the use of the infinite decomposition series

y(x) =

∞∑
n=0

yn(x).

This assumption allows us to use the following recursion relation

y0(x) = f(x),

yk+1(x) = −L−1
(

1− x2

2

)
yk, k ≥ 0,

Math. Model. Anal., 21(3):304–318, 2016.
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where f(x) is given by all terms that are not included under the inverse operator
L−1. This in turn gives the following solution components

y0(x) = αx+ x2 +
βx3

6
− x8

3360
+

x7

1680
+

x6

360
− 5x5

120
,

y1(x) = −αx
5

120
− x6

360
+(

α

680
− β

5040
)x7+

1

3360
x8+(

β

36288
+

1

362880
)x9+ · · · ,

y2(x) =
α

362880
x9 + · · · ,

. . . ,

where other x terms and other components yj were also evaluated but not
listed. To determine the constants α and β, we use the boundary conditions
y(1) = 0 and y′′(1) = 2 in the the two-stage, three-stage, and fourth-stage
approximate solutions, where the following sequences for α and β

α = −1.000086673, −1.000006123, −1.000,

β = 0.0005059937268, 0.2465705339× 10−5, 0.5906015238× 10−9

are readily obtained. This shows that α converges to –1, and β converges to 0.
Consequently, we obtain the exact solution

y(x) = x2 − x.

Example 2. Consider the boundary value problem [17,20]

u(4) + f(x)u = 0, 0 < x < 1

with the boundary conditions (1.2), where f(x) 6= k4π4, k = 1, 2, .... This
problem has only the trivial solution u = 0 as shown in [17, 20]. Also, the
trivial solution obtained (u = 0) by the recursion scheme (3.4) to this particular
problem is consistent with this result.

Example 3. Consider the boundary value problem

u(4) = k1u− k2u′′ + k3 sin(πx), 0 < x < 1,

with (1.2), where k1 = π4

4 , k2 = π2

4 , k3 = π4

2 . Here

f(x, u, u′′) = k1u− k2u′′ + k3 sin(πx).

A simple calculation leads to

| f(x, u, u′′) |≤ k1 | u | +k2 | u′′ | +k3,

where k1
π4 + k2

π2 = 1
2 < 1. Thus the conditions of Theorem 2 are satisfied and

further f satisfies a Lipschitz condition in u and u′′. Then this problem has one
solution.
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We accordingly set the following recursion scheme
u0 = 0, v0 = −

[∫ 1

0

∫ y
0
g(t)dtdy

]
x+

∫ x
0

∫ y
0
g(t)dtdy,

un+1 = −
[∫ 1

0

∫ y
0
vn(t)dtdy

]
x+

∫ x
0

∫ y
0
vn(t)dtdy, n ≥ 0,

vn+1 = −
[∫ 1

0

∫ y
0
f1(un(t), vn(t))dtdy

]
x

+
∫ x
0

∫ y
0
f1(un(t), vn(t))dtdy, n ≥ 0,

where g(x) = k3 sin(πx) and f1(un, vn) = k1un − k2vn.
By computation, we obtain

u0 = 0, v0 = −π
2

2 sin(πx),

u1 = 1
2 sin(πx), v1 = −π

2

8 sin(πx),

u2 = 1
8 sin(πx), v2 = − 5π2

32 sin(πx),

u3 = 5
32 sin(πx), v3 = − 9π2

128 sin(πx),

u4 = 9
128 sin(πx), v4 = − 29π2

32 sin(πx),

u5 = 29
512 sin(πx), v5 = − 65π2

2048 sin(πx),

u6 = 65
2048 sin(πx), v6 = − 181π2

8192 sin(πx),

u7 = 181
8192 sin(πx), v7 = − 441π2

32768 sin(πx),

u8 = 441
32768 sin(πx), v8 = − 1165π2

131072 sin(πx),
...

Consequently, the approximate solution φn(x) =
∑n−1
k=0 uk and the 9th-stage

approximation function of u(x) is given as

φ9(x) =

8∑
k=0

uk = u0 + u1 + u2 + ...+ u8

=

[
1

2
+

1

8
+

5

32
+ ...+

181

8192
+

441

32768

]
sin(πx)

= 0.976 sin(πx) ≈ sin(πx),

which is the exact solution to this particular boundary value problem.

Using the standard Adomian decomposition method. In an operator
form, we rewrite this equation as

Lu = k1u− k2u′′ + k3 sin(πx), 0 < x < 1 (3.7)

with the given boundary conditions, where L is a fourth differential operator,
where we assume the fourth integral operator L−1 exists. Applying the inverse
operator L−1 to both sides of (3.7) gives

u(x) = αx+ x2 +
βx3

6
+

1

2
sin(πx)− πx

2
+
π3x3

12
− L−1 (k1u− k2u′′) ,

where the unknown constants α = y′(0), β = y′′′(0) will be determined later by
using the other boundary conditions.
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Proceeding as in Example 1, we obtain the following solution components

u0(x) = αx+ x2 + βx3

6 x3 + 1
2 sin(πx)− πx

2 + π3x3

12 ,

u1(x) = (απ
4

480 −
βπ2

480 )x5 + ( βπ4

20160 −
π7

40320 )x7 + · · · ,
u2(x) = ( βπ4

80640 −
απ6

80640 )x7 + · · · ,
· · · ,

where other x terms and other components y3 and u4(x) were also evaluated
but not listed. To determine the constants α and β, we use the boundary
conditions u(1) = 0 and u′′(1) = 0 in the two-stage, three-stage, and fourth-
stage approximate solution, where the following sequences for α and β

α = 3.834103992, 3.102954222, 3.143078028,

β = −36.89714965, −30.69003970, −31.01824125

were readily obtained. This means that α converges to π and β to −π3. Sub-
stituting α = π and β = −π3 in the fourth stage approximation, we obtain the
series solution

u(x) = πx− π3

3!
x3 +

π5

5!
x5 − π7

7!
x7 + · · · ,

which is the Taylor series for the exact solution u(x) = sin(πx).

4 Comparison of the two approximate solutions by the
ADM with the Green function approach for two similar
equations

In this section, we compare two approximate solutions obtained by the Ado-
mian decomposition method (ADM) with the Green function approach for two
similar equations. Green’s functions for BVP (differential and discrete) were
investigated in [12, 13, 15] (see a survey [14], too). Consider the nonlinear
boundary value problem [4]

u(4) = λf(x, u), 0 < x < 1, λ > 0 (4.1)

subject to the set of boundary conditions (1.2).
This problem can be converted into the following system{

u′′ = v, u(0) = u(1) = 0,
v′′ = λf(x, u), v(0) = v(1) = 0.

(4.2)

Then problem (4.2) is equivalent to the system of coupled integral equations{
u =

∫ 1

0
G(x, y)v(y)dy,

v = λ
∫ 1

0
G(x, y)f(y, u(y))dy,

where G(x, y) is the Green function defined as

G(x, y) =

{
x(y − 1), 0 ≤ x ≤ y ≤ 1,
y(1− x), 0 ≤ y ≤ x ≤ 1.
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It follows that

u(x) = λ

∫ 1

0

K(x, y)f(y, u(y))dy,

which is expressed in the canonical form, where K(x, y) =
∫ 1

0
G(x, t)G(t, y)dt.

The same procedure can be adopted to resolve this nonlinear integral equation.
We have

Theorem 3. Let Φn(x) =
∑n−1
i=0 ui(x) and Ψn(x) =

∑n−1
i=0 ui(x) be two nth-

stage approximation functions of u(x) by the ADM for the nonlinear boundary
value problems equation (4.1) and

u(4) = λg(x, u), 0 < x < 1

with (1.2), respectively such that f, g satisfy the Lipschitz condition in u and
|K(x, y)| ≤M, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. If

max
0≤x≤1

|f(x, Ψn(x))− g(x, Ψn(x))| ≤ ε, ε > 0,

then

||Φn − Ψn||C[0,1] ≤
λMε

1− λkM
, (4.3)

where 0 < k < 1
λM is a Lipschitz constant.

Proof. We have

Φn(x) = λ

∫ 1

0

K(x, y)f(y, Φn(y)) dy, n ≥ 1,

Ψn(x) = λ

∫ 1

0

K(x, y)g(y, Ψn(y)) dy, n ≥ 1

with Φn(0) = Ψn(0) = 0. It follows that

max
0≤x≤1

|Φn(x)− Ψn(x)| ≤ λM max
0≤x≤1

|f(x, Φn(x))− g(x, Ψn(x))|.

Since

|f(x, Φn)− g(x, Ψn)| = |f(x, Φn)− f(x, Ψn) + f(x, Ψn(x))− g(x, Ψn)|.

Thus

max
0≤x≤1

|Φn(x)− Ψn(x)| ≤ λM
[
k max

0≤x≤1
|Φn(x)− Ψn(x)|+ ε

]
.

Consequently,

max
0≤x≤1

|Φn(x)− Ψn(x)| ≤ λMε

1− λkM
,

and we obtain (4.3). ut
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Theorem 4. Let Φn(x) and Ψn(x) be two nth-stage εi− approximation func-
tions of u(x) by the ADM for the nonlinear boundary value problems equa-
tion (4.1) with (1.2), that is there exist εi, i = 1, 2 such that

|Φn(x)− λ
∫ 1

0

K(x, y)f(y, Φn(y)) dy| ≤ ε1

|Ψn(x)− λ
∫ 1

0

K(x, y)f(y, Ψn(y)) dy| ≤ ε2.

Under the same hypothesis on f and K(x, y) of Theorem 3, we have

||Φn − Ψn||C[0,1] ≤
ε1 + ε2

1− λkM
. (4.4)

Proof. We have

|Φn(x)− Ψn(x)| ≤ |Φn(x)− λ
∫ 1

0

K(x, y)f(y, Φn(y)) dy + λ

∫ 1

0

K(x, y)

× f(y, Ψn(y))dy − Ψn(x)|+ λ|
∫ 1

0

K(x, y) [f(y, Φn(y))− f(y, Ψn(y))] dy|.

So that

|Φn(x)− Ψn(x)| ≤ ε1 + ε2 + λkM max
0≤x≤1

|Φn(x)− Ψn(x)|.

Consequently

max
0≤x≤1

|Φn(x)− Ψn(x)| ≤ ε1 + ε2
1− λkM

,

and we obtain (4.4). ut
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