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Abstract. A three-dimensional unilateral contact problem for articular cartilage
layers attached to subchondral bones shaped as elliptic paraboloids is considered in
the framework of the biphasic cartilage model. The main novelty of the study is in
accounting not only for the normal (vertical), but also for tangential vertical (hor-
izontal) displacements of the contacting surfaces. Exact general relationships have
been established between the contact approach and some integral characteristics of
the contact pressure, including the contact force. Asymptotic representations for the
contact pressure integral characteristics are obtained in terms of the contact approach
and some integral characteristics of the contact zone. The main result is represented
by the first-order approximation problem. We supply the theoretical description of
the asymptotic method by numerical analysis of the model. Our calculations demon-
strate good convergence of the numerical scheme in determination of the parameters.
In particular, it is shown that accounting for the tangential displacement is important
in cases where the contact zone is non-circular.
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1 Introduction

Biomechanical contact problems involving transmission of forces across biolog-
ical joints are of considerable practical interest (see, e.g. [2, 3, 11, 14]). Many
analytical solutions to the problem of contact interaction of articular carti-
lage surfaces in joints are available. In particular, Ateshian et al. [8] obtained
an asymptotic solution for the axisymmetric contact problem for two identi-
cal biphasic cartilage layers consisting of a solid phase and a fluid phase and
attached to two rigid impermeable spherical bones of equal radii. Later, Wu
et al. [16] extended this solution to a more general axisymmetric model by
combining the assumption of the kinetic relationship from classical contact
mechanics [12] with the joint contact model [8] for the contact of two biphasic
cartilage layers. An improved solution for the contact of two biphasic cartilage
layers in the axisymmetric setting, which can be used for dynamic loading, was
obtained by Wu et al. [15].

An asymptotic modeling approach to study the contact problem for bipha-
sic cartilage layers has been performed by Argatov and Mishuris in a series of
articles (see [4,6,7]). In particular, it was shown [6] that accounting for the tan-
gential displacements is important in the case of diseased cartilage where the
measurement of indentation depth may differ even as much as 10% in compar-
ison with the healthy case. In [4], the unilateral contact problem for articular
cartilages bonded to subchondral bones with a contact zone in the shape of an
arbitrary ellipse has been considered, and a closed form analytic solution was
found. Exploiting this exact result, Argatov and Mishuris [7] have performed
perturbation analysis of the contact problem with approximate geometry of the
contact surfaces. Other analytic solutions for the contact problem were found
using the viscoelastic cartilage model for elliptic contact zone in [5]. A new
methodology for modeling articular tibio-femoral contact based on the devel-
oped asymptotic model of frictionless elliptical contact interaction between thin
biphasic cartilage layers was presented in [2]. The mathematical model of artic-
ular contact was extended to the case of contact between arbitrary viscoelastic
incompressible coating layers.

The constitutive model for biphasic cartilage layers has been extensively
discussed in the literature. Our formulation most closely resembles the model
proposed by Ateshyan et al [8]. We omit a detailed description of the modelling
due to a lack of space. Instead, we restrict the discussion, by appropriate cita-
tion, to the basic model, with clear identification of the origins of the asymptotic
model.

The principal originality of this work, with contrast to papers [6] and [4],
is in the accounting for tangential displacements in the contact problem for
cartilage layers while using a contact zone of elliptical shape, based on the
biphasic model. Although the load is normal, the displacements of the material
points on the contact zone have both normal and tangential components, since
the surface of the bone is not flat. Despite an absence of friction, the tangential
displacement is small but present, and perhaps essential, as has been shown in
contact mechanics (with reference to the book by Johnson [12]). Comparing our
results with those of other authors we come to the conclusion that accounting
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for the tangential displacements is important in determining a more accurate
approximation of the real behaviour of the complex “bone-cartilage”.

Note that the perturbation method proposed in [7] could be one of the
options for the analysis, however, the procedure is too complex to perform
even a few asymptotic steps. Here, employing some technique and ideas from [6]
and [4], we propose another way to construct the asymptotics which utilizes
the assumption that the shape of the contact zone is an ellipse at the initial
stage of deformation and can be regarded as a small perturbation of the ellipse
at any other stage of deformation.

The paper is organized as follows. The unilateral contact problem formu-
lation and its linearization are presented in Section 2, where a special case of
the contact configuration with one cartilage layer being plane and rigid is also
considered in detail. In Section 3, we derive exact general relationships between
the contact approach and some integral characteristics of the contact pressure,
including the contact force. In Section 3.3, we obtain asymptotic representa-
tions for the contact pressure integral characteristics in terms of the contact
approach and some integral characteristics of the contact zone. The zero-order
and first-order asymptotic approximations for the solution to the contact prob-
lem are obtained in Subsections 4.1 and 4.2, respectively. Detailed calculations
which led to the corresponding sets of equations are presented in [13]. The
first-order approximation problem constitutes the main result of the present
study. Section 5 presents a numerical analysis of the model. On the basis
of this discussion of the obtained numerical results we make some conclusions
concerning the model.

2 Formulation of the contact problem

We consider a frictionless contact between two thin linear biphasic cartilage
layers firmly attached to rigid bones shaped like elliptic paraboloids (see Fig.1).

Figure 1. Schematic representation of the the system bone-cartilage.

It is a common assumption in most of papers devoted to the study of the
bone-cartilage system to consider the bone as a rigid elliptic paraboloid. Since
the stiffness of the bone is obviously much greater than that of the cartilage,
this assumption seems physically consistent. The geometrical assumptions are a
common simplification in the literature, allowing us to: a) analytically identify
basic features of the contact problem, b) consider the solution as a benchmark
for FEM simulations.

Math. Model. Anal., 21(5):585–609, 2016.
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In the Cartesian co-ordinates (x1, x2, z) = (x, z) the equations for the two
cartilage surfaces can be written in the form z = (−1)nΦ(n)(x), n = 1, 2, where

Φ(n)(x) =
x21

2R
(n)
1

+
x22

2R
(n)
2

(2.1)

with R
(n)
1 , R

(n)
2 being the curvature radii of the n-th bone surface at its apex.

We note that assuming the bone to have the form of an elliptical paraboloid
is practically reasonable for approximation of the real shape of human bones
(see [4] and references therein).

In the undeformed state, the cartilage-bone systems occupy convex domains
z ≤ −Φ(1)(x) and z ≥ Φ(2)(x), respectively. They are in the initial contact with
the plane z = 0 at the origin of the co-ordinate system.

We denote by w1(x, t), w2(x, t) the local vertical displacements of the cor-
responding cartilage surfaces. Let also u1(x, t), u2(x, t) be the local horizontal
(tangential) displacements of the corresponding surface of the cartilages. Fi-
nally, we denote by P (x, t) the contact pressure density. Following [12] the
equations for the cartilage surfaces can be written in the following form:

z = δ1(t)− Φ(1) (x + u1(x, t)) + w1(x, t),
z = −δ2(t) + Φ(2) (x + u2(x, t))− w2(x, t).

(2.2)

Here, δ1, δ2 are some (positive) vertical displacements of the rigid bones. Note
also that the vertical displacements w1, w2 are positive, while the tangential
displacements u1, u2 are directed outside of the contact zone. More detailed
modelling of the vertical and tangential displacements can be found in [12].
Denoting by δ∗(t) = δ1(t) + δ2(t) the contact approach of the bones, we get
from (2.2) the following inequality:

δ∗(t) + w1(x, t) + w2(x, t) ≤ Φ(1) (x + u1(x, t)) + Φ(2) (x + u2(x, t)) . (2.3)

It was shown in [8] (see also [6]) that the vertical and the tangential dis-
placements of each bone (taking the asymptotic model of the cartilage layer
into account) can be represented in the form

wn(x′, t′) =
hnε

2
n

3µs,n

{
∆P (x′, t′) +

3

Hn

∫ t′

0

∆P (x, τ)dτ

}
, n = 1, 2, (2.4)

un(x′, t′) = − hnεn
2µs,n

∇P (x′, t′), n = 1, 2. (2.5)

Here εn = hn/a0 are dimensionless small parameters, h1, h2 mean the thick-
nesses of the cartilage layers, and a0 denotes a characteristic measure of the
contact zone (see the detailed description of the role of this parameter in [6];
the values taken for numerical analysis of the model are given latter in Section
5), Hn = (λs,n + 2µs,n)/µs,n are material parameters of cartilages, where λs,n
and µs,n represent the first Lame coefficient and the shear modulus of the solid
phase of the n-th cartilage tissue. Note that u1 and u2 in (2.5) do not neces-
sarily coincide, they depend on both spatial variables x1, x2, and on the time
variable t.
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Following [8], we introduce new spatial variables and time variable via for-
mulas

x′j =
xj
a0
, j = 1, 2, t′ =

χt

3µ0
,

where

χ =
3µs,1k1
h21

+
3µs,2k2
h22

, µ0 =
µs,1

λs,1 + 2µs,1
+

µs,2
λs,2 + 2µs,2

,

a0 is a characteristic measure of the contact zone, and k1, k2 are the cartilage’s
permeabilities. In these variables we have the following relations on the contact
area ω(t) encircled by the curve Γ (t) = ∂ω(t) (here and in the following, we
retain the same notation for displacements wn, un and for the contact pressure
P ):

w1(x, t)+w2(x, t)=

(
h31

3µs,1
+

h32
3µs,2

){
∆P (x, t) + χ

∫ t

0

∆P (x, τ)dτ

}
, (2.6)

Φ(n)(x + un(x, t)) ' Φ(n)(x)− h2na0
2µs,n

∇Φ(n)(x) · ∇P (x, t), n = 1, 2. (2.7)

Further the equality in (2.3), i.e.,

δ∗(t) + w1(x, t) + w2(x, t) = Φ(1) (x + u1(x, t)) + Φ(2) (x + u2(x, t)) , (2.8)

determines the contact area ω(t).
Now we substitute (2.6), (2.7) into (2.8) and obtain the governing equation

relating the contact pressure with the vertical approach of the bones δ∗(t) in
the following form:

∆P (x, t) + χ

∫ t

0

∆P (x, τ)dτ = m
(
Φ(x)− δ∗(t)−∇Φ̃(x) · ∇P (x, t)

)
. (2.9)

Here we have introduced the notation

m =

(
h31

3µs,1
+

h32
3µs,2

)−1
, Φ(x) = Φ(1)(x) + Φ(2)(x). (2.10)

Thus, it follows from (2.1) and (2.10) that the functions Φ and Φ̃ are given by

Φ(x) = Φ(x1, x2) = Ax21 +Bx22

with

A =
1

2R
(1)
1

+
1

2R
(2)
1

, B =
1

2R
(1)
2

+
1

2R
(2)
2

, Φ̃(x) = Ãx21 + B̃x22,

Ã =
h21a0

2µs,1R
(1)
1

+
h22a0

2µs,2R
(2)
1

, B̃ =
h21a0

2µs,1R
(1)
2

+
h22a0

2µs,2R
(2)
2

.

Note that the coefficients in Ã and B̃ are positive dimensionless numbers,
which are less than unit.

Math. Model. Anal., 21(5):585–609, 2016.
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Without loss of generality, one can assume that A > B. Then, Equa-
tion (2.9) can be rewritten in an equivalent form, using all dimensionless pa-
rameters:1

∆Pε(x, t)+χ

∫ t

0

∆Pε(x, τ)dτ = µ
(
Ψ1(x)−δε(t)−ε∇Ψ2(x) ·∇Pε(x, t)

)
, (2.11)

where the following notation has been introduced:

Ψj(x) = x21 + e2jx
2
2, j = 1, 2, δε(t) = δ∗(t)/A, (2.12)

µ = Am, e1 =
√
B/A, e2 =

√
B̃/Ã, ε = Ã/A. (2.13)

It is important to note that χ = O(1), µε� χ.
Discussion of the characteristic values of the introduced parameters is pre-

sented, e.g., in [6, 8]. We note that in numerical analysis of the model we can
take a0 = b(0)

√
1 + e21 as the initial value of the characteristic measure of the

contact zone.
Since the solution of (2.11) depends on the parameter ε, it is customer to

denote an unknown contact pressure by P = Pε in what follows. Note that the
problem for ε = 0 coincides with that considered in [4].

Equation (2.11) is the equation for determination of the contact pressure
Pε(x, t) ≥ 0, x ∈ ωε(t). In particular, in the case when the contact domain is
represented by an ellipse

ωε(t) =

{
x ∈ R2 :

x21
b2(t, ε)

+
β2(t, ε)x22
b2(t, ε)

≤ 1

}
. (2.14)

We supply Equation (2.11) with the following boundary conditions:

Pε(x, t) = 0, x ∈ Γ (t), (2.15)

∂Pε
∂n

(x, t) = 0, x ∈ Γ (t), (2.16)

and the equilibrium equation∫ ∫
ωε(t)

Pε(x, t)dx = F (t), (2.17)

which connects the external load F (t), unknown contact pressure Pε(x, t), and
unknown contact domain ωε(t).

Remark 1. The problem (2.11), (2.15), (2.16), (2.17) has the following form

(K∆+ εg∇)P = δ + f,

P
∣∣
∂Ω

= 0,
∂P

∂n

∣∣∣
∂Ω

= 0,

∫ ∫
Ω

P (x, t)dx = F

with unknown boundaries for the contact domain ∂Ω, an unknown indentation
parameter δ and an unknown contact pressure P (where ε is a small parameter,

1 Note that in the axisymmetric case formula (2.11) coincides with formula [6, (8)].
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g and f are given functions in Ω, and K is the Volterra operator, see formula
(3.16) below). In [4] an exact solution was found, corresponding to the case
ε = 0 (in our notation), for elliptical contact. In [6], the existence of a solution
was proven, under the assumption of an axisymmetric initial configuration of
the contact zone (i.e. when g(x, y) = g(r), f(x, y) = f(r)). Thus, existence of
the solution in a more general case, for small values of the parameter ε 6= 0 or
small eccentricity, follows from the standard results of perturbation analysis of
nonlinear boundary value problems for the Laplace equation.

2.1 Special case of the contact configuration

In order to check the content of formula (2.9) we consider here a special case,
namely, we suppose that the lower part cartilage layer is plane and rigid (the

same assumption was employed in [16]), it means that µs,2 = ∞ and R
(1)
1 =

R
(1)
2 =∞, i.e.,

Φ(1) ≡ 0, Φ ≡ Φ(2).

In this case we have got the following equation for determination of the contact
domain ω(t) in the form similar to (2.9):

∆P (x, t) + χ

∫ t

0

∆P (x, τ)dτ = m
(
Φ(x)− δ∗(t)−∇Φ̃(x) · ∇P (x, t)

)
. (2.18)

Here we will have

m =
3µs,2
h32

, χ =
3µs,2k2
h22

.

At the same time, small changes have to be made in the right-hand side of
Equation (2.18) as follows:

Φ(x) =
x21

2R
(2)
1

+
x22

2R
(2)
2

, Φ̃(x) =
h22a0x

2
1

2µs,2R
(2)
1

+
h22a0x

2
1

2µs,2R
(2)
1

.

Thus Equation (2.18) can be rewritten as

∆P (x, t) +
3µs,2k2
h22

∫ t

0

∆P (x, τ)dτ =
3µs,2
h32

(
x21

2R
(2)
1

+
x22

2R
(2)
2

− δ∗(t)

)

− 3a0
h2

[
x1

R
(2)
1

∂x1
P (x, t) +

x2

R
(2)
2

∂x1
P (x, t)

]
. (2.19)

It can be easily checked that in the axisymmetric case Equation (2.19) reduces
to the governing differential equation obtained in [6].

3 A priori estimate of the solution

3.1 Estimates of the indentation parameter

In our model we assume that the external load is non-decreasing. Thus, the
contact domain is monotonically expanded, i.e.

ωε(t1) ⊆ ωε(t2), ∀t1 ≤ t2. (3.1)

Math. Model. Anal., 21(5):585–609, 2016.
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It is convenient to suppose also that the contact pressure is defined on the
whole plane. For this we simply extend the density Pε(x, t) by assuming that

Pε(x, t) = 0, ∀x 6∈ ωε(t). (3.2)

Integrating (2.11) over contact domain ω(t), we get∫ ∫
ω(t)

∆Pε(x, t)dx + χ

∫ ∫
ω(t)

∫ t

0

∆Pε(x, τ)dτdx =

= µ

∫ ∫
ω(t)

(Ψ1(x)− δε(t)) dx− εµ
∫ ∫

ω(t)

∇Ψ2(x) · ∇Pε(x, t)dx. (3.3)

For simplicity of notation, we omit here (and everywhere in the next two sec-
tions) the subindex ε in ωε. From the monotonicity of the contact domain (3.1)
and assumption (3.2), it follows that the second integral on the left-hand side
can be written in the form∫ ∫

ω(t)

∫ t

0

∆Pε(x, τ)dτdx =

∫ t

0

∫ ∫
ω(t)

∆Pε(x, τ)dxdτ.

Using the second Green’s formula∫ ∫
ω(t)

(u(x)∆v(x)−v(x)∆u(x)) dx =

∫
Γ (t)

(
u(x)

∂v

∂n
(x)−v(x)

∂u

∂n
(x)

)
ds (3.4)

with u ≡ 1 and v = Pε(x, t) we get the following relation in view of the
boundary condition (2.16):∫∫

ω(t)

∆Pε(x, τ)dx =

∫
Γ (t)

∂Pε
∂n

(x, s)ds = 0, ∀τ ≤ t. (3.5)

Therefore, the both integrals on the left-hand side of (3.3) vanish.
Further, we use the first Green’s formula∫∫

ω(t)

(ϕ∆ψ +∇ϕ · ∇ψ) dx =

∫
Γ (t)

ϕ
∂ψ

∂n
ds (3.6)

with ψ(x) = Ψ2(x) and ϕ(x) = Pε(x, t). In this case the integral on the right-
hand side vanishes in view of (2.15), and we obtain the relation∫∫
ω(t)

∇Ψ2(x) · ∇Pε(x, t)dx = −
∫∫
ω(t)

Pε(x, t)∆Ψ2(x)dx = −2(1 + e22)F (t), (3.7)

where we used the equilibrium equation (2.17) and the identity

∆Ψ2(x) = 2(1 + e22) (3.8)

with e2 being defined in (2.12).
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In what follows, it is convenient to have the following notation for the
integrals of the product of k-th power of the function Ψ1 and l-th power of the
function Ψ2:

Ak,l(ω) =

∫∫
ω

Ψk1 (x)Ψ l2(x)dx > 0, k, l = 0, 1, 2, . . . (3.9)

In particular, A0,0(ω) is the area of the contact domain. It is to remember
that the constants Ak,l(ω) depend finally on t, but we omitted this fact in the
notation in order to avoid cumbersome expressions. Computations of Ak,l(ω)
for the elliptic domain (2.14) are given in [13, Appendix, Sec. 6.1].

Taking into account Equations (3.5) and (3.7), we get

δε(t) =
A1,0(ωε(t))

A0,0(ωε(t))
+

2(1 + e22)ε

A0,0(ωε(t))
F (t).

This formula allows us to compute the contact approach δε(t) as a function of
the total external force F (t) and the main axes of the ellipse describing the
shape of the contact zone, which in fact depends on time too.

3.2 Integral identities for the contact pressure

In order to write out a more informative equation for the contact load, we use
the following trick. We multiply both sides of (2.11) by the function v(x) =
Ψ2(x) and integrate the obtained equation over the contact domain ω(t)∫ ∫

ω(t)

Ψ2(x)∆Pε(x, t)dx + χ

∫ ∫
ω(t)

∫ t

0

Ψ2(x)∆Pε(x, τ)dτdx = µ

∫∫
ω(t)

Ψ2(x)

× Ψ1(x)dx− µδε(t)
∫∫
ω(t)

Ψ2(x)dx−µε
∫∫
ω(t)

Ψ2(x)∇Ψ2(x) · ∇Pε(x, t)dx. (3.10)

Let us calculate the integrals in this relation by using Green’s formulas. For
the first integral on the left-hand side we use formula (3.4) with u = Ψ2, v = Pε
and the boundary conditions (2.15), (2.16). Hence, we obtain∫∫

ω(t)

Ψ2(x)∆Pε(x, t)dx =

∫∫
ω(t)

∆Ψ2(x)Pε(x, t)dx.

Now taking into account (3.8), we get∫∫
ω(t)

Ψ2(x)∆Pε(x, t)dx = 2(1 + e22)F (t). (3.11)

For the second integral on the left-hand side, we apply the same approach, but
interchange first the integrals over ωε(t) and over τ ∈ (0, t) exploiting the load
monotonicity. Therefore, we arrive at the equation∫∫
ω(t)

t∫
0

Ψ2(x)∆Pε(x, τ)dτdx=

t∫
0

∫∫
ω(t)

Ψ2(x)∆Pε(x, τ)dτdx=2(1+e22)

t∫
0

F (τ)dτ.

(3.12)

Math. Model. Anal., 21(5):585–609, 2016.
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For the first and second integrals on the right-hand side, we simply use the
notation (3.9), which gives∫∫

ω(t)

Ψ1(x)Ψ2(x)dx = A1,1(b;β),

∫∫
ω(t)

Ψ2(x)dx = A0,1(b;β). (3.13)

Finally, for the third integral on the right-hand side, we make use of the fol-
lowing simple formula which follows immediately from the definition of Ψ2:

Ψ2∇Ψ2 =
1

2
∇Ψ2

2 .

Then we can apply Green’s formula (3.6) and the boundary conditions (2.15),
(2.16) to find∫∫

ω(t)

Ψ2(x)∇Ψ2(x) · ∇Pε(x, t)dx = −1

2

∫∫
ω(t)

∆Ψ2
2 (x)Pε(x, t)dx.

By applying the second Green’s formula (3.4) with u = Pε, v = Ψ2
2 , and the

boundary conditions (2.15), (2.16), we represent this integral in the form∫∫
ω(t)

Ψ2(x)∇Ψ2(x) · ∇Pε(x, t)dx = −1

2

∫∫
ω(t)

Ψ2
2 (x)∆Pε(x, t)dx. (3.14)

This integral still contains the unknown density of contact pressure Pε(x, t).
Let us define

M(j)Pε(t) ≡
∫∫
ω(t)

Ψ j2 (x)∆Pε(x, t)dx.

Now we rewrite the relation (3.10) by using the results for all integrals
(3.11)–(3.14) in the following form:

2(1 + e22)KF (t) = µA1,1(ωε(t))− µδε(t)A0,1(ωε(t)) +
µε

2
M(2)Pε(t). (3.15)

Here, we have introduced the Volterra operator K as follows:

KF (t) = F (t) + χ

∫ t

0

F (τ)dτ. (3.16)

Note that the integral in the right-hand side of the equation (3.15) allows to
continue the same procedure to deliver an asymptotic estimate for this equation.

We continue to proceed with Equation (3.15) on the next steps.

3.3 Posteriori estimates for the contact pressure

Now we proceed to calculate the last integral in (3.15). For this we multiply the
governing integral equation (2.11) by Ψ j2 (x) (j ≥ 2) and integrate over contact
domain ω(t):∫∫

ω(t)

Ψ j2 (x)∆Pε(x, t)dx + χ

∫∫
ω(t)

t∫
0

Ψ j2 (x)∆Pε(x, τ)dτdx == µ

∫∫
ω(t)

Ψ j2 (x)

× Ψ1(x)dx− µδε(t)
∫∫
ω(t)

Ψ j2 (x)dx− µε
∫∫
ω(t)

Ψ j2 (x)∇Ψ2(x) · ∇Pε(x, t)dx.
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By using the same argument as on the previous step, we get

KM(j)Pε(t) = µA1,j − µδε(t)A0,j(a;β)− µε
∫∫
ω(t)

Ψ j2 (x)∇Ψ2(x) · ∇Pε(x, t)dx.

(3.17)
For the last integral we use the relations

Ψ j2 (x)∇Ψ2(x) =
1

j + 1
∇Ψ j+1

2 (x),∫∫
ω(t)

∇Ψ j+1
2 (x) · ∇Pε(x, t)dx = −

∫∫
ω(t)

∆Ψ j+1
2 (x)Pε(x, t)dx.

Therefore, the integral

M(j)Pε(t) = µK−1
{
A1,j(ωε(t))− δε(t)A0,j(ωε(t)) +

ε

j + 1
KM(j+1)Pε(t)

}
has been obtained as a solution of the integral equation (3.17). Here the inverse
operator K−1 is defined by the formula

K−1Y (t) = Y (t)− χ
∫ t

0

Y (τ)e−χ(t−τ)dτ.

Performing the same computation, we obtain the following representation
for the integral in the right-hand side of (3.15):

M(2)Pε(t) =

N∑
j=1

2εj−1

(j + 1)!
µjK−j {A1,j+1(ωε(t))− δε(t)A0,j+1(ωε(t))}

+
2εN

(N + 2)!
µNK−NM(N+2)Pε(t).

Substituting this representation into Equation (3.15), we finally get

2(1 + e22)KF (t) =

N∑
j=0

εj

(j + 1)!
µj+1K−j {A1,j+1(ωε(t))− δε(t)A0,j+1(ωε(t))}

+
εN+1

(N + 2)!
µN+1K−NM(N+2)Pε(t),

or equivalently

2(1 + e22)KN+1F (t) =

N∑
j=0

εj

(j + 1)!
µj+1KN−j

× {A1,j+1(ωε(t))−δε(t)A0,j+1(ωε(t))}+
εN+1

(N+2)!
µN+1M(N+2)Pε(t). (3.18)

The latter relation allows us to determine the problem parameters asymptoti-
cally with any prescribed accuracy.
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Note that apart from the fact that the shapes of the contacting bones are
elliptical paraboloids, no additional assumptions on the shape of the contact
zone have been made. On the other hand, no proof was offered to show that
the contact zone is approximately represented by an ellipse. This will be done
later.

Remark 2. For every t for which the contact pressure Pε(t) is bounded and the

contact region ω(t) belongs to a bounded domain, the remainder εN+1

(N+2)!µ
N+1

M(N+2)Pε(t) in formula (3.18) tends to zero as N → ∞. Thus, the series
corresponding to the sum on the right hand-side of (3.18) is converging.

4 Asymptotic solution to the contact problem

4.1 Zero-order approximation

First, we get solution of the problem for ε = 0. In this case Equation (2.11)
has the form

∆P (0)(x, t) + χ

∫ t

0

∆P (0)(x, τ)dτ = µ
(
Ψ1(x)− δ(0)(t)

)
,

where Ψ1(x) is defined in (2.12). Since we know from [4] that the contact zone
is an ellipse at this stage of approximation we will have

δε = δ(0)(t) = δε(b0(t);β0(t)) =
A1,0(ω0(t))

A0,0(ω0(t))
. (4.1)

Using formula (4.1) and calculations presented in [13, Appendix, Sec. 6.1],
one can find that

A0,0(ω0(t)) =
πb20
β0

, A1,0(ω0(t)) =
πb40
4β3

0

(
β2
0 + e21

)
, (4.2)

and therefore

δ(0)(t) =
b20
(
β2
0 + e21

)
4β2

0

. (4.3)

Note that formulas (4.2) and (4.3) contain two known constants e1 and e2
defined in (2.12) and two still unknown functions b0(t) and β0(t), which are the
main semi-axis and the eccentricity of the ellipse

ω0(t) =

{
x ∈ R2 :

x21
b20(t)

+
β2
0(t)x22
b20(t)

≤ 1

}
. (4.4)

The leading terms in (3.18) imply (for N = 0) the following equation:

2(1 + e22)KF (t) = µA1,1(ω0(t))− µδ(0)(t)A0,1(ω0(t)).

Here, K is the Volterra integral operator defined in (3.16).
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Analogously, using some results from [13, Appendix, Sec. 6.1], we obtain

A0,1(ω0(t))=
πb40
4β3

0

(
β2
0+e22

)
, A1,1(ω0(t))=

πb60
24β5

0

{
3β4

0 + (e21 + e22)β2
0+3e21e

2
2

}
,

and thus

2(1 + e22)KF (t) = µ
πb60

48β5
0

{
3β4

0 − (e21 + e22)β2
0 + 3e21e

2
2

}
.

To find the functions b0(t) and β0(t) together with the pressure distribution
over the contact zone, P (0)(x, t), we follow [4] and introduce a new unknown
function

p(0)(x, t) = P (0)(x, t) + χ

∫ t

0

P (0)(x, τ)dτ = KP (0)(x, t). (4.5)

In the case of monotone external load, this function should satisfy the Poisson
equation (following from (2.9))

∆p(0)(x, t) = µ
(
Ψ1(x)− δ(0)(t)

)
, x ∈ ω0(t),

with the boundary conditions (2.15), (2.16).
It is customary to rewrite this relation in the form

G0(x, t) = 0,

where

G0(x, t) = G0(b0, β0, δ0) ≡ ∆p(0)(x, t)− µ
(
Ψ1(x)− δ(0)(t)

)
, x ∈ ω0(t).

Bearing in mind that the function Ψ1(x) is a quadratic polynomial (compare
with (2.12)), it is natural to look for the solution of such problem in the form
of a polynomial in x1, x2 of the fourth degree, that is

p(0)(b0, β0, η0,x, t) = η0(t)

(
1− x21

b20
− β2

0x
2
2

b20

)
Q0(x1, x2). (4.6)

Note that the term in the brackets vanishes on the boundary ω0, and thus the
condition (2.15) is satisfied automatically.

In [13, Appendix, Sec. 6.2], it has been shown that Q0 is a polynomial of
the second order having the form

Q0(x1, x2) =

(
1− x21

b20
− β2

0x
2
2

b20

)
,

so that

p(0)(x1, x2; t) = η0(t)

(
1− x21

b20
− β2

0x
2
2

b20

)2

. (4.7)
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Taken into account this representation we arrive at the following relations (see
[13, Appendix, Sec. 6.3]):

η0(t) =
µδ(0)(t)

4(1 + β2
0)
b20, (4.8)

η0(t) =
µb40

2(6 + 2β2
0)

=
µb40

4(3 + β2
0)
, (4.9)

η0(t) =
µb40e

2
1

2(2β2
0 + 6β4

0)
=

µb40e
2
1

4β2
0(1 + 3β2

0)
. (4.10)

This system allows us to determine the unknown functions b0(t) and β0(t).
Indeed, eliminating η0 from the last two equations, we get a bi-quadratic equa-
tion defining the value of the parameter β0, i.e.,

3β4
0 + (1− e21)β2

0 − 3e21 = 0. (4.11)

By definition, β0 is a positive parameter, thus the unique positive solution of
(4.11) has the form

β0 =

√(
(e21 − 1) +

√
e41 + 34e21 + 1

)
/6. (4.12)

Note that at the zero-approximation the parameter β0 does not depend on time.
The other parameter, η0(t), can be computed directly from (4.9) or (4.10), if
one knows the remaining constant b0(t). Moreover, taking into account (4.8)
and (4.3), one can use an equivalent formula

η0(t) = µb40(β2
0 + e21)/16β2

0(1 + β2
0).

In the same way, one can offer, in addition to (4.3), two equivalent repre-
sentations for the indentation parameter

δ(0)(t) =
1 + β2

0

3 + β2
0

b20(t) =
(1 + β2

0)e21
β2
0(1 + 3β2

0)
b20(t).

Finally, the major semi-axis b0 of the ellipse ω0 is determined as follows:

b0(t)=

[(
F (t)+χ

∫ t

0

F (τ)dτ

)(
96β5

0(1 + e22)

µπ(3β4
0 − β2

0(e21 + e22) + 3e21e
2
2)

)]1/6
. (4.13)

Note that the parameters b0, η0 as well as the indentation, δ0, depend on time
t in contrast to the ellipse eccentricity β0.

Now, it remains only to find the pressure over the contact area. Using (4.5)
and (4.7), we get

P (0)(b0, β0, η0, x1, x2, t) = K−1
(
η0(t)Q0(x1, x2)2

)
.

If (x1, x2) belongs to the initial contact zone, i.e. 1− x2
1

b20(t)
− β2

0x
2
2

b20(t)
> 0, then

P (0)(x1, x2, t) = η0(t)
(
1− x21/b20(t)− β2

0x
2
2/b

2
0(t)

)2
− χ

∫ t

0

η0(τ)
(
1− x21/b20(τ)− β2

0x
2
2/b

2
0(τ)

)2
e−χ(t−τ)dτ.
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If (x1, x2) lies outside of the initial contact zone, i.e. 1− x2
1

b20(t)
− β2

0x
2
2

b20(t)
< 0, then

P (0)(x1, x2, t) = η0(t)
(
1− x21/b20(t)− β2

0x
2
2/b

2
0(t)

)2
− χ

∫ t

t∗(x1,x2)

η0(τ)
(
1− x21/b20(τ)− β2

0x
2
2/b

2
0(τ)

)2
e−χ(t−τ)dτ.

The critical moment of time t∗ is determined by the formula

b20(t∗) = x21 + β2
0x

2
2.

Using (4.13), we get

F (t∗) + χ

∫ t∗

0

F (τ)dτ =
µπ

96β5
0

(
3β4

0 − β2
0(e21 + e22) + 3e21e

2
2

1 + e22

)
(x21 + β2

0x
2
2)3.

If the load is stepwise, we have F (t) = F0. Hence, we find that

t∗ =
µπ

96β5
0χF0

[
(3β4

0 − β2
0(e21 + e22) + 3e21e

2
2)

1 + e22
(x21 + β2

0x
2
2)3
]
− 1

χ
.

Note that in this case

b60(t∗) =
96β5

0(1 + e22)(1 + χt∗)

µπ(3β4
0 − β2

0(e21 + e22) + 3e21e
2
2)
F0.

This finishes the zero iteration step. Note that the results of this section
after changing the notation coincide with those obtained in [6].

4.2 First-order approximation problem

For the next steps we consider an appropriately deformed contact domain ω
(1)
ε ,

defined as a perturbation of the zero-order one ω0. Namely, we assume that it
can be written in the form

ω(1)
ε = ω(1)

ε (t) =
{

(x1, x2) : Q0(x, t) + εQ1(x, t) ≥ 0
}
,

where unknown polynomials are taken in the forms

Q0(x, t) = Q0(x, β1, b1), Q1(x, t) = a40(t)x41 + a22(t)x21x
2
2 + a04(t)x42.

Note that for ε = 0 the solution form coincides with (4.4), if one take
b1 ≡ b0, β1 ≡ β0.

The idea behind such choice of the asymptotic anzatz is to satisfy the bound-
ary conditions (2.15) and (2.16) automatically. This will be achieved by putting

P (1)
ε = K−1

(
η(1)(t)

(
Q0(x1, x2, β1(t), b1(t)) + εQ1(x, t)

)2)
.

Now, when the boundary conditions are valid, we will satisfy the governing

equation (2.9). Note that P
(1)
ε = P0 +εP1 +O(ε2), where pj = K(Pj), j = 0, 1,

and

p0 = η(1)(t)

(
1− x21

b21(t)
− β2

1(t)x22
b21(t)

)2

, (4.14)
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p1 = 2η(1)(t)

(
1− x21

b21(t)
− β2

1(t)x22
b21(t)

)
Q1(x, t). (4.15)

Substituting this representation into Equation (2.9), we obtain

K
(
∆(P (0) + εP1 +O(ε2))

)
= µ

(
Ψ1 − δ(1)ε − ε∇Ψ2 · (∇P (0) + ε∇P (1) +O(ε2))

)
, (4.16)

where the parameter δ
(1)
ε is represented in the same form as P

(1)
ε , i.e.,

δ(1)ε = δ0 + εδ1 +O(ε2) = δ(1) +O(ε2).

We can write Equation (4.16) with the accuracy to the terms of O(ε2) as
follows:

∆p(0) + ε∆p1 = µ
(
Ψ1 − δ(1) − ε∇Ψ2 · ∇P (0)

)
.

An extended variant of this equation can be written by using the definition
of all components of the equation and by comparing coefficients at different
powers of x1, x2, so that (see detailed calculations in the Appendix below)

− 4η(1)

b21
(1 + β2

1) = −µδ(1), (4.17)

4η(1)
[

3 + β2
1

b41
+ ε(6a40 + a22)

]
= µ(1− 8εθ2,0), (4.18)

4η(1)
[
β2
1(1 + 3β2

1)

b41
+ ε(a22 + 6a04)

]
= µ(e21 − 8εe22θ2,2), (4.19)

− ε24η(1)

b21
(a40β

2
1 + a22(1 + β2

1) + a04) = 8εµ(1 + e22)θ4,2, (4.20)

− ε4η(1)

b21
(a40(15 + β2

1) + a22) = 8εµθ4,0, (4.21)

− ε4η(1)

b21
(a04(15β2

1 + 1) + a22β
2
1) = 8εµe22θ4,4, (4.22)

where
θ2k,2l(t) = K−1

(
η(1)b−2k1 β2l

1

)
, k, l = 0, 1, 2. (4.23)

In the system (4.17)–(4.22) we have 6 equations and 7 unknowns: η(1)(t), δ
(1)
ε ,

b1(t), β1(t), and a40, a22, a04 (coefficients of the polynomial Q1). Therefore, we
have to add an extra equation to the above system, namely

δ(1)(t) =
A1,0(ωε(t))

A0,0(ωε(t))
+

2(1 + e22)ε

A0,0(ωε(t))
F1(t), (4.24)

where F1(t) can be represented in the form

F1(t) =

∫∫
ω

(1)
ε

P (1)
ε (x, t)dx.
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We also make use of Eq. (3.18) written for this approximation step with the
accuracy of O(ε2) in the form

2(1+e22)K2F (t)=

1∑
j=0

εj

(j+1)!
µj+1K1−j

{
A1,j+1(ωε(t))− δ(1)(t)A0,j+1(ωε(t))

}
.

Remark 3. Note that putting ε = 0, the system (4.17)–(4.22), (4.24) transforms
to the previous case evaluated in the previous section.

Remark 4. In the case when ε > 0, the system (4.17)–(4.22), (4.24) has to
be solved numerically. Note that the parameter ε in the last three equations
(4.20)–(4.22) can be canceled. We left these multipliers here to explain the
limiting case (ε = 0).

Discussion of the proposed asymptotic procedure

First of all, observe that at t = 0, the contact problem for biphasic layers
reduces to that for elastic incompressible layers. The contact problem in the
latter case were studied in a number of papers [1, 9, 10, 17], however, without
taking into account the tangential displacements.

To solve the resulting problem (4.17)–(4.22) and (4.24), we suggest the
following iterative algorithm:

• Taking ε = 0, we have computed all values η, b, β, δ = η0, b0, β0, δ0 from
the zero-order approximation.

• Having them we can compute the quantities θ2k,2l(t) from (4.23).

• Then, from the system of three equations (4.20)–(4.22) we compute the
constants a40, a22, a04 assuming the values of η, b, β as above.

• Finally from the system of four equations (4.17)–(4.19) and (4.24) consid-
ering the right-hand side known (computed by the values know from the
previous computations), we found new values η, b, β, δ and compare them
with the previous computations. If the required accuracy has achieved
we stop the computation, if not we are going to the second step of this
iterative procedure.

We note that formulas (2.4) and (2.5) for the vertical and tangential dis-
placements contain different powers of parameters ε, namely, ε2 and ε, respec-
tively. Note also that our analysis (with the values of another parameters taken
into account) shows, that the role of these magnitudes (vertical and tangential
displacements) is quite opposite. In the final equation (see (2.11)) the leading
terms, corresponding to the vertical displacement, contain the zero power of the
new small parameter ε, but the leading terms, corresponding to the tangential
displacements, contain the first power of ε.

An extended discussion of the model is presented in the next section.
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5 Numerical results and conclusions

In this section we present a numerical analysis of the algorithm and a discus-
sion of its fundamental peculiarities. We will then address the main question
of this analysis, specifically the importance of accounting for the tangential
displacement of the contact problem, without an assumption of axisymmetry.
We also compare our approximation to the other available results.

In the axisymmetric case (see [8]), it is commonly assumed that the human
bone is approximated by a paraboloid with curvature radius R = 400mm. We
investigate this case (i.e. withR1 = R2 = 400mm) and also a few other possible
cases with curvature radii R1 = 200, R2 = 300, R1 = 350, R2 = 400 and R1 =
300, R2 = 600. Our numerical results are provided for two different cartilages.
They are characterized by the constants (n = 1, 2) HA = λs,n + 2µs,n =
0.5MPa, µs,n = 0.25MPa, Hn = HA

µs,n
= 2, kn = 2 · 10−3mm4N−1s−1.

For these two different cartilages the thicknesses are taken to be hn = 1mm
and hn = 0.5mm (where the first thickness corresponds to healthy cartilage).
Finally, the average external load is taken to be F = 100N and for the maximal
time of observation we take t = 200 s. These choices for the parameters are in
common with many other papers devoted to the cartilage model (cf., [7], [8],
[15]).

5.1 Numerical results

Here we analyze the convergence of the proposed scheme only for the parame-
ters which characterize our solution, namely, β – the eccentricity of the contact
zone, b – its smallest semi-axis, δ - the indentation parameter, and η – the max-
imum of the function η(t) related to the contact pressure P (see (4.5), (4.6)).
With this we take into account the application goal of this paper.

We have estimated the convergence rates of the parameters for all analyzed
cartilages but present here in Figures 2, 3 only two distinctive cases: large
eccentricity in Figure 2, and small eccentricity in Figure 3.
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Figure 2. Successive rate of the convergence for the parameters in standard and
logarithmic scale. R1 = 300, R2 = 600, left - for h = 1, right - for h = 0.5.

We observe the following features of the algorithm:
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Figure 3. Successive rate of the convergence for the parameters in standard and
logarithmic scale. R1 = 350, R2 = 400, left - for h = 1, right - for h = 0.5.

• it converges more rapidly in the case of larger eccentricity, where even 20
iterations are sufficient to reach the “good” rate;

• the slowest case is the circular contact, where the same rate is reached
after more that 50 iterations;

• the level of the convergence rate for all analyzed parameters (β, b, δ, η) is
essentially the same;

• the convergence is the most accurate when considering eccentricity β (in
comparison with three other parameters b, δ, η);

• the worst level of convergence is that found when considering η.

The results for successive rates of convergence for those cartilages not discussed
in Figures 2, 3 look similarly. As a result, to guarantee the best convergence
we choose to make 50 iterations for further computations.

5.2 Comparison of the results in the case of the circular contact
zone

Here we compare the results of our algorithm, in the case of a circular contact,
with those available in the literature, specifically

• Wu et al (1997) [15], where the axisymmetric contact problem was ana-
lytically solved without accounting for the tangential displacement;

• Argatov-Mishuris (A&M (2010)) [6], where the Wu model was extended
to take tangential displacement into consideration and to estimate its
impact.

In Figures 4, 5 we present for such a comparison the results from [6], [15]
alongside ours (red line).

The following immediate conclusions can be made from these figures: one
term asymptotic expansions do not guarantee that a approximate result will
be very close to the exact numerical solution of Argatov-Mishuris (2010); the
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Figure 4. Comparison of the values of the parameter b in different models; left - for
h = 1, right - for h = 0.5.
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Figure 5. Comparison of the values of the parameter δ in different models; left – for
h = 1, right - for h = 0.5.

results of our model are close enough to previous results to be of the same
order.

Our calculations have been made by taking only the first term of the asymp-
totic expansion. If greater accuracy is required for the computed parameters,
it is necessary to consider at least two terms of asymptotics. In particular,
it can be accomplished using the analytic calculations presented in the paper.
For the purposes of this paper, the above accuracy is sufficient, as will be seen
in the next subsection.

5.3 Comparison of the present approximate solution for the elliptic
contact zone

In this subsection we compare the parameters computed on the basis of our
approximate solution with the exact solution presented in [4]. We note that
the exact result in [4] was obtained for an elliptic contact zone but without
accounting for tangential displacement. Since the only one term approximation
is not particularly accurate we evaluate further on only average characteristics
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like eccentricity β of the contact zone and the indentation parameter δ. Four
types of cartilages with different eccentricity are analyzed in Figures 6, 7. The
respective relative deviations (or relative errors) are given. The leftmost figures
correspond to the thickness of the cartilage h = 1, and rightmost figures, to
the thickness h = 0.5.

From Figures 6, 7 we can reach the following conclusions:

• the general tendency is the same for all parameters, specifically that the
deviation grows with the ratio R2/R1;

• the maximal relative error (20%) for the eccentricity β is found for the
radii R1 = 300, R2 = 600 and the minimal (less than 1%) for the circular
case;

• the indentation parameter δ increases by one order of magnitude for the
largest values of the ratio R2/R1.
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Figure 6. Relative error for the parameter β. The base of comparison is our approximate
solution; left - for h = 1, right - for h = 0.5.
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Figure 7. Relative error for the parameter δ. The base of comparison is our approximate
solution; left - for h = 1, right - for h = 0.5.
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5.4 Conclusions

We have developed a new model for the cartilage problem with biphasic car-
tilage layers and elliptic initial contact zone, which account for the tangential
displacement. Although the analysis was done using only the first asymptotic
term, it is clear how to extend it for more terms in asymptotic expansion.

We conclude with the following remarks:

• the proposed algorithm provides a good convergence for the main param-
eters of the considered system;

• the results are comparable in the case of an axisymmetric contact zone
with those known in the literature;

• the computation of the parameters in the case of the circular contact zone
is less satisfactory, since we take only the first term of our asymptotic
representation;

• we have shown that accounting for the tangential displacement in the
realistic case of the elliptic contact is important, and that this effect
must be further analyzed.
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Appendix

Computation of the polynomial Q0

In order to determine the coefficients of the polynomial

Q0(x1, x2) = 1 + q1,0x1 + q0,1x2 + q2,0x
2
1 + q1,1x1x2 + q0,2x

2
2,

we need to compute the normal derivative of the unknown functions p(0) (4.6)
along the elliptic boundary Γ :

∂p(0)

∂n
|Γ = ∇p(0) · −→n |Γ = η0(t)

(
−2x21
b20
− 2β4

0x
2
2

b20

)
Q0|Γ = 0.
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Here we take into account the fact that, since the contact domain is an ellipse
(4.4), the tangential and normal vectors to the boundary Γ = ∂Ω are given by
−→r =

(
−β2

0x2, x1
)
, −→n =

(
x1, β

2
0x2
)
. Then, to satisfy the boundary condition

(2.16) the following equation should be valid:

Q0|Γ = 0.

This, in turn, is equivalent to the representation

Q0(x1, x2) =
(
1− x21/b20 − β2

0x
2
2/b

2
0

)
.

Evaluation of the ellipse parameters

Since
p(0)(x, t) = p(0)(x1, x2, t) = η0(t)

(
1− x21/b20 − β2

0x
2
2/b

2
0

)2
,

we have

∂p(0)

∂x1
= 2η0(t)

(
1− x21

b20
− β2

0x
2
2

b20

)
·
(
−2x1
b20

)
,

∂2p(0)

∂x21
= 2η0

[
− 2

b20

(
1− x21

b20
− β2

0x
2
2

b20

)
+

2x1
b20

2x1
b20

]
.

Therefore, by straightforward computations, we find that

∂2p(0)

∂x21
= 2η0

[
− 2

b20
+

6x21
b40

+
2β2

0x
2
2

b40

]
,

∂p(0)

∂x2
= 2η0

(
1− x21

b20
− β2

0x
2
2

b20

)
×
(
−2β2

0x2
b20

)
,
∂2p(0)

∂x22
= 2η0

[
−2β2

0

b20

(
1− x21

b20
− β2

0x
2
2

b20

)
+

2β2
0x2
b20

2β2
0x2
b20

]
.

Thus, we obtain

∂2p(0)

∂x22
= 2η0(t)

[
−2β2

0

b20
+

2β2
0x

2
1

b40
+

6β4
0x

2
2

b40

]
.

Substituting the obtained equalities into the main equation

G0(b0, β0, δ0) ≡ ∆p(0)(x, t)− µ
(
Ψ1(x)− δ(0)(t)

)
= 0,

where

G0 = 2η0(t)

[
(−2)

1 + β2
0

b20
+

(
6 + 2β2

0

b40

)
x21 +

(
6β4

0 + 2β2
0

b40

)
x22

]
− µ

(
Ψ1(x1, x2)− δ(0)(t)

)
and taking into account that

Ψ1(x) = Ψ1(x1, x2) = x21 + e21x
2
2,
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one concludes that the expression for G0 is represented by a second order
polynomial with respect to the independent variables x1 and x2 in the following
form:

G0(b0, β0, η0, δ
(0)) = q0(b0, β0, η0, δ

(0)) + q1(b0, β0, η0)x21 + q2(b0, β0, η0)x22.

Here the coefficients are defined as follows:

q0(b0, β0, η0, δ
(0)) =

4η0
µb20

(1+β2
0)− δ(0), q1(b0, β0, η0) =

4η0
b40

(3+β2
0)−µ,

q2(b0, β0, η0) = 4η0β
2
0(1 + 3β2

0)/b40 − µe21.

Auxiliary computation

Taking into account (4.14), we can represent p0(x, t) in the form

p0(x, t) = η(1)(t)

(
1− 2x21

b21
− 2β2

1x
2
2

b21
+

2β2
1x

2
1x

2
2

b41
+
x41
b41

+
β4
1x

4
2

b41

)
.

Hence, applying the Laplace equation, we get

∆p0(x, t) = η(1)(t)

(
− 4

b21
(1 + β2

1) + x21
4

b41
(3 + β2

1) + x22
4β2

1

b41
(1 + 3β2

1)

)
.

Next, by using representation (4.15), we can write p1(x, t) in the form

p1(x, t) = 2η(1)(t)
(
a40x

4
1 + a22x

2
1x

2
2 + a04x

4
2 −

a40x
6
1

b21
− a22x

4
1x

2
2

b21

− a04x
2
1x

4
2/b

2
1 − a40β2

1x
4
1x

2
2/b

2
1 − a22β2

1x
2
1x

4
2/b

2
1 − a04β2

1x
6
2/b

2
1

)
Therefore, we obtain

∆p1(x, t) = 2η(1)(t)
(
(12a40 + 2a22)x21 + (2a22 + 12a04)x22

− (12β2
1a40 + 12a22(1 + β2

1) + 12a04)x21x
2
2/b

2
1

− a40(30 + 2β2
1) + 2a22

b21
x41 −

2a22β
2
1 + a04(2 + 30β2

1)

b21
x42
)
.

We also use the following representations: Ψj(x) = x21 + e2jx
2
2, j = 1, 2.

Thus, applying the gradient operator, we simply get

∇Ψ2(x) =
(
2x1, 2e

2
2x2
)
, ∇P0(x, t) =

(
K−1∇p0(x, ·)

)
(t).

It yields the following representation:

∇Ψ2(x) · ∇P0(x, t) = −8

(
K−1

[
η(1)

(
1− x21

b21
− β2

1x
2
2

b21

)(
x21
b21

+
e22β

2
1x

2
2

b21

)])
(t)

=: −8x21θ2,0(t)− 8e22x
2
2θ2,2(t) + 8x41θ4,0(t) + 8(1 + e22)x21x

2
2θ4,2(t) + 8e22x

4
2θ4,4(t).

Here we have introduced the notation θ2k,2l =
(
K−1

(
η(1)b−2k1 β2l

1

))
(t).

Combining the above results we obtain the system of equations (4.17)–(4.22).

Math. Model. Anal., 21(5):585–609, 2016.


	Introduction
	Formulation of the contact problem
	Special case of the contact configuration

	A priori estimate of the solution
	Estimates of the indentation parameter
	Integral identities for the contact pressure
	Posteriori estimates for the contact pressure

	Asymptotic solution to the contact problem
	Zero-order approximation
	First-order approximation problem

	Numerical results and conclusions
	Numerical results
	Comparison of the results in the case of the circular contact zone
	Comparison of the present approximate solution for the elliptic contact zone
	Conclusions

	References

