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Abstract. We consider a Dirichlet-Neumann boundary problem in a bounded do-
main for scalar conservation laws. We construct an approximate solution to the
problem via an elliptic approximation for which, under appropriate assumptions, we
prove that the corresponding limit satisfies the considered equation in the interior
of the domain. The basic tool is the compensated compactness method. We also
provide numerical examples.
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1 Introduction

In the paper, we investigate the following mixed boundary problem on an open
bounded domain Ω ⊆ [0,∞〉×R with the boundary ∂Ω = ΓN ∪̇ΓD, ΓD ⊂ {t =
0}, of class C0,1:

∂tu+ ∂x(f(t, x, u)) = 0 in Ω, (1.1)

∇(t,x)u · ν = 0 on ΓN , (1.2)

u(0, ·) = u0(·) ∈ L∞(R) on ΓD, (1.3)

where ΓN and ΓD ⊂ {t = 0} are partitions of ∂Ω of strictly positive (Hausdorff)
measure and ν is the outer unit normal vector on ΓN (see Figure 1). We also
assume that f(t, x, λ) is a Caratheodory type function i.e. it is of bounded
variation with respect to the variables (t, x) and differentiable with respect to
the third variable λ.
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Figure 1. An example of the domain of the problem we investigate.

Here, we are dealing with the pure boundary problem. A similar situa-
tion, but under different conditions, was considered in [21] where the Dirichlet
boundary problem was considered (even on manifolds). The case of general
Neumann conditions ∇(t,x)u · ν = ∇(t,x)uB · ν on ΓN for uB ∈ C(ΓN ) can be
treated by assuming that there exists a continuous function ũB ∈ C([0,∞)×R)

such that ũB

∣∣∣
ΓN

= uB . Then, introducing the function v = u− ũB , we reduce

the problem to the one of type (1.2) (though with a non-zero source term).
To proceed, recall that it is more usual to consider initial-boundary value

problem for scalar conservation laws. This was first done in [5] and investiga-
tions in this directions are quite active (see e.g. [2,4,11,15,17,26] and references
therein). Application of such problems are often in traffic flow [25] or filtration
and sedimentation models [7, 8].

Let us remark that in [7] initial-boundary problem for (1.1) with zero-flux
boundary conditions was considered (i.e. no flow through the boundary) and
it is sometimes called Neumann problem for (1.1). To explain reasons for the
latter, assume that we are considering (1.1) on R+ × [a, b]. After integrating
(1.1) over [a, b] and taking into account that f(t, a, u(t, a)) = f(t, b, u(t, b)) = 0,
we conclude

d

dt

∫ b

a

u(t, x)dx = 0,

i.e. there is inflow or outflow in the interval [a, b], but the total mass remains
the same (it is conserved). Here, we are considering domain which is bounded
with respect to both variables (t ∈ R+ and x ∈ R), and we require pointwise
control at the boundary. More precisely, we require that the inflow is equal
to the outflow in the normal direction of every point (t, x) ∈ ∂Ω (unlike the
situation from [7] where there was no mass change globally but there can be
difference in the inflow and outflow through a boundary point; see also [6, 9]).
Such problem was not previously considered in the literature.

Motivation for the research was possible application on the traffic flow mod-
elling. Namely, if we consider (1.1) as a model of cars density on the road,
the Neumann boundary conditions enable us to have global control on the in-
flow/outflow of cars with respect to the geometry of the domain. In other



Dirichlet-Neumann Boundary Problem for Scalar Conservation Laws 687

words, we would like to control density of cars by controlling inflow and out-
flow with respect both variables, space and time so that the road boundary
is permeable with constraint on times-space no-density-change in the direction
of normal to the part of the domain (boundary) where Neumann boundary
condition is imposed.

Let us now go back to the technical questions. For a function F = F (t, x, λ),
we will denote by F ′x(t, x, λ) and F ′λ(t, x, λ) distributional derivatives with re-
spect to x and λ respectively. Similar notations will be used for higher order
derivatives. Remark that if F is smooth enough then we have the standard
derivative. However, for the flux f , the x-derivative is actually a measure
since f is of bounded variation with respect to x. By χK we will denote the
characteristic function of the set K.

Since our main theorem in the next section is of the local nature, it is enough

to assume that for every ξ ∈ R, the functions
∫ ξ

0
f(t, x, λ)dλ,

∫ ξ
0
f ′x(t, x, λ)dλ

and f(t, x, λ) belong to some local Lebesgue spaces. More precisely, we assume
that function f satisfies the following three assumptions for a fixed p ∈ 〈2,∞〉:

• A1: (∀Λ⊂R compact)(∀K⊂Ω compact)(∃C1 = C1(K,Λ) > 0)(∀ξ ∈ Λ)∥∥∥χK ∫ ξ

0

f(t, x, λ)dλ
∥∥∥

Lp(Ω)
< C1,

• A2: (∀Λ⊂R compact)(∀K ⊂ Ω compact)(∃C2 = C2(K,Λ) > 0)(∀ξ ∈ Λ)∥∥∥χK ∫ ξ

0

f ′x(t, x, λ)dλ
∥∥∥

L1(Ω)
< C2,

where L1(Ω) is taken with respect to the measure
∫ ξ

0
f ′x(t, x, λ)dλ,

• A3: (∀Λ⊂R compact)(∀K ⊂ Ω compact)(∃C3 = C3(K,Λ) > 0)(∀λ ∈ Λ)∥∥∥χKf(t, x, λ)
∥∥∥

Lp(Ω)
< C3.

Notice that assumptions A1 and A3, due to the boundedness of Ω, imply
that for every Λ ⊂ R compact and every ϕ ∈ Cc(Ω), the following holds for
positive constants C1,p,K,Λ and C3,p,K,Λ with K = suppϕ:

• C1: (∀ξ ∈ Λ)
∥∥∥ϕ(t, x)

∫ ξ
0
f(t, x, λ)dλ

∥∥∥
L1(Ω)

< C1,p,K,Λ‖ϕ‖L∞(Ω),

• C3: (∀λ ∈ Λ)
∥∥∥ϕ(t, x)f(t, x, λ)

∥∥∥
L1(Ω)

< C3,p,K,Λ‖ϕ‖L∞(Ω).

A natural question that arises is what would be proper solution concept for
(1.1), (1.2), (1.3). At this moment, we are not able to introduce appropriate
definition which would provide well posedness to (1.1), (1.2), (1.3) in the cor-
responding sense. However, we shall propose an informal solution concept by
considering an elliptic approximation to the problem:

∂tun + ∂x(fn(t, x, un)) = (1/n)4(t,x)un in Ω,

∇(t,x)un · ν = 0 on ΓN , (1.4)

un(0, ·) = u0
n(·) on ΓD,

Math. Model. Anal., 21(5):685–698, 2016.
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where fn(t, x, λ) = f(·, ·, λ) ? n2ω(nt, nx) is a regularization of the flux f via
the standard non-negative mollifier ω ∈ C∞c ((−1, 1)2) with total mass one,
and (u0

n) is a bounded sequence of functions converging strongly in L1
loc(R)

toward u0. By multiplying (1.4) by sgn(un(t, x) − λ) we get after standard
manipulations (see also formula (2.8) of the next section):

∂t|un − λ|+ ∂x (sgn(un − λ)(fn(t, x, un)− fn(t, x, λ))

≤ 1

n
4(t,x)|un − λ| − sgn(un − λ) f ′n,x(t, x, λ) in Ω.

We multiply the latter equation by ϕ ∈ C1(Ω) supported away from {t = 0}
and integrate over Ω. After taking into account (1.2), we get:

−
∫
Ω

(|un − λ|∂tϕ+ sgn(un − λ)(fn(t, x, un)− fn(t, x, λ))∂xϕ) dxdt (1.5)

+

∫
∂Ω

(
|un − λ|, sgn(un − λ)(fn(t, x, un)− fn(t, x, λ))

)
· ν ϕ ds

≤ 1

n

∫
Ω

∇(t,x)|un−λ| · ∇(t,x)ϕdxdt−
∫
Ω

ϕ sgn(un − λ) f ′n,x(t, x, λ)dxdt.

Now, we assume that 1
n∇(t,x)|un − λ| → 0 in L2(Ω) which is the case when

dealing with the Cauchy problem for the vanishing viscosity approximation
of scalar conservation laws [13, pages 58,59] (also see the proof in the next
section). The second term on the right hand side is bounded due to assumption
A2. Thus, the right-hand side of (1.5) is uniformly bounded. If we assume that
un → u strongly in L1(Ω), we know what will happen with the first term on
the left-hand side of (1.5).

The remaining second term on the left hand side of (1.5) depends on the
behaviour of un on the boundary of Ω. We do not have that information and we
will use the idea from Formula (7), page 1310. in [3] (where a similar problem
of controlling the viscosity approximation on a zero measure set appear and
where it is successfully resolved) to introduce the following definition.

Definition 1. The function u ∈ L2(Ω) is called a solution to (1.1), (1.2), (1.3)
if there exists a function p ∈ L1(ΓN ) such that for every ϕ ∈ C1

c(Ω\ΓD) that
the following holds:∫

Ω

(|u− λ|∂tϕ+ sgn(u− λ)(f(t, x, u)− f(t, x, λ))∂xϕ) dxdt (1.6)

−
∫
∂Ω

(
|p− λ|, sgn(p− λ)(f(t, x, p)− f(t, x, λ))

)
· ν ϕ ds

≥
∫
Ω

ϕsgn(u− λ) f ′x(t, x, λ)dxdt.

Initial data are satisfied in the strong sense i.e. for almost every x ∈ ΓD it
holds lim

t→0
|u(t, x)− u0(x)| = 0.

We are not able to prove existence or uniqueness of function satisfying
conditions of Definition 1. Instead, in the next section, we shall prove that
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under appropriate assumptions, the sequence (un) defined by (1.4) weakly con-
verges toward u satisfying (1.6) in the interior of Ω i.e. for the test functions
ϕ ∈ Cc(Ω). The main tool that we are going to use for this purpose is the
celebrated compensated compactness method [12,19,27]. In Section 3, we shall
examine numerical convergence of the approximation (1.4) in a special situation
and provide appropriate simulations.

2 The main result

As in the case of the diffusion-dispersion limit for scalar conservation laws (see
e.g. [1,16,24] and references therein), it is little known about existence of solu-
tion to (1.4). Therefore, we need to assume certain properties of the sequence of
solutions (un) to (1.4). In the final section, we shall provide simulations which
show that the sequence of approximate solutions stays uniformly bounded (in
the special case of the Burgers equation). Under such assumptions, we are able
to prove that the sequence (un) converges toward the distributional solution u
to (1.1) in the interior of Ω. Moreover, according to the results from [20, Re-
mark 1], the solution u satisfies also the Kruzhkov entropy conditions in the
interior of Ω. The following theorem holds:

Theorem 1. Assume that the sequence (un) of solutions to (1.4) is uniformly
bounded by a constant M . If the flux f satisfies the assumptions A1, A2 and
A3, then the weak L2(Ω)–limit of (un) along a subsequence satisfies the equation
(1.1) in Ω.

Proof. Let us denote by u a weak L2(Ω)-limit of (un) along some subsequence.
Take a convex entropy Φ : R → R such that Φ′(0) = 0, and multiply the first
equation in (1.4) with Φ′(un). Before we proceed, let us remark that we can
write

∂x(fn(t, x, un)) = f ′n,x(t, x, un) + f ′n,λ(t, x, un)∂xun,

so the equation in (1.4) becomes:

∂tunΦ
′(un) + f ′n,x(t, x, un)Φ′(un) + f ′n,λ(t, x, un)∂xunΦ

′(un) (2.1)

= ∂t(Φ(un)) + f ′n,x(t, x, un)Φ′(un) + ∂x

(∫ un

0

f ′n,λ(t, x, λ)Φ′(λ) dλ
)

−
∫ un

0

f ′′n,λx(t, x, λ)Φ′(λ) dλ =
1

n
4(t,x)unΦ

′(un).

An integration by parts, together with the fact that Φ′(0) = 0, yields the
following:

f ′n,x(t, x, un)Φ′(un)−
∫ un

0

f ′′n,λx(t, x, λ)Φ′(λ)dλ=

∫ un

0

f ′n,x(t, x, λ)Φ′′(λ)dλ,

(2.2)
while the term on the right hand side in (2.1), we can break into two terms
using the following formula:

4(t,x)(Φ(un)) = Φ′′(un)((∂tun)2 + (∂xun)2) + Φ′(un)4(t,x)un. (2.3)

Math. Model. Anal., 21(5):685–698, 2016.
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Using formulae (2.2) and (2.3), the equation (2.1) gets the following form:

∂t(Φ(un)) + ∂x(Ψn(t, x, un)) +

∫ un

0

f ′n,x(t, x, λ)Φ′′(λ)dλ

=
1

n
4(t,x)(Φ(un))− 1

n
Φ′′(un)|∇(t,x)un|2, (2.4)

where the entropy flux Ψ is given by

Ψn(t, x, un) =

∫ un

0

f ′n,λ(t, x, λ)Φ′(λ)dλ,

which, after integration by parts, becomes:

Ψn(t, x, un) = fn(t, x, un)Φ′(un)−
∫ un

0

fn(t, x, λ)Φ′′(λ)dλ. (2.5)

Now, take Φ(λ) = λ2

2 . Rearranging the terms in the equation (2.4), multi-
plying it with a nonnegative test function ϕ(t, x) ∈ C2

c(Ω) and integrating it
over Ω, we get the following bound

1

n

∫
Ω

|∇(t,x)un|2ϕ(t, x)dtdx =

∫
Ω

[ 1

2n
u2
n4(t,x)ϕ+

1

2
u2
n∂tϕ

+ Ψn(t, x, un)∂xϕ− ϕ
∫ un

0

f ′n,x(t, x, λ)dλ
]
dtdx < Cϕ <∞, (2.6)

where the first and the second term on the right hand side are bounded due to
the assumption of the theorem on uniform boundedness of the sequence (un).
Furthermore, the last term on the right hand side is bounded due to assumption
A2 and the third term of the right hand side can be rewritten in the following
way∫

Ω

∂xϕ Ψn(t, x, un) dtdx =

∫
Ω

∂xϕ
[
fn(t, x, un)un −

∫ un

0

fn(t, x, λ)dλ
]
dtdx.

From here, we see that the term
∫
Ω
∂xϕ Ψn(t, x, un) dtdx is bounded due to

the assumption on the uniform bound of the sequence (un) and assumptions
C1 and C3.

Thus, from (2.6), we conclude that 1
n

∫
Ω
|∇(t,x)un|2ϕ(t, x)dtdx is uniformly

bounded for every ϕ ∈ C2
c(Ω) and this bound depends on ϕ, which implies

that
(

1√
n
∇(t,x)un

)
n

has a weakly convergent subsequence (not relabelled) in

L2
loc(Ω). Dividing with

√
n, we conclude that 1

n∇(t,x)un −→ 0 in L2
loc(Ω) and

since div(t,x) : L2
loc(Ω) → H−1

loc(Ω) is continuous, we have 1
n4(t,x)un −→ 0 in

H−1
loc(Ω). From (1.4), we read

∂tun + ∂x(fn(t, x, un)) −→ 0 in H−1
loc(Ω)

and since sup
λ∈(−M,M)

|fn(t, x, λ) − f(t, x, λ)| → 0 as n → ∞ in L1
loc(Ω), we

conclude
∂tun + ∂x(f(t, x, un)) −→ 0 in H−1

loc(Ω). (2.7)
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Let us go back at the beginning to the equation (2.4) and assume that Φ′

is bounded; rearranging the terms we get:

∂t(Φ(un)) + ∂x(Ψn(t, x, un)) =
1

n
4(t,x)(Φ(un))− 1

n
Φ′′(un)|∇(t,x)un|2 (2.8)

−
∫ un

0

f ′n,x(t, x, λ)Φ′′(λ)dλ.

Note that the first term on the right hand side is in H−1
loc(Ω). Indeed, taking

a test function ϕ ∈ H1
c(Ω), we have∣∣∣∣∣ 1n

∫
Ω

4(t,x)(Φ(un))ϕdtdx

∣∣∣∣∣ =

∣∣∣∣∣ 1n
∫
Ω

∇(t,x)(Φ(un)) · ∇(t,x)ϕdtdx

∣∣∣∣∣
≤ 1

n

∫
Ω

∣∣∣∇(t,x)(Φ(un))
∣∣∣∣∣∣∇(t,x)ϕ

∣∣∣dtdx
≤ 1√

n

∫
Ω

∣∣∣ 1√
n
Φ′(un)∇(t,x)un

∣∣∣∣∣∣∇(t,x)ϕ
∣∣∣dtdx

≤ 1√
n

∥∥∥χsuppϕ√
n

Φ′(un)∇(t,x)un

∥∥∥
L2(Ω)

‖∇(t,x)ϕ‖L2(Ω) ≤
C√
n
‖ϕ‖H1(Ω),

where we have used Cauchy-Schwartz inequality in the forth step, and bound-
edness of Φ′ and L2(Ω) bound of 1√

n
∇(t,x)un χsuppϕ in the last step. Passing

to the limit, we see that
(

1
n4(t,x)(Φ(un))

)
n

is precompact in H−1
loc(Ω) and its

weak limit is 0.

Regarding the second term of the right-hand side in (2.8), we have∥∥∥ 1

n
Φ′′(un)

∣∣∇(t,x)un
∣∣2ϕ2

∥∥∥
L1(Ω)

≤ c̃
∥∥∥ 1√

n

∣∣∇(t,x)un
∣∣ ϕ∥∥∥2

L2(Ω)
≤ C̃ϕ

for every nonnegative test function ϕ ∈ Cc(Ω), where we have used the L2(Ω)
bound of 1√

n
∇(t,x)unϕ in the last step and the fact that second derivative of a

convex function is a nonnegative measure. Since L1(Ω) is continously embedded
in Mb(Ω), the space of bounded Radon measures, which in turn is compactly
embedded in W−1,q(Ω) for all q ∈ 〈1, 2〉 [ [13], Theorem 1.6], we conclude that(

1
nΦ
′′(un)

∣∣∇(t,x)un
∣∣2ϕ2

)
n

is precompact in W−1,q(Ω), q ∈ 〈1, 2〉, for every ϕ ∈

Cc(Ω). Thus,
(

1
nΦ
′′(un)

∣∣∇(t,x)un
∣∣2)

n
is precompact in W−1,q

loc (Ω), q ∈ 〈1, 2〉.
Now, we turn our attention to the third term of the right hand side of (2.8).

Using the nonnegativity of Φ′′ and assumption A2, we can conclude, in a similar
manner as in the case of the second term above, that

(∫ un

0
f ′n,x(t, x, λ)Φ′′(λ)dλ

)
n

is precompact in W−1,q
loc (Ω), q ∈ 〈1, 2〉.

In order to show that the sum of the last two terms on the right hand side is
precompact in H−1

loc(Ω), we will show that their sum is bounded in W−1,p
loc (Ω),

for p > 2 from assumptions A1 and A3, and use generalized version of Murat’s
lemma [ [19], Theorem 2.3.2]. To this end, take a nonnegative test-function

Math. Model. Anal., 21(5):685–698, 2016.
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ϕ ∈ C1
c(Ω), and get:∣∣∣∣∫

Ω

∂t (Φ(un))ϕ(t, x) dtdx

∣∣∣∣ =

∣∣∣∣∫
Ω

Φ(un)∂tϕ(t, x) dtdx

∣∣∣∣
≤ ‖Φ(un)χsuppϕ‖Lp(Ω) ‖∂tϕ‖Lp′ (Ω)

≤ |Ω|maxλ∈[−M,M ]|Φ(λ)| ‖ϕ‖W1,p′ (Ω) ≤ C‖ϕ‖W1,p′ (Ω),

where we have used integration by parts in the first step and Hölder inequality
in the second one; in the third step, we have used the fact that a convex function
defined over whole R must be continuous and the assumption on the uniform
boundedness of the sequence (un). Similarly, we have∣∣∣∣∣
∫
Ω

∂x (Ψn(t, x, un))ϕ(t, x)dtdx

∣∣∣∣∣ =

∣∣∣∣∫
Ω

Ψn(t, x, un)∂xϕ(t, x)dtdx

∣∣∣∣
≤
∣∣∣∣∫
Ω

fn(t, x, un)Φ′(un)∂xϕ dtdx

∣∣∣∣+

∣∣∣∣∫
Ω

∂xϕ

∫ un

0

fn(t, x, λ)Φ′′(λ)dλdtdx

∣∣∣∣
≤ ‖fn(t, x, un)Φ′(un)χsuppϕ‖Lp(Ω) ‖∂xϕ‖Lp′ (Ω)+

∣∣∣∣∫
Ω

∂xϕ

∫ un

0

fn(t, x, λ)dλdtdx

∣∣∣∣
≤ Cϕ‖ϕ‖W1,p′ (Ω) + ‖∂xϕ‖Lp′ (Ω)

∥∥∥∥χsupp ϕ

∫ un

0

fn(t, x, λ)dλ

∥∥∥∥
Lp(Ω)

≤ C̃ϕ‖ϕ‖W1,p′ (Ω) .

In the first step we have used integration by parts and in the second one the
expression for the flux from (2.5); in the third step we have used Höler inequality
and the non-negativity of Φ′′, while in the fourth we have used boundedness
of Φ′ and assumption A3 for the first integral, and Hölder inequality for the
second integral; in the last step we have used assumption A1. Let us remark
that this is the only place in the proof where we had used assumptions A1 and
A3 since we could not have used C1 and C3 for the Lp(Ω) bounds of the above
expressions we had.

So far we have shown that the sequence (∂t(Φ(un)) + ∂x(Ψn(t, x, un)))n is

precompact in W−1,q
loc (Ω), q ∈ 〈1, 2〉, and bounded in W−1,p

loc (Ω) for a p > 2.
The generalised version of Murat’s lemma now implies that

(∂t(Φ(un)) + ∂x(Ψn(t, x, un)))n is precompact in H−1
loc(Ω), (2.9)

for all entropy-entropy flux pairs (Φ(λ), Ψn(t, x, λ)). Specifically, this is valid
for the particular entropy-entropy flux pairs which we will use in the rest of
the proof – the Kruzhkov entropy-entropy flux pairs. For k ∈ R, define

Φ(λ) = |λ− k|, Ψn(t, x, λ) = sgn(λ− k)(fn(t, x, λ)− fn(t, x, k)) .

As in the case of (2.7), we know that for such defined Ψn it holds

sup
λ∈(−M,M)

∣∣Ψn(t, x, λ)− Ψ(t, x, λ)
∣∣→ 0 as n→∞
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in L1
loc(Ω), where

Ψ(t, x, λ) = sgn(λ− k)(f(t, x, λ)− f(t, x, k)).

Therefore from (2.9) it follows

(∂t|un − k|+ ∂x(sgn(un − k)(f(t, x, un)− f(t, x, k))))n (2.10)

is precompact in H−1
loc(Ω).

In the final step we will use the theory of Young measures and the div-
rot lemma [ [13], Theorem 5.4]. For a.e. (t, x) ∈ Ω denote by ηt,x the Young
measure on R associated to the weak convergence un ⇀ u in L2(Ω). Since
f is the Caratheodory type function we have the following representation (for
a.e. (t, x) ∈ Ω):

u(t, x) =

∫
R

λdηt,x(λ)

and the following weak convergences in L2(Ω) (note that Ω is bounded):

f(·, un) ⇀ f, Φ(un) ⇀ Φ and Ψ(·, un) ⇀ Ψ,

where

f(t, x) =

∫
R

f(t, x, λ)dηt,x(λ), Φ(t, x) =

∫
R

Φ(λ)dηt,x(λ)

and Ψ(t, x) =

∫
R

Ψ(t, x, λ)dηt,x(λ).

Remembering the (2.7) and (2.10) and applying the div-rot lemma (div and
rot with respect to variables (t, x)) on the vector fields vk = (un, f(·, un)) and
wk = (Ψ(·, un),−Φ(un)), we get that vk ·wk ⇀ v ·w in the sense of distributions
on Ω, where v = (u, f) and w = (Ψ,−Φ). Using the above representation of u
and the weak limits, we conclude the following identity (for a.e. (t, x) ∈ Ω)

u(t, x)Ψ(t, x)− f(t, x)Φ(t, x) = u(t, x)

∫
R

Ψ(t, x, λ)dηt,x(λ)

− f(t, x)

∫
R

Φ(λ)dηt,x(λ) =

∫
R

(
λΨ(t, x, λ)− f(t, x, λ)Φ(λ)

)
dηt,x(λ).

Rearranging the terms, we can write∫
R

[
(f(t, x, λ)− f(t, x))Φ(λ) + (u(t, x)− λ)Ψ(t, x, λ)

]
dηt,x(λ) = 0.

Plugging in the particular form of Φ and Ψ , we get the following

0 =

∫
R

[(
f(t, x, λ)− f(t, x)

)
|λ− k|

+ (u(t, x)− λ) sgn(λ− k)
(
f(t, x, λ)− f(t, x, k)

)]
dηt,x(λ).

Math. Model. Anal., 21(5):685–698, 2016.
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Taking k = u(t, x), we finally arrive at (for a.e. (t, x) ∈ Ω):

0 =

∫
R

[
f(t, x, u(t, x))− f(t, x)

]
|λ− u(t, x)| dηt,x(λ)

=
[
f(t, x, u(t, x))− f(t, x)

] ∫
R

|λ− u(t, x)| dηt,x(λ),

from which we conclude that either f(t, x, u(t, x)) = f(t, x) or ηt,x = δu(t,x)

for a.e. (t, x) ∈ Ω. Remembering the definition of f(t, x), we see that the
second possibility implies the first one. Thus, f(t, x, u(t, x)) = f(t, x) for a.e.
(t, x) ∈ Ω. In other words, f(·, u) is a weak limit of f(·, un). From here, we
conclude that u is the weak solution of (1.1) in Ω. This finishes the proof. ut

A corollary of the proof of the last theorem and [20, Remark 1] in the case
when the flux is continuously differentiable with respect to all variables is the
fact that the limiting function u satisfies the Kruzhkov admissibility conditions
in the interior of Ω i.e. condition (1.6) from Definition 1 for ϕ ∈ C1

c(Ω).

Corollary 1. Assume that the flux f ∈ C1(Ω × (−M,M)). The distributional
limit u of the sequence (un) of solutions to (1.4) satisfies for every entropy-
entropy flux pair (Φ, Ψ)

∂t(Φ(u))+∂x(Ψ(t, x, u)) ≤ −
∫ u

0

f ′x(t, x, λ)Φ′′(λ)dλ in D′(Ω).

Proof. The statement follows from (2.8) and [20, Remark 1]. ut

3 Numerical experiment

In this section we want to present motivation emanating from the traffic flow
modelling, results of the numerical experiment and to briefly outline the tech-
nical issues regarding the implementation of numerical method that has been
used. First, let us recall Lighthill-Whitham-Richards model for traffic flow
[18,23]

∂tρ+ ∂x(ρv(ρ)) = 0,

in which the velocity is assumed to have linear dependence upon density of the
cars

v(ρ) = vmax (1− ρ/ρmax) , 0 ≤ ρ ≤ ρmax.

Let L and τ be a typical length and time, respectively, such that vmax = L/τ .
Introducing new variables x̄ = x/L, t̄ = x/L, u = 1− 2ρ/ρmax, we obtain the
inviscid Burgers equation

∂tρ+ ∂x

[
ρ

(
1− ρ

ρmax

)]
= −ρmax

2τ
∂t̄u−

ρmax
2τ

∂x̄

(
u2

2

)
= 0.

For other models, see e.g. [10, 14,22] and references therein.
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Let Ω = {(t, x) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ t ≤ −4x(x − 1)}. We focus on
solving the (regularized) Burgers equation

∂tu+ ∂x
(
u2/2

)
= ε∆(t,x)u in Ω,

∇(t,x)u · ν = 0 on ΓN ,

u(0, x) = uD on ΓD,

where ΓD = {(t, x) ∈ ∂Ω : t = 0} and ΓN = ∂Ω \ ΓD and uD will be specified
latter, because it will differ in each out of three experiments. Since we did
not make any distinction between space and time, we will use finite element
method in space and time. This, rather unusual approach becomes natural if
we switch perspective and think of time variable as another space variable.

Let VD(Ω) = {v ∈ H1(Ω) : v|ΓD
= uD} and H1

D(Ω) = {v ∈ H1(Ω) :
v|ΓD

= 0}. We use the following numerical scheme. For given initial guess u0,
construct sequence un ∈ VD, n ≥ 1, that are solutions of∫
Ω

(∂tun + un−1∂xun)ψdtdx+ ε

∫
Ω

∇(t,x)un · ∇(t,x)ψdtdx = 0, ∀ψ ∈ H1
D(Ω).

(3.1)

a) b)

Figure 2. Numerical solution of elliptic approximation to Burgers equation with N = 160
and ε = 1/1602: a) solution of the equation with triangulation of the domain (represented

in red), b) iso–values of the solution.

In the first experiment we have chosen two scenarios. In the first one ε =
1/N and in the second one ε = 1/N2 with uD = −2x(x − 1) in both. Results
are presented in Figure 2. Furthermore, to prove the convergence of the (3.1)
we performed two convergence test (see Table 1), where referent solution uR
has been computed on N ×N = 6402 grid.

In the second and third experiment we have chosen uD = H(x − 0.5) and
uD = H(0.5− x), respectively, where H is the Heaviside function. Results are
presented on Figure 3 where we observe propagation of the rarefaction wave,
while on Figure 4 we have propagation of the shock wave.

Math. Model. Anal., 21(5):685–698, 2016.
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Table 1. Results of convergence test.

N = 1/ε ‖uN − uR‖2/‖uR‖2 N = 1/
√
ε ‖uN − uR‖2/‖uR‖2

10 0.179448 10 0.0539613
20 0.130928 20 0.0137841
40 0.076787 40 0.0038117
80 0.038821 80 0.0010069
160 0.0167232 160 0.00029879
320 0.0054824 320 0.000093223

Figure 3. Numerical solution of elliptic approximation to Burgers equation
demonstrating evolution of the rarefaction wave. Characteristics are plotted on the right

plot.

Figure 4. Numerical solution of elliptic approximation to Burgers equation
demonstrating evolution of the shock wave. Characteristics are plotted on the right plot.
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