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Abstract. We consider the eigenvalue problem with Robin boundary condition
∆u + λu = 0 in Ω, ∂u/∂ν + αu = 0 on ∂Ω, where Ω ⊂ Rn, n ≥ 2 is a bounded
domain with a smooth boundary, ν is the outward unit normal, α is a real parame-
ter. We obtain two terms of the asymptotic expansion of simple eigenvalues of this
problem for α → +∞. We also prove an estimate to the difference between Robin
and Dirichlet eigenfunctions.
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1 Introduction

Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with boundary Γ of class C3.
Consider the eigenvalue problem

∆u+ λu = 0 in Ω, (1.1)

∂u

∂ν
+ αu = 0 on Γ, (1.2)

where ν is the outward unit normal vector to Γ , α is a real parameter. By
{λk(α)}∞k=1 we denote the sequence of eigenvalues of the problem (1.1), (1.2)
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enumerated as

λk(α) = sup
v1,..., vk−1∈L2(Ω)

inf
v ∈ H1(Ω),

(v, vj)L2(Ω) = 0,
j = 1, . . . , k − 1

∫
Ω
|∇v|2dx+ α

∫
Γ
v2ds∫

Ω
v2dx

, (1.3)

for k = 1, 2, . . . and by {λDk }∞k=1 denote the sequence of eigenvalues of Dirichlet
problem

∆u+ λu = 0 in Ω, u = 0 on Γ, (1.4)

enumerated respectively

λDk = sup
v1,..., vk−1∈L2(Ω)

inf
v ∈

o
H

1(Ω)
(v, vj)L2(Ω) = 0
j = 1, . . . , k − 1

∫
Ω
|∇v|2dx∫
Ω
v2dx

, (1.5)

for k = 1, 2, . . . .
By {uk,α(x)}∞k=1 and {uDk (x)}∞k=1 we denote the corresponding sequences of

normalized in L2(Ω) Robin and Dirichlet eigenfunctions (all considered func-
tional and abstract spaces will be real spaces). It is known that the eigenvalues
λ1(α) and λD1 > 0 are simple and lim

k→∞
λk(α) = lim

k→∞
λDk = +∞. It follows

from (1.3), (1.5) that λk(α) ≤ λDk . As it was noted in ( [3], Chapter 6, Sec-
tion 2, Subsection 1) for n = 2 in the case of a smooth boundary Γ we have

lim
α→+∞

λk(α) = λDk , k = 1, 2, . . . . Later in [19] for n = 2 the following two-side

estimates for the first eigenvalue λ1(α) were obtained

λD1

(
1 +

λD1
αq1

)−1
≤ λ1(α) ≤ λD1

(
1 +

4π

α|Γ |

)−1
, α > 0,

where q1 is the first eigenvalue of Steklov problem

∆2u = 0 in Ω,

u = 0, ∆u− q ∂u
∂ν

= 0 on Γ.

In [7, 8], the estimates for all eigenvalues were proved

λDk − C1
(λDk )2√

α
≤ λk(α) ≤ λDk , α > α1 > 0 (1.6)

where constants C1 and α1 are independent on k. In [9] the estimates (1.6)
were sharpened:

λDk − C2
(λDk )2

α
≤ λk(α) ≤ λDk , α > α1 > 0. (1.7)

The case α < 0 has recently attracted attention in connection with diffusion
models [12]. It was shown in [12] that for piecewise C1 class boundary

lim inf
α→−∞

λ1(α)

−α2
≥ 1,
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and in particular when Ω ⊂ R2 is a triangle with inner half-angles α1, α2, α3

the authors have proved that

lim
α→−∞

λ1(α)

−α2
= max

1≤j≤3
cosec2αj > 1.

In [14] for C1 class boundaries the following equality was proved

lim
α→−∞

λ1(α)

−α2
= 1. (1.8)

These results indicate that the asymptotic behavior of λ1(α) for α → −∞ is
strongly affected by the smoothness of the boundary and C1 class is optimal for
the equality (1.8). In [4] it was proved that for C1 boundaries for all k = 1, 2, . . .
we have

lim
α→−∞

λk(α)

−α2
= 1.

The second term of asymptotics of λk(α)/(−α2) was found in [5] for n = 2
with Γ ∈ C4 and later in [17] for n ≥ 2 with Γ ∈ C3:

λk(α)

−α2
= 1− (n− 1)Hmaxα

−1 +O(|α|−4/3), α→ −∞ (1.9)

with Hmax = max
x∈Γ

H(x) where H(x) is the mean curvature of the surface Γ ori-

ented by inner normal at the point x. It was proved in [17], that if, additionally,
Γ ∈ C4, then the reminder estimate O(|α|−4/3) can be replaced by O(|α|−3/2).
Let us note the result of [7], where the lower estimate for the derivative of the
first eigenvalue λ′1(α) were obtained:

lim inf
α→−∞

λ′1(α)

−α
≥ 1.

2 Main results

By m(λ) we denote the multiplicity of eigenvalue λ.

Theorem 1. For any k = 1, 2, . . . there exists the number αk ∈ R such that
for α > αk we have

m(λk(α)) ≤ m(λDk ).

Theorem 2. Let m(λDk ) = 1. Then there exists the number αk ∈ R such that
for all α > αk the eigenvalue λk(α) is a differentiable function and

λ′k(α) =

∫
Γ
u2k,αds∫

Ω
u2k,αdx

> 0. (2.1)

Theorem 3. Let m(λDk ) = 1. Then the eigenvalue λk(α) obeys an asymptotic
expansion

λk(α) = λDk −
∫
Γ

(∂uDk
∂ν

)2
ds∫

Ω
(uDk )2 dx

α−1 + o(α−1), α→ +∞. (2.2)
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We can see that ∫
Γ

(∂uDk
∂ν

)2
ds > 0. (2.3)

If not, the eigenfunction uDk is a solution of the Cauchy problem

∆uDk + λDk u
D
k = 0 in Ω, uDk = ∂uDk /∂ν = 0 on Γ.

So, uDk ≡ 0 ( [11], Chapter 1, Theorem 1.46). This is impossible. The relations
(2.2), (2.3) show that the first power of α in the denominator of (1.7) cannot
be replaced by α1+δ with any δ > 0.

Remark. For the first eigenvalue the expansion (2.2) was obtained in [6].

The next theorem establishes the rate of convergence of the eigenfunction
uk,α of the Robin problem (1.1), (1.2) to the eigenfunction uDk of the ”limit”
Dirichlet problem (1.4) at α→ +∞. For any α ∈ R we suppose

∫
Ω
uk,αu

D
k dx ≥

0.

Theorem 4. Let m(λDk ) = 1. Then there exists the number αk ∈ R such that
for all α > αk we have m(λk(α)) = 1 and

‖uk,α − uDk ‖H2(Ω) ≤Mk/α (2.4)

where the constant Mk is independent of α.

Let us notify the difference of asymptotic behavior of eigenvalues in our case
α > 0 (repulsive Robin condition) with the case α < 0 (attractive Robin con-
dition). Here for smooth boundary the global properties of the eigenfunctions
(2.4) determine the second term of the asymptotics (2.2), while in the attractive
case the second term of the asymptotics (1.9) is determined by a local behavior
of the boundary around the points of the maximum mean curvature.

3 Perturbation of eigenvalues

We use the following inequality ( [16], Lemma 51.1).

Theorem 5. Let A and B be two linear self-adjoint, compact and positive op-
erators on a separable Hilbert space H. Let µAk and µBk be their eigenvalues,
enumerated in the decreasing order according to their multiplicity. Then

|µAk − µBk | ≤ ‖A−B‖. (3.1)

For h(x) ∈ L2(Ω) consider the weak solution u(x) ∈ H1(Ω) of the Robin
boundary value problem

−∆u+ u = h in Ω, (3.2)

∂u

∂ν
+ αu = 0 on Γ, α > 0. (3.3)

In domain with C2 class boundary surface we have u ∈ H2(Ω) ( [15], Chap-
ter 4, Section 2, Theorem 4). For our proofs we need an elliptic estimate ( [9],
Theorem 3) to solution of the problem (3.2), (3.3) at large values of α.
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Theorem 6. The solution of the problem (3.2), (3.3) satisfies the estimate

‖u‖H2(Ω) ≤ C3‖h‖L2(Ω), α > α1 > 0 (3.4)

with the constant C3 is independent of α.

Remark. Let us note that the estimates of type (3.4) to solution of the problem
(3.2), (3.3) were previously obtained for fixed α (see, for example, [15]). But
we need the estimate (3.4) valid with one constant C3 for α→ +∞.

For Robin problem (3.2), (3.3) we define the linear operator Aα by

Aα : L2(Ω)→ H1(Ω) ⊂ L2(Ω) for h 7→ u.

The operator Aα is a self-adjoint positive compact operator in L2(Ω) ( [8],
Section 4) and ‖Aα‖ = 1/(λ1(α) + 1) < 1. Now,

(λk(α) + 1)Aαuk,α = uk,α,

thence
µk(α) = 1/(λk(α) + 1) (3.5)

are the eigenvalues of Aα with the eigenfunctions uk,α ∈ H1(Ω).
Let w = (Aα̃ −Aα)h = ũ−u. The function w is a solution of the boundary

value problem

−∆w + w = 0 in Ω, (3.6)

∂w

∂ν
+ αw = (α̃− α)ũ on Γ. (3.7)

It follows from (3.6), (3.7) that∫
Ω

(|∇w|2 + w2)dx+ α

∫
Γ

w2ds = (α− α̃)

∫
Γ

wũds.

Thence, for α > α1 > 0∫
Ω

(|∇w|2 + w2)dx+
α

2

∫
Γ

w2ds ≤ (α̃− α)2

2α

∫
Γ

ũ2ds ≤ C4(α̃− α)2‖ũ‖2H1(Ω)

and
‖w‖H1(Ω) ≤ C5|α̃− α|‖ũ‖H1(Ω).

Consequentially,

‖(Aα̃ −Aα)h‖L2(Ω) ≤ C5|α̃− α|‖ũ‖H1(Ω).

Now, applying the estimate (3.4) for h ∈ L2(Ω) we have the inequalities

‖(Aα̃ −Aα)h‖L2(Ω) ≤ C5|α̃− α|‖h‖L2(Ω),

‖Aα̃ −Aα‖ ≤ C5|α̃− α|, α, α̃ > α1. (3.8)
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Then by the inequalities (3.1), (3.8) we get

|µk(α̃)− µk(α)| ≤ C5|α̃− α|.

Therefore,

|λk(α̃)− λk(α)| ≤ C5(λk(α̃) + 1)(λk(α) + 1)|α̃− α|. (3.9)

Furthermore, consider the Dirichlet problem

−∆v + v = h in Ω, (3.10)

v = 0 on Γ. (3.11)

We define the linear operator AD by

AD : L2(Ω)→
o

H
1(Ω) ⊂ L2(Ω), for h 7→ v.

The operator AD is a self-adjoint positive compact operator in L2(Ω) ( [8],
Section 4) and ‖AD‖ = 1/(λD1 + 1) < 1. We have

(λDk + 1)ADuDk = uDk ,

therefore
µDk = 1/(λDk + 1), k = 1, 2, . . . (3.12)

are the eigenvalues of AD with the eigenfunctions uDk ∈
o

H1(Ω).
Let w = (AD −Aα)h = v− u. By (3.2), (3.3), (3.10), (3.11) the function w

is a solution of the boundary value problem

−∆w + w = 0 in Ω, w =
1

α

∂u

∂ν
on Γ,

where u = Aαh ∈ H2(Ω) ( [15], Chapter 4, Section 2, Theorem 4). Due to
elliptic regularity ( [2], Par. 11.1d) we have the estimate

‖w‖H1(Ω) ≤
C6

α

∥∥∥∥∂u∂ν
∥∥∥∥
H1/2(Γ )

and consequently by the embedding theorem for Sobolev spaces ( [2], Theorem
5.1.7)

‖(AD −Aα)h‖L2(Ω) ≤
C7

α
‖u‖H2(Ω).

Now, applying the estimate (3.4) for h ∈ L2(Ω), we have the following inequal-
ities

‖(AD−Aα)h‖L2(Ω) ≤
C3C7

α
‖h‖L2(Ω), ‖AD−Aα‖ ≤

C3C7

α
, α > α1. (3.13)

Then by the equalities (3.5), (3.12) and the inequalities (3.1), (3.13) we get the
estimate

|µDk − µk(α)| ≤ C3C7/α.
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Therefore,

|λDk − λk(α)| ≤ C3C7

α
(λDk + 1)(λk(α) + 1)

and taking into account the inequalities λk(α) ≤ λDk , we obtain

0 ≤ λDk − λk(α) ≤ C3C7

α
(λDk + 1)2 ≤ C2

α
(λDk )2. (3.14)

Proof of Theorem 1. Let m = m(λDk ) and

λDk−1 < λDk = λDk+1 = · · · = λDk+m−1 < λDk+m. (3.15)

Now we consider the eigenvalues λj(α), j = k, k+ 1, . . . , k+m− 1 as functions
of the variable α. It follows from (3.14) and (3.15) that for any ε > 0 there
exists αk ∈ R such that for all α > αk the following inequalities hold

λj(α) < λDk−1 + ε, j = 1, 2, . . . , k − 1, (3.16)

λj(α) > λDk+m − ε, j = k +m, k +m+ 1, . . . . (3.17)

Let ε = min{|λDk −λDk−1|, |λDk+m−λDk |}/2. Then by (3.16), (3.17) for α > αk the

interval (λDk −ε, λDk +ε) contains only the eigenvalues λj(α), j = k, . . . , k+m−1.
The other eigenvalues of the problem (1.1), (1.2) are located outside of this
interval. Thus, for any α > αk only the functions λj(α), j = k, . . . , k +m− 1
can be equal and a number of such functions does not exceeds m. Theorem 1
is proved. ut

4 Perturbation of eigenvectors: abstract model

Consider a real Hilbert space H with the scalar product (·, ·) and the norm
‖ · ‖. Let e and g be non-zero elements in H.

Definition 1. The non-negative number

δ(e, g) =
√

1− (e, g)2/‖e‖2‖g‖2 (4.1)

is called a deviation between e and g.

It follows from (4.1) that 0 ≤ δ(e, g) ≤ 1, δ(e, g) = δ(g, e), δ(e, g) ≤ δ(e, h) +
δ(h, g) and the linear spans of e and g coincides if and only if δ(e, g) = 0. There-
fore, the deviation is a metric on the set of one-dimensional linear subspaces of
H.

Lemma 1. Let (e, g) ≥ 0. Then the following estimate holds:∥∥e/‖e‖ − g/‖g‖∥∥ ≤ √2δ(e, g).

Proof of Lemma 1.∥∥e/‖e‖ − g/‖g‖∥∥2 = 2
(
1− (e, g)/‖e‖‖g‖

)
= 2δ2(e, g)

/(
1 + (e, g)/‖e‖‖g‖

)
≤ 2δ2(e, g).

ut

Math. Model. Anal., 22(1):37–51, 2017.
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Let A be a linear compact self-adjoint positive operator in H. Let {µj}∞j=1 be a
sequence of its eigenvalues and {ej}∞j=1 be an orthonormal basis of correspond-
ing eigenvectors.

Definition 2. The number %Ak = inf
j 6=k
|µj − µk| is called an isolation distance

of the eigenvalue µk.

The following Lemma 2 generalizes Lemma 1 from [10].

Lemma 2. Let z ∈ H and z 6= 0. Then for any k = 1, 2, . . . we have

‖(A− µkI)z‖ ≥ %Ak δ(z, ek)‖z‖.

Proof of Lemma 2. Let z =
∞∑
j=1

ajej . Then

‖(A− µkI)z‖2 =
∥∥∥ ∞∑
j=1

(µj − µk)ajej

∥∥∥2
=

∞∑
j = 1
j 6= k

(µj − µk)2a2j ≥ (%Ak )2
∞∑
j = 1
j 6= k

a2j = (%Ak )2(‖z‖2 − a2k). (4.2)

It follows from (4.1) that a2k = (1 − δ2(z, ek))‖z‖2, so, apply this to (4.2), we
obtain ‖(A− µkI)z‖2 ≥ (%Ak )2δ2(z, ek)‖z‖2. Lemma 2 is proved. ut

Let A and B be two linear compact self-adjoint positive operators in H
with the sequences of eigenvalues {µAj }∞j=1, {µBj }∞j=1 and orthonormal bases of
eigenvectors {ej}∞j=1, {gj}∞j=1.

Theorem 7. Let for some k holds max{%Ak , %Bk } > 0. Then

δ(ek, gk) ≤ 2

max{%Ak , %Bk }
‖A−B‖. (4.3)

Proof of Theorem 7. We have the equality

(A− µAk I)(gk − (ek, gk)ek) = (A−B)gk + (µBk − µAk )gk. (4.4)

Since ‖ek‖ = ‖gk‖ = 1 we obtain

δ(ek, gk) =
√

1− (ek, gk)2 = ‖gk − (ek, gk)ek‖. (4.5)

Now, if gk = (ek, gk)ek, then δ(ek, gk) = 0 and the inequality (4.3) holds.
Otherwise, (gk−(ek, gk)ek, ek) = 0 so δ(gk−(ek, gk)ek, ek) = 1 and by equalities
(4.4), (4.5) and Lemma 2 we obtain

δ(ek, gk) ≤ 1

%Ak
‖(A− µAk I)(gk − (ek, gk)ek)‖

≤ 1

%Ak
(‖A−B‖+ |µAk − µBk |).
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Thence, by the Theorem 5

δ(ek, gk) ≤ 2

%Ak
‖A−B‖. (4.6)

Interchange operators A and B in (4.6), we have

δ(ek, gk) ≤ 2

%Bk
‖A−B‖. (4.7)

Combine estimates (4.6) and (4.7), we finally obtain

δ(ek, gk) ≤ 2

max{%Ak , %Bk }
‖A−B‖.

This completes the proof of Theorem 7. ut

5 Convergence of eigenfunctions

For α̃, α ∈ R we suppose
∫
Ω
uk,α̃uk,α dx ≥ 0.

Lemma 3. Let m(λDk ) = 1. Then there exists the number αk ∈ R such that
for all α̃, α > αk we have m(λk(α)) = 1 and the following inequality holds

‖uk,α̃ − uk,α‖H2(Ω) ≤ C8|α̃− α|.

Proof of Lemma 3. It follows from the equality m(λDk ) = 1 and the Theorem 1

that %Aαk > 0, α > αk for some αk. By the estimates (3.8) and (4.3), applying
Theorem 7 for H = L2(Ω) with A = Aα̃, B = Aα, we get

δ(uk,α̃, uk,α) ≤ 2

%Aαk
‖Aα̃ −Aα‖ ≤

2C5

%Aαk
|α̃− α|. (5.1)

Thence, it follows from (5.1) and Lemma 1 that

‖uk,α̃ − uk,α‖L2(Ω) ≤
2
√

2C5

%Aαk
|α̃− α|. (5.2)

Now, we have the problems

∆uk,α̃ + λk(α̃)uk,α̃ = 0 in Ω,
∂uk,α̃
∂ν

+ α̃uk,α̃ = 0 on Γ, (5.3)

∆uk,α + λk(α)uk,α = 0 in Ω,
∂uk,α
∂ν

+ αuk,α = 0 on Γ. (5.4)

By (5.3) – (5.4) the function w = uk,α̃ − uk,α is a solution of the boundary
value problem

−∆w + w = (λk(α) + 1)w + (λk(α̃)− λk(α))uk,α in Ω,

∂w

∂ν
+ αw = (α− α̃)uk,α̃ on Γ.

Math. Model. Anal., 22(1):37–51, 2017.
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Let us note that by ( [1], Theorem 15.2) the following estimate holds

‖w‖H2(Ω) ≤ C9

(
(λk(α) + 1)‖w‖L2(Ω)

+ |λk(α̃)− λk(α)|‖uk,α‖L2(Ω) + |α̃− α|‖uk,α̃‖H1/2(Γ )

)
(5.5)

with the constant C9 depends on Ω. Thence, by the embedding theorem ( [2],
Theorem 5.1.7) we get

‖u‖H1/2(Γ ) ≤ C10‖u‖H1(Ω), u ∈ H1(Ω) (5.6)

and with the inequalities (3.9), (5.2), (5.5) we obtain

‖w‖H2(Ω) ≤ C11|α̃− α|

with the constant C11 depends on k. Lemma 3 is proved. ut

Proof of Theorem 4. Let m(λDk ) = 1 (the eigenvalue λDk is simple). By the
estimates (3.13) and (4.3), applying Theorem 7 for H = L2(Ω) with A = AD,
B = Aα we get

δ(uDk , uk,α) ≤ 2

%A
D

k

‖AD −Aα‖ ≤
2C3C7

%A
D

k α
, α > α1. (5.7)

Therefore, for normalized in L2(Ω) eigenfunctions uDk and uk,α such that∫
Ω
uk,αu

D
k dx ≥ 0 it follows from (5.7) and Lemma 1 that

‖uDk − uk,α‖L2(Ω) ≤
2
√

2C3C7

%A
D

k α
, α > α1. (5.8)

Now, we have the problems

∆uk,α + λk(α)uk,α = 0 in Ω,
∂uk,α
∂ν

+ αuk,α = 0 on Γ, (5.9)

∆uDk + λDk u
D
k = 0 in Ω, uDk = 0 on Γ. (5.10)

By (5.9) – (5.10) the function w = uDk − uk,α is a solution of the boundary
value problem

−∆w + w =
(
λDk + 1

) (
uDk − uk,α

)
+
(
λDk − λk(α)

)
uα in Ω,

w =
1

α

∂uk,α
∂ν

on Γ.

Besides, the function

w̃ = w − 1

α
(b,∇uk,α), b(x) = (b1(x), . . . , bn(x)) ∈ C2(Ω), b|Γ = ν

is a solution of the problem

−∆w̃ + w̃ = hk,α in Ω, w̃ = 0 on Γ,
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where

hk,α =
(
λDk + 1

) (
uDk − uk,α

)
+
(
λDk − λk(α)

)
uk,α

+
1

α
((b,∇uk,α)−∆(b,∇uk,α))

=
(
λDk + 1

) (
uDk − uk,α

)
+
(
λDk − λk(α)

)
uα

+
1

α

(
(b,∇uk,α)− (∆b,∇uk,α)− 2

n∑
i,j=1

(bj)xi(uk,α)xj − (b,∇∆uk,α)
)

=
(
λDk + 1

) (
uDk − uk,α

)
+
(
λDk − λk(α)

)
uk,α

+
1

α

(
(b−∆b,∇uk,α)− 2

n∑
i,j=1

(bj)xi(uk,α)xixj + λk(α)(b,∇uk,α)
)

=
(
λDk + 1

) (
uDk − uk,α

)
+
(
λDk − λk(α)

)
uk,α

+
1

α

(
(1 + λk(α))b−∆b,∇uk,α)− 2

n∑
i,j=1

(bj)xi(uk,α)xixj

)
. (5.11)

The eigenfunction uk,α is a solution of the boundary problem

−∆uk,α + uk,α = (λk(α) + 1)uk,α in Ω,

∂uk,α
∂ν

+ αuk,α = 0 on Γ

and by (3.4) satisfies the estimate

‖uk,α‖H2(Ω) ≤ C3(λk(α) + 1), α > α1. (5.12)

In domain with C3 class boundary surface u ∈ H3(Ω) ( [15], Chapter 4, Sec-
tion 2, Theorem 4). Further we need an elliptic estimate to solution u of the
problem (3.2), (3.3):

‖u‖H3(Ω) ≤ C12‖h‖H1(Ω), α > 0, (5.13)

with the constant C12 is independent of α. The inequality (5.13) is obtained
by the same method as the estimate (3.4) in ( [9], P. 105–112). Let us give
scheme of the proof. At first we denote:

|∇pu|2 =

n∑
j1=1

. . .

n∑
jp=1

u2xj1 ... xjp .

For any function u ∈ C4(Ω) ∩ C3(Ω) consider the equality

|∇3u|2 = |∇∆u|2 + div
(1

2
∇
(
|∇2u|2

)
−

n∑
i=1

∆uxi∇uxi
)
, (5.14)

obtained by direct computation. Integrating the relation (5.14) on Ω and
applying Gauss-Ostrogradskiy formula, we have the equality∫

Ω

|∇3u|2dx =

∫
Ω

|∇∆u|2dx+ I, (5.15)
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where
I =

∫
Γ

(1

2

∂

∂ν

(
|∇2u|2

)
−

n∑
j=1

∆uxj
∂

∂ν
uxj

)
ds.

To obtain the equality (5.15) for u ∈ C3(Ω) it is sufficient to take a limit in
(5.15) for the sequence of functions uj ∈ C4(Ω) ∩ C3(Ω) such that lim

j→∞
‖u −

uj‖C3(Ω) = 0. Now, let u ∈ C3(Ω) be a solution of the problem (3.2), (3.3).

By (3.2) we get∫
Ω

|∇3u|2dx =

∫
Ω

|∇(u− h)|2dx+ I

≤ 2
(∫

Ω

|∇u|2dx+

∫
Ω

|∇h|2dx
)

+ I. (5.16)

Moreover, we have the energy estimate ( [9], Formula (35)):∫
Ω

(|∇u|2 + u2)dx+ α

∫
Γ

u2ds ≤
∫
Ω

h2dx, α > 0 (5.17)

and the following inequality ( [9], see Formulas (37), (39), (49), (54))∫
Ω

|∇2u|2dx+ α

∫
Γ

|∇τu|2ds

≤
∫
Ω

(∆u)2dx+ (n− 1)

∫
Γ

H(x)
(∂u
∂ν

)2
ds, (5.18)

α > max
x∈Γ

max
1≤j≤n−1

|kj(x)|,

where the vector ∇τu = ∇u − ∂u
∂ν ν is a tangential gradient of the function u

on the surface Γ , H(x) is a mean curvature and kj(x) are main curvatures
of Γ oriented by outward normal at the point x. To estimate the surface
integral I in (5.16) we will consider the element of integration in the local
orthogonal coordinate system in the arbitrary point x ∈ Γ such that nth axe
direction coincides with ν and the origin is in x. Then, transforming I by the
technique of ( [13], Chapter 1, Section 7, Lemmas 1, 2’, 3, Chapter 2, Section 3,
Lemma 1’; [18]; [9]), with the estimates (5.17), (5.18) we obtain from (5.16)
the inequality ∫

Ω

|∇3u|2dx ≤ C13

∫
Ω

(
|∇h|2 + h2)dx, α > 0 (5.19)

with the constant C13 is independent of α. Combine (3.4) and (5.19), we get the
estimate (5.13) for solutions of the problem (3.2), (3.3) from C3(Ω). To prove
the estimate (5.13) for solutions from H3(Ω) we take a sequence of functions
uj ∈ C3(Ω) satisfying (3.3) such that ‖u − uj‖H3(Ω) → 0, j → ∞. Applying
the estimate (5.19) to the functions uj we have

‖uj‖H3(Ω) ≤ C12‖hj‖H1(Ω), α ≥ α1, (5.20)

where hj = −∆uj +uj . Therefore, lim
j→∞

‖hj‖H1(Ω) = ‖h‖H1(Ω). Taking a limit

in (5.20), we obtain the inequality (5.13) for solutions u ∈ H3(Ω).
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Combining (1.7), (5.11) and (5.12), we obtain the estimate

‖hk,α‖L2(Ω) ≤ (λDk + 1)‖uDk − uk,α‖L2(Ω)

+ (λDk − λk(α))‖uk,α‖L2(Ω) +
C14

α
‖uk,α‖H2(Ω)

≤ C15

(
‖uDk − uk,α‖L2(Ω) +

1

α

)
, α > α1, (5.21)

where the constant C15 is independent of α, but may depends on k. It follows
from the inequality ( [15], Chapter 4, Section 2, Theorem 4) that

‖w̃‖H2(Ω) ≤ C16

(
‖uDk − uk,α‖L2(Ω) +

1

α

)
, α > α1. (5.22)

Combining (5.8), (5.13), (5.21) with (5.22), we get

‖uDk − uk,α‖H2(Ω) =
∥∥∥w̃ +

1

α
(b,∇uk,α)

∥∥∥
H2(Ω)

≤ ‖w̃‖H2(Ω) +
1

α
‖(b,∇uk,α)‖H2(Ω)

≤ C16

(
‖uDk − uk,α‖L2(Ω) +

1

α

)
+
C17

α
‖uk,α‖H3(Ω)

≤ C16

(
‖uDk − uk,α‖L2(Ω) +

1

α

)
+ (λDk + 1)

C12C17

α
‖uk,α‖H1(Ω)

≤ C16

(
‖uDk − uk,α‖L2(Ω) +

1

α

)
+ (λDk + 1)3/2

C12C17

α

≤ C18

(
‖uDk − uk,α‖L2(Ω) +

1

α

)
≤ Mk

α
, α > α1 (5.23)

with the constant Mk independent on α. Theorem 4 is proved. ut

6 Derivative of eigenvalue and asymptotic expansion

Proof of Theorem 2. For eigenfunctions uk,α, uk,α′ we have the equalities∫
Ω

((∇uk,α′ ,∇uk,α)− λk(α′)uk,α′uk,α)dx = −α′
∫
Γ

uk,α′uk,αds,∫
Ω

((∇uk,α,∇uk,α′)− λk(α)uk,αuk,α′)dx = −α
∫
Γ

uk,αuk,α′ds.

Therefore,
λk(α′)− λk(α)

α′ − α
=

∫
Γ
uk,α′uk,αds∫

Ω
uk,α′uk,αdx

. (6.1)

Now, suppose that
∫
Ω

uk,αuk,α′ dx ≥ 0. By Lemma 3 and inequality (5.6) we

obtain from (6.1) that

λ′k(α) = lim
α′→α

∫
Γ
uk,α′uk,αds∫

Ω
uk,α′uk,αdx

=

∫
Γ
u2k,αds∫

Ω
u2k,αdx

.
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Theorem 2 is proved. ut
Proof of Theorem 3. Let m(λDk ) = 1. We suppose

∫
Ω

uk,αu
D
k dx ≥ 0. For the

normalized eigenfunction uDk the relation (2.2) is equivalent to

lim
α→+∞

λk(α)− λDk
1/α

= −
∫
Γ

(∂uDk
∂ν

)2
ds. (6.2)

Let us note that the numerator λk(α) − λDk in the fraction in (6.2) by (1.7)
tends to zero at α → +∞. By the formula (2.1) and the boundary condition
(1.2) we have

λ′k(α) =

∫
Γ

u2k,αds =
1

α2

∫
Γ

(∂uk,α
∂ν

)2
ds.

Therefore,

lim
α→+∞

λ′k(α)

−1/α2 = − lim
α→+∞

∫
Γ

(∂uk,α
∂ν

)2
ds. (6.3)

Let us prove that

lim
α→+∞

∫
Γ

(∂uk,α
∂ν

)2
ds =

∫
Γ

(∂uDk
∂ν

)2
ds. (6.4)

By the inequality (5.23) and the embedding theorem ( [2], Theorem 5.1.7) we
have ∫

Γ

(∂uDk
∂ν
− ∂uk,α

∂ν

)2
ds ≤

∫
Γ

|∇(uDk − uk,α)|2ds

≤ C19(‖∇2(uDk − uk,α)‖2L2(Ω) + ‖∇(uDk − uk,α)‖2L2(Ω))

≤ C19‖uDk − uk,α‖H2(Ω) ≤ C19Mk/α→ 0, α→ +∞. (6.5)

Using (6.5), we obtain the relation (6.4). Now, by L’Hôpital-Bernoulli theorem
the equality (6.2) follows from (6.3). Proof of the Theorem 3 is completed. ut
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