MATHEMATICAL MODELLING AND ANALYSIS Volume 22 Number 1, January 2017, 95–105 https://doi.org/10.3846/13926292.2017.1269373 © Vilnius Gediminas Technical University, 2017

A Weighted Universality Theorem for Periodic Zeta-Functions

Renata Macaitienė^{*a*}, Mindaugas Stoncelis^{*b*} and Darius Šiaučiūnas^{*c*}

^aResearch Institute, Šiauliai University Vilniaus str. 88, LT-76285, Šiauliai, Lithuania
^bFaculty of Mathematics and Informatics, Vilnius University Naugarduko str. 24, LT-03225, Vilnius, Lithuania
^cFaculty of Technology, Physical and Biomedical Sciences, Šiauliai University Vilniaus str. 141, LT-76353, Šiauliai, Lithuania
E-mail(corresp.): darius.siauciunas@su.lt
E-mail: renata.macaitiene@mi.su.lt
E-mail: stoncelis@su.lt

Received June 4, 2016; revised December 2, 2016; published online January 5, 2017

Abstract. The periodic zeta-function $\zeta(s; \mathfrak{a})$, $s = \sigma + it$ is defined for $\sigma > 1$ by the Dirichlet series with periodic coefficients and is meromorphically continued to the whole complex plane. It is known that the function $\zeta(s; \mathfrak{a})$, for some sequences \mathfrak{a} of coefficients, is universal in the sense that its shifts $\zeta(s + i\tau; \mathfrak{a})$, $\tau \in \mathbb{R}$, approximate a wide class of analytic functions. In the paper, a weighted universality theorem for the function $\zeta(s; \mathfrak{a})$ is obtained.

Keywords: Hurwitz zeta-function, Mergelyan theorem, periodic zeta-function, universality.

AMS Subject Classification: 11M41.

1 Introduction

Let $s = \sigma + it$ be a complex variable, and $\mathfrak{a} = \{a_m : m \in \mathbb{N}\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$. The periodic zeta-function $\zeta(s; \mathfrak{a})$ is defined, for $\sigma > 1$, by the Dirichlet series

$$\zeta(s;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m}{m^s}.$$

The Hurwitz zeta-function $\zeta(s, \alpha)$ with parameter $\alpha, 0 < \alpha \leq 1$, is given, for

 $\sigma > 1$, by the series

$$\zeta(s,\alpha) = \sum_{m=0}^\infty \frac{1}{(m+\alpha)^s}$$

and can be analytically continued to the whole complex plane, except for a simple pole at the point s = 1 with residue 1. Since, in view of periodicity of \mathfrak{a} ,

$$\zeta(s;\mathfrak{a}) = \frac{1}{k^s} \sum_{m=1}^k a_m \zeta\left(s, \frac{m}{k}\right), \qquad (1.1)$$

the periodic zeta-function also has analytic continuation to the whole complex plane, except for a simple pole at the point s = 1 with residue

$$\frac{1}{k}\sum_{m=1}^{k}a_m$$

If the later quantity is equal to zero, then the function $\zeta(s; \mathfrak{a})$ is entire one.

In 1975, S.M. Voronin discovered [16] the universality of the Riemann zetafunction $\zeta(s) = \zeta(s, 1)$ on the approximation of a wide class of analytic functions by shifts $\zeta(s+i\tau), \tau \in \mathbb{R}$. After Voronin's work, various authors observed that some other zeta-functions also are universal in the Voronin sense. The attention was also devoted to the periodic zeta-function. The first universality results for periodic zeta-function was obtained by B. Bagchi in [1] and [2], and by different methods in [13] and [14]. We will recall Theorem 11.8 from [14]. Denote by \mathcal{K} the class of compact subsets of the strip $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ with connected complements, and by $H(K), K \in \mathcal{K}$, the class of continuous functions on K which are analytic in the interior of K. Let meas A stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$.

Theorem 1. [14]. Suppose that a_m is not a multiple of a character mod k satisfying $a_m = 0$ for (m,k) > 1. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \max\left\{ \tau \in [0,T] : \sup_{s \in K} |\zeta(s+i\tau;\mathfrak{a}) - f(s)| < \varepsilon \right\} > 0.$$

In [14], also the upper bounds for the density of universality of $\zeta(s; \mathfrak{a})$ were obtained.

We note that the assumptions of Theorem 1 imply that the sequence \mathfrak{a} is not multiplicative. We recall that the sequence \mathfrak{a} is multiplicative if $a_{mn} = a_m a_n$ for all coprime $m, n \in \mathbb{N}$. The universality of $\zeta(s; \mathfrak{a})$ with multiplicative sequence \mathfrak{a} was obtained in [11]. Denote by $H_0(K), K \in \mathcal{K}$, the class of continuous non-vanishing functions on K, which are analytic in the interior of K.

Theorem 2. [11]. Suppose that the sequence is multiplicative and

$$\sum_{\alpha=1}^{\infty} \frac{|a_{p^{\alpha}}|}{p^{\frac{\alpha}{2}}} \leqslant c < 1$$

for all primes p. Let $K \in \mathcal{K}$ and $f(s) \in H_0(K)$. Then the assertion of Theorem 1 is true.

The universality of periodic zeta-functions is not a simple problem. It turns out, as it was observed in [5], that not all periodic zeta-functions are universal in the Voronin sense. Moreover, in [5], a new restricted universality property for $\zeta(s; \mathfrak{a})$ was introduced. For $K \in \mathcal{K}$, the height h(K) of K is defined by

$$h(K) = \max_{s \in K} \operatorname{Im}(s) - \min_{s \in K} \operatorname{Im}(s).$$

Then in [5] the following theorem has been obtained.

Theorem 3. There exists a positive constant $c = c(\mathfrak{a})$ such that, for every $K \in \mathcal{K}$ of height $h(K) \leq c$, every $f(s) \in H(K)$ and every $\varepsilon > 0$, the inequality of Theorem 1 is true.

Also, in [5], the necessary and sufficient conditions of the universality for $\zeta(s; \mathfrak{a})$ with prime k were obtained. In [15], the universality of the function $\zeta(s; \mathfrak{a})$ with prime k satisfying the condition

$$a_k = \frac{1}{\varphi(k)} \sum_{m=1}^{k-1} a_m,$$

where $\varphi(k)$ is the Euler function, was considered. A joint universality theorem for periodic zeta-functions was proved in [9]. The joint universality of periodic and periodic Hurwitz zeta-functions was studied in [4] and [7].

The aim of this paper is to discuss the weighted universality of the function $\zeta(s; \mathfrak{a})$. The universality of this type for the Riemann zeta-function was considered in [6].

Let w(t) be a positive function of bounded variation on $[T_0, \infty)$, $T_0 > 0$, such that the variation $V_a^b w$ on [a, b] satisfies the inequality $V_a^b w \leq cw(a)$ with certain c > 0 for any subinterval $[a, b] \subset [T_0, \infty)$. Define $U = U(T, w) = \int_{T_0}^T w(t) dt$ and suppose that $U(T, w) \to \infty$ as $T \to \infty$. Let I_A stand for the indicator function of the set A. Then the following statement holds.

Theorem 4. Suppose that the function w(t) satisfies all above conditions, and that the sequence \mathfrak{a} is as in Theorem 2. Let $K \in \mathcal{K}$ and $f(s) \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(\tau) I_{\left\{ \tau: \sup_{s \in K} |\zeta(s+i\tau;\mathfrak{a}) - f(s)| < \varepsilon \right\}}(\tau) \, \mathrm{d}\, \tau > 0.$$

T

We note that in [6] a certain additional condition generalizing the classical Birkhoff-Khintchine theorem was used. We do not need that condition.

2 Limit theorems

Denote by $\mathcal{B}(X)$ the Borel σ -field of the space X, and by H(D) the space of analytic functions on D equipped with the topology of uniform convergence on compacta. This section is devoted to a limit theorem on weakly convergent probability measures in the space $(H(D), \mathcal{B}(H(D)))$.

Let $\gamma \stackrel{def}{=} \{s \in \mathbb{C} : |s| = 1\}$ be the unit circle on the complex plane. Define $\Omega = \prod_p \gamma_p$, where $\gamma_p = \gamma$ for all primes p. With the product topology and pointwise multiplication, the torus Ω is a compact topological Abelian group. Therefore, the probability Haar measure m_H on $(\Omega, \mathcal{B}(\Omega))$ can be defined. This gives the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Let $\omega(p)$ stand for the projection of $\omega \in \Omega$ to the coordinate space γ_p . Moreover, let

$$\omega(m) = \prod_{\substack{p^{\alpha} \mid m \\ p^{\alpha+1} \nmid m}} \omega^{\alpha}(p)$$

for $m \in \mathbb{N}$. On the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, define the H(D)-valued random element $\zeta(s, \omega; \mathfrak{a})$ by the formula

$$\zeta(s,\omega;\mathfrak{a}) = \prod_{p} \left(1 + \sum_{\alpha=1}^{\infty} \frac{a_{p^{\alpha}} \omega^{\alpha}(p)}{p^{\alpha s}} \right).$$

We note that the latter product converges uniformly on compact subsets of D for almost all $\omega \in \Omega$. Moreover, for almost all $\omega \in \Omega$,

$$\zeta(s,\omega;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m \omega(m)}{m^s}.$$

We start with a weighted limit theorem on the torus. Let, for $A \in \mathcal{B}(\Omega)$,

$$Q_{T,w}(A) = \frac{1}{U} \int_{T_0}^T w(\tau) I_{\{\tau: \ (p^{-i\tau}: \ p \in \mathcal{P}) \in A\}}(\tau) \, \mathrm{d}\,\tau,$$

where \mathcal{P} is the set of all prime numbers.

Lemma 1. $Q_{T,w}$ converges weakly to the Haar measure m_H as $T \to \infty$.

Proof. Denote by $g_{T,w}(\underline{k}), \underline{k} = (k_p : k_p \in \mathbb{Z}, p \in \mathcal{P})$, the Fourier transform of the measure $Q_{T,w}$. Since characters χ of Ω are of the form

$$\chi(\omega) = \prod_{p} \omega^{k_p}(p),$$

where only a finite number of integers k_p are distinct from zero, we have that

$$g_{T,w}(\underline{k}) = \int_{\Omega} \prod_{p} \omega^{k_{p}}(p) \,\mathrm{d}\, Q_{T,w}$$

Hence, by the definition of $Q_{T,w}$,

$$g_{T,w}(\underline{k}) = \frac{1}{U} \int_{T_0}^T w(\tau) \prod_p p^{-ik_p \tau} \mathrm{d}\tau$$
$$= \frac{1}{U} \int_{T_0}^T w(\tau) \exp\left\{-i\tau \sum_p k_p \log p\right\} \mathrm{d}\tau, \qquad (2.1)$$

where only a finite number of integers k_p are distinct from zero. It is well known that the set $\{\log p : p \in \mathcal{P}\}$ is linearly independent over the field of rational numbers \mathbb{Q} . Therefore, in view of (2.1),

$$g_{T,w}(\underline{0}) = 1 \tag{2.2}$$

and, for $\underline{k} \neq \underline{0}$, using properties of w(t), we find that

$$g_{T,w}(\underline{k}) = -\frac{1}{Ui\sum_{p} k_p \log p} \int_{T_0}^{T} w(\tau) \operatorname{dexp} \left\{ -i\tau \sum_{p} k_p \log p \right\}$$
$$= O\left(|U\sum_{p} k_p \log p|^{-1} \right).$$

This and (2.2) show that

$$\lim_{T \to \infty} g_{T,w}(\underline{k}) = \begin{cases} 1, & \text{if} & \underline{k} = \underline{0}, \\ 0, & \text{if} & \underline{k} \neq \underline{0}, \end{cases}$$

i.e., $g_{T,w}(\underline{k})$, as $T \to \infty$, converges to the Fourier transform of the measure m_H . Hence, the lemma follows. \Box

Let $\theta > \frac{1}{2}$ be a fixed number and, for $m, n \in \mathbb{N}$,

$$v_n(m) = \exp\left\{-\left(\frac{m}{n}\right)^{\theta}\right\}$$

Define

$$\zeta_n(s;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m v_n(m)}{m^s}$$
 and $\zeta_n(s,\omega;\mathfrak{a}) = \sum_{m=1}^{\infty} \frac{a_m \omega(m) v_n(m)}{m^s}$,

and let the function $u_n: \Omega \to H(D)$ be defined by the formula

$$u_n(\omega) = \zeta_n(s,\omega;\mathfrak{a}).$$

Since the series for $\zeta_n(s,\omega;\mathfrak{a})$ is absolutely convergent for $\sigma > \frac{1}{2}$ [11], the function u_n is continuous one. We set $\hat{P}_n = m_H u_n^{-1}$, where, for $A \in \mathcal{B}(H(D))$,

$$\hat{P}_n(A) = m_H u_n^{-1}(A) = m_H(u_n^{-1}A).$$

Define

$$P_{T,n,w}(A) = \frac{1}{U} \int_{T_0}^T w(\tau) I_{\{\tau: \zeta_n(s+i\tau;\mathfrak{a})\in A\}}(\tau) \,\mathrm{d}\,\tau, \quad A \in \mathcal{B}(H(D)).$$

Lemma 2. $P_{T,n,w}$ converges weakly to \hat{P}_n as $T \to \infty$.

Proof. Clearly,

$$u_n\left(p^{-i\tau}: p \in \mathcal{P}\right) = \zeta_n(s+i\tau;\mathfrak{a}).$$

Math. Model. Anal., 22(1):95-105, 2017.

Therefore,

$$P_{T,n,w}(A) = \frac{1}{U} \int_{T_0}^T w(\tau) I_{\{\tau: \ (p^{-i\tau}: \ p \in \mathcal{P}) \in u_n^{-1}A\}}(\tau) \,\mathrm{d}\,\tau$$
$$= Q_{T,w}(u_n^{-1}A) = Q_{T,w}u_n^{-1}(A).$$

This, the continuity of u_n , Lemma 1 and Theorem 5.1 of [3] prove the lemma.

Now we will approximate $\zeta(s; \mathfrak{a})$ by $\zeta_n(s; \mathfrak{a})$. Let, for $g_1, g_2 \in H(D)$,

$$\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},$$

where $\{K_l : l \in \mathbb{N}\}$ is a sequence of compact subsets of the strip D such that $D = \bigcup_{l=1}^{\infty} K_l, K_l \subset K_{l+1}$ for all $l \in \mathbb{N}$, and if $K \subset D$ is a compact, then $K \subset K_l$ for some l. Then ρ is a metric on H(D) which induces its topology of uniform convergence on compacta.

Lemma 3. The equality

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(\tau) \rho(\zeta(s + i\tau; \mathfrak{a}), \zeta_n(s + i\tau; \mathfrak{a})) \, \mathrm{d}\, \tau = 0$$

holds.

Proof. Consider the series

$$\sum_{m=1}^{\infty} \frac{b_n(m)}{m^s},\tag{2.3}$$

where

$$b_n(m) = \frac{1}{2\pi i} \int_{\theta - i\infty}^{\theta + i\infty} \frac{a_m l_n(s)}{sm^s} \,\mathrm{d}\,s, \quad l_n(s) = \frac{s}{\theta} \Gamma\left(s/\theta\right) n^s, \quad n \in \mathbb{N},$$

 $\Gamma(s)$ is the Euler gamma-function, and $\theta > \frac{1}{2}$ is as above. Since a_m is uniformly bounded, we find that

$$b_n(m) \ll m^{-\theta}$$

Thus, the series (2.3) is absolutely convergent for $\sigma > \frac{1}{2}$. From this remark, we deduce that

$$\frac{1}{2\pi i} \int_{\theta - i\infty}^{\theta + i\infty} \zeta(s + z; \mathfrak{a}) l_n(z) \frac{\mathrm{d}\, z}{z} = \sum_{m=1}^{\infty} \frac{b_n(m)}{m^s},\tag{2.4}$$

and an application of the Mellin formula shows that

$$b_n(m) = a_m \exp\left\{-\left(\frac{m}{n}\right)^{\theta}\right\}.$$

Now the series (2.3) coincides with $\zeta_n(s; \mathfrak{a})$. Therefore, by (2.4) and the residue theorem,

$$\zeta_n(s;\mathfrak{a}) = \frac{1}{2\pi i} \int_{\theta-\sigma-i\infty}^{\theta-\sigma+i\infty} \zeta(s+z;\mathfrak{a}) l_n(z) \frac{\mathrm{d}\,z}{z} + \zeta(s;\mathfrak{a}) + \operatorname{Res}_{z=1-s} \zeta(s+z;\mathfrak{a}) l_n(z) \frac{1}{z}, \qquad (2.5)$$

where $\frac{1}{2} < \sigma < 1$ and $\sigma > \theta$.

Suppose that $\sigma \ge \frac{1}{2}$ and $2\pi \le |t| \le \pi x$. Then, see, for example, [8],

$$\zeta(s,\alpha) = \sum_{0 \leqslant m \leqslant x} \frac{1}{(m+\alpha)^s} + \frac{x^{1-s}}{s-1} + O(x^{-\sigma}).$$
(2.6)

Moreover, by (1.1),

$$\zeta(s; \mathfrak{a}) = O\left(\sum_{m=1}^{k} |\zeta\left(s, \frac{m}{k}\right)|\right).$$

From this and (2.6), we find similarly as in the proof of Lemma 4 of [10] that, for $\frac{1}{2} < \sigma < 1$ and $\tau \in \mathbb{R}$,

$$\int_{T_0+\tau}^{T+\tau} w(t-\tau) |\zeta(\sigma+it;\mathfrak{a})|^2 \,\mathrm{d}\,t = O(U(1+|\tau|)^2).$$

Let K be a compact subset of the strip D. Then, using (2.5) and the contour integration, we obtain that with $\hat{\sigma} < 0$

$$\frac{1}{U} \int_{T_0}^T w(\tau) \sup_{s \in K} |\zeta(s+i\tau; \mathfrak{a}) - \zeta_n(s+i\tau; \mathfrak{a})| \,\mathrm{d}\,\tau$$
$$= O\left(\int_{-\infty}^\infty |l_n(\hat{\sigma}+it)|(1+|t|)^2 \,\mathrm{d}\,t\right) + o(1)$$

as $T \to \infty$. This and the definition of $l_n(s)$ prove the lemma. \Box

Denote by P_{ζ} the distribution of the random element $\zeta(s, \omega; \mathfrak{a})$, i.e.,

$$P_{\zeta}(A) = m_H(\omega \in \Omega : \zeta(s, \omega; \mathfrak{a}) \in A), \quad A \in \mathcal{B}(H(D)).$$

For $A \in \mathcal{B}(H(D))$, define

$$P_{T,w}(A) = \frac{1}{U} \int_{T_0}^T w(t) I_{\{\tau: \zeta(s+i\tau;\mathfrak{a})\in A\}}(\tau) \,\mathrm{d}\,\tau.$$

Theorem 5. The measure $P_{T,w}$ converges weakly to P_{ζ} as $T \to \infty$. Moreover, the support of P_{ζ} is the set $\{g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0\}$.

Proof. On a certain probability space $(\Omega, \mathcal{F}, \mathbb{P})$, define a random variable η_T by

$$\mathbb{P}(\eta_T \in A) = \frac{1}{U} \int_{T_0}^T w(t) I_A(t) \,\mathrm{d}\, t, \quad A \in \mathcal{B}(\mathbb{R}).$$

Math. Model. Anal., 22(1):95-105, 2017.

By Lemma 2, we have that $P_{T,n,w}$ converges weakly to \hat{P}_n as $T \to \infty$. Define

$$X_{T,n} = X_{T,n}(s) = \zeta_n(s + i\eta_T; \mathfrak{a}).$$

Then the assertion of Lemma 2 can be written as

$$X_{T,n} \xrightarrow[T \to \infty]{\mathcal{D}} \hat{X}_n, \tag{2.7}$$

where $\xrightarrow{\mathcal{D}}$ denotes the convergence in distribution, and \hat{X}_n is the H(D)-valued random element having the distribution \hat{P}_n . We will prove that the family of probability measures $\{\hat{P}_n : n \in \mathbb{N}\}$ is tight.

Since the series for $\zeta_n(s; \mathfrak{a})$ is absolutely convergent for $\sigma > \frac{1}{2}$, it is not difficult to see that, for $\sigma > \frac{1}{2}$,

$$\lim_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(t) |\zeta_n(\sigma + it; \mathfrak{a})|^2 \, \mathrm{d} \, t = \sum_{m=1}^\infty \frac{|a_m|^2 v_n^2(m)}{m^{2\sigma}}$$
$$\leqslant \sum_{m=1}^\infty \frac{|a_m|^2}{m^{2\sigma}} \leqslant C < \infty.$$
(2.8)

Let K_l be a compact set from the distribution of the metric ρ . Then using the Cauchy integral formula and (2.8) leads to

$$\sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(\tau) \sup_{s \in K_l} |\zeta_n(s+i\tau; \mathfrak{a})| \, \mathrm{d}\, \tau \leqslant R_l < \infty.$$

Now let $\varepsilon > 0$ be arbitrary and $M_l = 2^l R_l \varepsilon^{-1}$. Then

$$\begin{split} & \limsup_{T \to \infty} \mathbb{P} \left(\sup_{s \in K_l} |X_{T,n}(s)| > M_l \right) \\ &= \limsup_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(\tau) I_{\left\{ \tau: \sup_{s \in K_l} |\zeta_n(s+i\tau;\mathfrak{a})| \ge M_l \right\}}(\tau) \, \mathrm{d}\, \tau \\ & \leqslant \sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{M_l U} \int_{T_0}^T w(\tau) \sup_{s \in K_l} |\zeta_n(s+i\tau;\mathfrak{a})| \, \mathrm{d}\, \tau \leqslant \frac{\varepsilon}{2^l}. \end{split}$$

Therefore, in view of (2.7),

$$\mathbb{P}\left(\sup_{s\in K_l} |\hat{X}_n(s)| > M_l\right) \leqslant \frac{\varepsilon}{2^l}$$
(2.9)

for all $n \in \mathbb{N}$ and $l \in \mathbb{N}$. Let

$$H_{\varepsilon} = \Big\{ g \in H(D) : \sup_{s \in K_l} |g(s)| \leq M_l, \ l \in \mathbb{N} \Big\}.$$

Then the set H_{ε} is uniformly bounded on every compact set of D, thus it is compact subset of H(D). Moreover, by (2.9)

$$\mathbb{P}(X_n(s) \in H_{\varepsilon}) \ge 1 - \varepsilon$$

for all $n \in \mathbb{N}$. Hence,

$$\hat{P}_n(H_\varepsilon) \ge 1 - \varepsilon$$

for all $n \in \mathbb{N}$, i.e., the family $\{\hat{P}_n\}$ is tight. Therefore, by the Prokhorov theorem [3], it is relatively compact. Hence, every sequence of $\{\hat{P}_n\}$ contains a subsequence $\{\hat{P}_{n_r}\}$ such that \hat{P}_{n_r} converges weakly to a certain probability measure P on $(H(D), \mathcal{B}(H(D)))$, i.e.,

$$\hat{X}_{n_r} \xrightarrow[r \to \infty]{\mathcal{D}} P.$$
 (2.10)

Moreover, using Lemma 3, we find that, for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(\tau) I_{\{\tau: \ \rho(\zeta(s+i\tau;\mathfrak{a}),\zeta_n(s+i\tau,\mathfrak{a})) \ge \varepsilon\}}(\tau) \,\mathrm{d}\,\tau$$
$$\leqslant \lim_{n \to \infty} \sup_{T \to \infty} \frac{1}{\varepsilon U} \int_{T_0}^T w(\tau) \rho(\zeta(s+i\tau;\mathfrak{a}),\zeta_n(s+i\tau,\mathfrak{a})) \,\mathrm{d}\,\tau = 0$$

Now this, (2.7), (2.10) and Theorem 4.2 of [3] show that

$$X_T(s) = \zeta(s + i\eta_T; \mathfrak{a}) \xrightarrow[T \to \infty]{\mathcal{D}} P$$

Hence, $P_{T,w}$ converges weakly to P as $T \to \infty$. The latter relation also implies, that the measure P in (2.10) is independent of the choice of subsequence \hat{P}_{n_r} . Thus

$$\hat{X}_n \xrightarrow[n \to \infty]{\mathcal{D}} P,$$

or \hat{P}_n converges weakly to P. This means that $P_{T,w}$, as $T \to \infty$, converges weakly to the limit measure of \hat{P}_n , as $n \to \infty$. It remains to identify the measure P.

In [11], the measure

$$P_T(A) = \frac{1}{T} \max\left\{\tau \in [0,T] : \zeta(s+i\tau;\mathfrak{a}) \in A\right\}, \quad A \in \mathcal{B}(H(D))$$

was considered, and it was obtained that P_T converges weakly to P_{ζ} as $T \to \infty$. Moreover, in the proving process, it was observed that P_T , as $P_{T,w}$, also converges weakly to the limit measure of \hat{P}_n as $n \to \infty$, i.e., to the measure P. From these remarks, we have that P coincides with P_{ζ} . In [11] it is also noted that the support of the measure P_{ζ} is the set $\{g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0\}$. The theorem is proved. \Box

3 Universality

The proof of Theorem 4 is quite standard and is based on Theorem 5 and the Mergelyan theorem on the approximation of analytic functions by polynomials [12].

Proof of Theorem 4. By Theorem 5 and the equivalent of weak convergence of probability measures in terms of open sets [3], we have that

$$\liminf_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(t) I_{\{\tau: \zeta(s+i\tau;\mathfrak{a}) \in G\}}(\tau) \,\mathrm{d}\,\tau \ge P_{\zeta}(G),\tag{3.1}$$

where

$$G = \left\{ g \in H(D) : \sup_{s \in K} |g(s) - e^{p(s)}| < \frac{\varepsilon}{2} \right\}$$

and p(s) is a polynomial such that

$$\sup_{s \in K} |f(s) - e^{p(s)}| < \frac{\varepsilon}{2}.$$
(3.2)

The existence of p(s) is implied by the Mergelyan theorem. By Theorem 5, $e^{p(s)}$ is an element of the support of the measure P_{ζ} , thus $P_{\zeta}(G) > 0$ because G is an open neighbourhood of $e^{p(s)}$. Therefore, in view of (3.1) and the definition of G,

$$\liminf_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(t) I_{\left\{\tau: \sup_{s \in K} |\zeta(s+i\tau;\mathfrak{a}) - e^{p(s)}| < \frac{\varepsilon}{2}\right\}}(\tau) \,\mathrm{d}\,\tau > 0.$$

From this, the theorem follows since, in virtue of (3.2),

$$\left\{\tau: \sup_{s\in K} |\zeta(s+i\tau;\mathfrak{a})-e^{p(s)}| < \frac{\varepsilon}{2}\right\} \subset \left\{\tau: \sup_{s\in K} |\zeta(s+i\tau;\mathfrak{a})-f(s)| < \varepsilon\right\}.$$

References

- B. Bagchi. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph. D. Thesis, Indian Statist. Institute, Calcutta, 1981.
- B. Bagchi. A joint universality theorem for Dirichlet L-functions. Math. Z, 181:319–334, 1982. https://doi.org/10.1007/BF01161980.
- [3] P. Billingsley. Convergence of Probability Measures. Willey, New York, 1968.
- [4] R. Kačinskaitė and A. Laurinčikas. The joint distribution of periodic zeta-functions. *Stud. Sci. Math. Hungarica*, 48(2):257–279, 2011. https://doi.org/10.1556/SScMath.48.2011.2.1162.
- [5] J. Kaczorowski. Some remarks on the universality of periodic L-functions. In R. Steuding and J. Steuding(Eds.), New Directions in Value-Distribution of Zeta and L-Functions, pp. 113–120, Aachen, 2009. Shaker Verlag.
- [6] A. Laurinčikas. On the universality of the Riemann zeta-function. Lith. Math. J., 35(4):502–507, 1995. https://doi.org/10.1007/BF02348827.
- [7] A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. *Izv. Math.*, 74(3):515–539, 2010. https://doi.org/10.1070/IM2010v074n03ABEH002497.

- [8] A. Laurinčikas and R. Garunkštis. *The Lerch Zeta-Function*. Kluwer, Dordrecht, 2002.
- [9] A. Laurinčikas and R. Macaitienė. the On joint universalof periodic Math. **85**(1):51-60, ity zeta-functions. Notes. 2009.https://doi.org/10.1134/s0001434609010052.
- [10] A. Laurinčikas and G. Misevičius. Weighted limit theorem for the Riemann zetafunction in the space of analytic functions. *Lith. Math. J.*, 34(2):171–182, 1994. https://doi.org/10.1007/BF02333415.
- [11] A. Laurinčikas and D. Šiaučiūnas. Remarks on the universality of periodic zetafunction. Math. Notes, 80(3):532–538, 2006. https://doi.org/10.1007/s11006-006-0171-y.
- [12] S.N. Mergelyan. Uniform approximation to functions of complex variable. Usp. Mat. Nauk, 7:31–122, 1952 (in Russian).
- [13] J. Sander and J. Steuding. Joint universality for sums and products of Dirichlet *L*-functions. *Analysis*, 26(3):295–312, 2006. https://doi.org/10.1524/anly.2006.26.99.295.
- [14] J. Steuding. Value-Distribution of L-Functions. Lecture Notes Math. Vol. 1877, Springer-Verlag, Berlin, Heidelberg, 2007.
- [15] M. Stoncelis and D. Šiaučiūnas. On the periodic zeta-function. *Chebyshevskii Sb.*, 15(4):139–147, 2014.
- [16] S.M. Voronin. Theorem on the "universality" of the Riemann USSRzeta-function. Math. Izv., 9(3):443-453, 1975.https://doi.org/10.1070/im1975v009n03abeh001485.