Global Existence and Asymptotic Behavior of Solutions for the Cauchy Problem of a Dissipative Boussinesq-Type Equation

Amin Esfahani and Hamideh B. Mohammadi

Damghan University
School of Mathematics and Computer Science, 36715-364 Damghan, Iran
E-mail(corresp.): esfahani@du.ac.ir
E-mail: amin@impa.br

Received December 15, 2016; revised April 11, 2017; published online July 15, 2017

Abstract. We consider the Cauchy problem for a Boussinesq-type equation modeling bidirectional surface waves in a convecting fluid. Under small condition on the initial value, the existence and asymptotic behavior of global solutions in some time weighted spaces are established by the contraction mapping principle.

Keywords: dissipative Boussinesq equation, asymptotic behavior, Sobolev spaces.

AMS Subject Classification: 35B30; 35Q55; 35Q72.

1 Introduction

The Kuramoto-Sivashinsky (KS) equation
\[u_t + \gamma u_{xxxx} + \alpha u_{xx} + uu_x = 0, \quad u = u(x,t), \quad (x,t) \in \mathbb{R} \times \mathbb{R}^+ \]
is a well-known model of one-dimensional turbulence derived in various physical contexts such as chemical-reaction waves, propagation of combustion fronts in gases, surface waves in a film of a viscous liquid flowing along an inclined plane, patterns in thermal convection, rapid solidification (see e.g. [14, 19]), where \(\alpha\) and \(\gamma\) are constant coefficients accounting for the long-wave instability (gain) and short-wave dissipation, respectively. By combining the dispersive effects of the KdV equation and the dissipative effects of the KS equation, the Kuramoto-Sivashinsky-Korteweg-de Vries (KS-KdV) equation
\[u_t + u_{xxx} + \gamma u_{xxxx} + \alpha u_{xx} + uu_x = 0, \quad u = u(x,t), \quad (x,t) \in \mathbb{R} \times \mathbb{R}^+ \]
appears; which was first introduced by Benney [1]. This equation finds various applications in the study of unstable drift waves in plasmas [5], fluid flow along an inclined plane [1, 16] convection in fluids with a free surface [7] the Eckhaus
instability of traveling waves [9], in solar dynamo wave [12], hydrodynamics and other fields [4].

The derivation of this equation in the physical situations mentioned above involves the assumption of unidirectional waves. The assumption of unidirectional waves for surface waves was removed in [10,13] and a modified Boussinesq system of equations was derived. One of these type of equation is the following dissipative Boussinesq equation:

\[u_{tt} - \Delta u + \Delta^2 u + \alpha \Delta u_t + \gamma \Delta^2 u_t = \Delta(\beta f(u_t) + g(u)). \] (1.1)

Here \(u = u(x, t) \) is the unknown function of \(x = (x_1, \cdots, x_n) \in \mathbb{R}^n, t > 0 \) and \(\beta > 0 \) and \(\alpha \in \mathbb{R} \) are constants. The operator \(\Delta \) is defined to be \(\Delta = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} \), and \(\Delta^2 = \Delta \Delta \). The term \(u_t \) represents a frictional function dissipation, and the nonlinear term \(f(v) \) and \(g(v) \) are smooth functions of \(v \) under considerations and satisfies \(f(v) = O(|v|^2) \) and \(g(v) = O(|v|^2) \) for \(v \to 0 \). Equation (1.1) arises in the study of the stability of one-dimensional periodic patterns in systems with Galilean invariance and also the oscillations of elastic beams [3]. Ignoring the dissipation, (1.1) turns into the classical Boussinesq equation (see [2])

\[u_{tt} - \Delta u \pm \Delta^2 u = \Delta(u^2), \quad u = u(x, t), \quad (x, t) \in \mathbb{R}^n \times \mathbb{R}, \]

appeared not only in the study of the dynamics of thin inviscid layers with free surface but also in the study of the nonlinear string, the shape-memory alloys, the propagation of waves in elastic rods and in the continuum limit of lattice dynamics or coupled electrical circuit. When \(\gamma = \beta = 0 \), the existence, uniqueness and long-time asymptotic of solutions to the Cauchy problem and the initial boundary value problem of equation (1.1) has been studied by several authors, see for instance [6,11,17,18] and references therein.

In this paper we study the asymptotic behavior of solutions of the Cauchy problem associated to (1.1) with the initial values

\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x). \] (1.2)

The article is organized as follows. In Section 2 we obtain the solution formula of (1.1) and study the decay property of the solution operators appearing in the solution formula. Then, in Section 3, we discuss the linear problem and show the decay estimates of the solutions in \(L^1 \). We prove global existence and asymptotic behavior of solutions for the Cauchy problem (1.1) and (1.2) in \(L^2 \) in Section 4. Throughout this paper we assume \(\gamma = 1 \leq -\alpha \).

Notations. Function \(\hat{f} \) denotes the Fourier transform of \(f(x) \), defined as

\[\hat{f} (\xi) = F(f)(\xi) = \int_{\mathbb{R}^n} f(x) e^{ix \cdot \xi} dx. \]

We denote its inverse transform by \(F^{-1} \). If a function \(f \in L^r = L^r(\mathbb{R}^n) \), its usual norm is written as \(\| f \|_{L^r} \). The usual Sobolev space of order \(s \) is defined by \(W^{s,p} = W^{s,p}(\mathbb{R}^n) = (I - \Delta)^{s/2} L^p \) with the norm \(\| f \|_{W^{s,p}} = \| (I - \Delta)^{s/2} f \|_{L^p} \).
The solution to the problem (2.2) and (2.3) is given in the form

\[\hat{u}(\xi, t) = \hat{G}(\xi, t)\hat{u}_1(\xi) + \hat{H}(\xi, t)\hat{u}_0(\xi), \]

where

\[\hat{G}(\xi, t) = (e^{\lambda_+(\xi)t} - e^{\lambda_-(\xi)t})/(\lambda_+(\xi) - \lambda_-(\xi)), \]

\[\hat{H}(\xi, t) = (\lambda_+(\xi)e^{\lambda_-(\xi)t}\lambda_-(\xi)e^{\lambda_+(\xi)t})/(\lambda_+(\xi) - \lambda_-(\xi)). \]

Let

\[G(x, t) = F^{-1}[\hat{G}(\xi, t)](x), \quad H(x, t) = F^{-1}[\hat{H}(\xi, t)](x). \]

With applying \(F^{-1} \) to (2.5), we obtain

\[u(x, t) = G(\cdot, t) \ast u_1 + H(\cdot, t) \ast u_0, \]
where $*$ is the convolution in x. By our assumptions on the nonlinear terms of (1.1), we obtain the following solution formula to (1.1) and (1.2)

$$u(x, t) = G(\cdot, t) * u_1 + H(\cdot, t) * u_0 + \int_0^t G(\cdot, t - \tau) * \Delta Z(u, u_\tau(\tau))d\tau,$$ \hspace{1cm} (2.10)

where $Z(u, u_\tau)(t) = f(u(t)) + \beta g(u_\tau(t))$. This integral formula is derived by using the Duhamel principle. One can refer to [8, 15] to see how the Duhamel principle is applied for various nonlinear problems. Now we study the decay property of the linear equation (1.1). Our aim is to prove the following decay principle is applied for various nonlinear problems. Now we study the decay estimates of the solution operators $G(t)$ and $H(t)$ appearing in (2.9).

Lemma 1. The solution of (2.2) and (2.3) satisfies

$$|\xi|^2(1 + |\xi|^2)|\hat{u}(\xi, t)|^2 + |\hat{u}_t(\xi, t)|^2$$

$$\leq Ce^{-\omega(\xi)t}(|\xi|^2(1 + |\xi|^2)|\hat{u}_0(\xi)|^2 + |\hat{u}_1(\xi)|^2)$$ \hspace{1cm} (2.11)

for $\xi \in \mathbb{R}^n$ and $t \geq 0$, where $\omega(\xi) = |\xi|^2/(1 + |\xi|^2)$.

Proof. By multiplying (2.2) by $\tilde{\hat{u}}_t$ and taking the real part, we deduce that

$$\frac{1}{2} \frac{d}{dt}(|\tilde{\hat{u}}_t|^2 + (|\xi|^2 + |\xi|^4)|\tilde{\hat{u}}|^2) + (|\xi|^4 - \alpha|\xi|^2)|\tilde{\hat{u}}_t|^2 = 0.$$ \hspace{1cm} (2.12)

Multiplying (2.2) by $\tilde{\hat{u}}$ and take the real part yields

$$\frac{1}{2} \frac{d}{dt}((|\xi|^4 - \alpha|\xi|^2)|\tilde{\hat{u}}|^2 + 2\Re(\tilde{\hat{u}}_t, \tilde{\hat{u}})) + (|\xi|^2 + |\xi|^4)|\tilde{\hat{u}}|^2 - |\tilde{\hat{u}}_t|^2 = 0.$$ \hspace{1cm} (2.13)

Multiplying both sides of (2.12) and (2.13) by $(1 + |\xi|^2)$ and $|\xi|^2$ respectively, summing up the products yields

$$\frac{d}{dt}E + F = 0,$$ \hspace{1cm} (2.14)

where

$$E= (1 + |\xi|^2)|\tilde{\hat{u}}_t|^2 + (1 + |\xi|^2)(|\xi|^2 + |\xi|^4) + |\xi|^2 (|\xi|^4 - \alpha|\xi|^2)|\tilde{\hat{u}}^2 + 2|\xi|^2 \Re(\tilde{\hat{u}}_t, \tilde{\hat{u}}),$$

$$F = 2(1 + |\xi|^2)(|\xi|^4 - \alpha|\xi|^2) - 2|\xi|^2 |\tilde{\hat{u}}_t|^2 + 2|\xi|^2 (|\xi|^2 + |\xi|^4)|\tilde{\hat{u}}|^2,$$

where $\Re(\tilde{\hat{u}}_t, \tilde{\hat{u}})$ is the real part of $\tilde{\hat{u}}_t \tilde{\hat{u}}$. It is easy to see that

$$C(1 + |\xi|^2)E_0 \leq E \leq C(1 + |\xi|^2)E_0,$$ \hspace{1cm} (2.15)

where

$$E_0 = |\tilde{\hat{u}}_t|^2 + |\xi|^2(1 + |\xi|^2)|\tilde{\hat{u}}|^2.$$

Noting that $F \geq |\xi|^2E_0$ and with (2.15), we obtain

$$F \geq c \omega(\xi)E,$$ \hspace{1cm} (2.16)
Global Existence and Asymptotic Behavior of Solutions …

where \(\omega(\xi) = |\xi|^2/(1 + |\xi|^2)\). Using (2.14) and (2.16), we get

\[
\frac{d}{dt} E + c \omega(\xi) E \leq 0.
\]

Thus

\[E(\xi, t) \leq e^{-c \omega(\xi)t} E(\xi, 0),\]

which together with (2.15) proves the desired estimate (2.11). \(\square\)

Lemma 2. Assume that \(\hat{G}(\xi, t)\) and \(\hat{H}(\xi, t)\) are fundamental solutions of (2.1) in the Fourier space, which are given explicitly in (2.6) and (2.7). Then we have the pointwise estimates

\[
|\xi|^2 (1 + |\xi|^2) |\hat{G}(\xi, t)|^2 + |\hat{G}_t(\xi, t)|^2 \leq C e^{-c \omega(\xi)t},
\]

(2.17)

\[
|\xi|^2 (1 + |\xi|^2) |\hat{H}(\xi, t)|^2 + |\hat{H}_t(\xi, t)|^2 \leq C |\xi|^2 (1 + |\xi|^2) e^{-c \omega(\xi)t},
\]

(2.18)

for \(\xi \in \mathbb{R}^n\) and \(t \geq 0\), where \(\omega(\xi) = \frac{|\xi|^2}{1 + |\xi|^2}\).

Proof. If \(\hat{u}_0(\xi) = 0\), then from (2.5) we get

\[\hat{u}(\xi, t) = \hat{G}(\xi, t) \hat{u}_1(\xi), \quad \hat{u}_t(\xi, t) = \hat{G}_t(\xi, t) \hat{u}_1(\xi).\]

Substituting the equalities into (2.11) with \(\hat{u}_0(\xi) = 0\) we obtain (2.17). In what follows, we consider \(\hat{u}_1(\xi) = 0\). We have from (2.5) that

\[\hat{u}(\xi, t) = \hat{H}(\xi, t) \hat{u}_0(\xi), \quad \hat{u}_t(\xi, t) = \hat{H}_t(\xi, t) \hat{u}_0(\xi).\]

Substituting the equalities into (2.11) with \(\hat{u}_1(\xi) = 0\), we obtain (2.18), which together with (2.17), we have completed the proof of the lemma. \(\square\)

Lemma 3. Let \(l, k, j\) be nonnegative integers and assume that \(1 \leq p \leq 2\). Then we have

\[
\|\partial_x^k G(t) * \phi\|_{L^2} \leq C (1 + t)^{-\frac{n}{p} \left(\frac{1}{p} - \frac{1}{2}\right) - \frac{p - j}{2}} \|\partial_x^j \phi\|_{W^{-1, p}} + C e^{-ct} \|\partial_x^{k+l-2} \phi\|_{L^2},
\]

(2.19)

\[
\|\partial_x^k H(t) * \psi\|_{L^2} \leq C (1 + t)^{-\frac{n}{p} \left(\frac{1}{p} - \frac{1}{2}\right) - \frac{k - j}{2}} \|\partial_x^j \psi\|_{L^p} + C e^{-ct} \|\partial_x^{k+l+1} \phi\|_{L^2},
\]

(2.20)

for \(0 \leq j \leq k\), where \(k + l - 2 \geq 0\) in (2.19). Similarly, we have

\[
\|\partial_x^k G(t) * \phi\|_{L^2} \leq C (1 + t)^{-\frac{n}{p} \left(\frac{1}{p} - \frac{1}{2}\right) - \frac{k+1-j}{2}} \|\partial_x^j \phi\|_{W^{-1, p}} + C e^{-ct} \|\partial_x^{k+l} \phi\|_{L^2},
\]

(2.21)

\[
\|\partial_x^k H(t) * \psi\|_{L^2} \leq C (1 + t)^{-\frac{n}{p} \left(\frac{1}{p} - \frac{1}{2}\right) - \frac{k+1-j}{2}} \|\partial_x^j \psi\|_{L^p} + C e^{-ct} \|\partial_x^{k+l} \phi\|_{L^2},
\]

(2.22)

for \(0 \leq j \leq k + 1\).

Proof. We only give a proof of (2.19). We apply the Plancherel theorem and use the pointwise estimate for \hat{G} in (2.17). This gives

$$
\|\partial_x^k G_t(t) * \phi\|_{L^2}^2 = \int_{\mathbb{R}^n} |\xi|^{2k} |\hat{G}(\xi, t)|^2 |\hat{\phi}(\xi)|^2 \, d\xi \\
= \int_{|\xi| \leq 1} |\xi|^{2k} |\hat{G}(\xi, t)|^2 |\hat{\phi}(\xi)|^2 \, d\xi + \int_{|\xi| \geq 1} |\xi|^{2k} |\hat{G}(\xi, t)|^2 |\hat{\phi}(\xi)|^2 \, d\xi \\
\leq \int_{|\xi| \leq 1} |\xi|^{2k-2} e^{-c|\xi|^2 t} |\hat{\phi}(\xi)|^2 \, d\xi + C \int_{|\xi| \geq 1} e^{-cw(\xi)^2} |\xi|^{2k} (1 + |\xi|^2)^{-1} |\hat{\phi}(\xi)|^2 \, d\xi \\
\leq C |\| |\xi|^{-1} \hat{\phi}(\xi)|\|_{L^p}^2 \left(\int_{|\xi| \leq 1} |\xi|^{2(k-j)} e^{-cq|\xi|^2 t} \, d\xi \right)^{1/2} \\
+ C e^{-ct} \int_{|\xi| \geq 1} |\xi|^{2k-4} |\hat{\phi}(\xi)|^2 \, d\xi \\
\leq C |\| |\xi|^{-1} \hat{\phi}(\xi)|\|_{L^p}^2 \left(\int_{|\xi| \leq 1} |\xi|^{2(k-j)} e^{-c|\xi|^2 t} \, d\xi \right)^{1/2} \\
+ C e^{-ct} \int_{|\xi| \geq 1} |\xi|^{2(k+l-2)} |\hat{\phi}(\xi)|^2 \, d\xi,
$$

where we used H"older inequality with $\frac{1}{q} + \frac{2}{p} = 1$, $\frac{1}{p} + \frac{1}{p'} = 1$. With a straight computation, we obtain

$$
||| |\xi|^{2(k-j)} e^{-c|\xi|^2 t} \, d\xi \|_{L^q(|\xi| \leq 1)} \leq C (1 + t)^{-n(\frac{1}{p} - \frac{1}{2}) - (k-j)}.
$$

It follows from the Hausdorff-Young inequality that

$$
||| |\xi|^{-1} \hat{\phi}(\xi)|\|_{L^p} \leq ||| \partial_x^k \phi|||_{W^{-1,p}}.
$$

Combining the above three inequalities yields (2.19). Similarly, we can prove (2.20)–(2.22). Thus the lemma is proved. □

Immediately we have from previous lemma the following corollary.

Corollary 1. Let $1 \leq p \leq 2$, and let k, j and l be nonnegative integers. Also, assume that $G(x, t)$ and $H(x, t)$ be the fundamental solution of (2.1) which are given in (2.6) and (2.7), respectively. Then we have

$$
\|\partial_x^k G(t) * \Delta g\|_{L^2} \leq C (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+j+1}{2}} \|\partial_x^j g\|_{L^p} + C e^{-ct} \|\partial_x^{k+l} g\|_{L^2}, \quad (2.23)
$$

for $0 \leq k \leq j + 1$. It also for $0 \leq k \leq j + 2$ holds that

$$
\|\partial_x^k G_t(t) * \Delta g\|_{L^2} \leq C (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+j+2}{2}} \|\partial_x^j g\|_{L^p} + C e^{-ct} \|\partial_x^{k+l+2} g\|_{L^2}. \quad (2.24)
$$
3 Global existence and asymptotic behavior of solutions for L^1

The aim of this section is to prove the existence and asymptotic behavior of solutions to (1.1) and (1.2) with L^1 data. We first state the following lemma, which comes from [20].

Lemma 4. Assume that $f = f(v)$ is smooth function, where $v = (v_1, \ldots, v_n)$ is a vector function. Suppose that $f(v) = O(|v|^{1+\theta})(\theta \geq 1$ is an integer) when $|v| \leq v_0$. Then, for the integer $m \geq 0$, if $v, w \in W^{m,q}(\mathbb{R}^n) \cap L^p(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$ and $\|v\|_{L^\infty} \leq v_0, \|w\|_{L^\infty} \leq v_0$, then $f(v) - f(w) \in W^{m,r}(\mathbb{R}^n)$. Furthermore, the following inequalities hold:

\[
\begin{align*}
\|\partial_x^m f(v)\|_{L^r} &\leq C\|v\|_{L^p}\|\partial_x^m v\|_{L^q}\|v\|_{L^\infty}^{\theta-1}, \\
\|\partial_x^m (f(v) - f(w))\|_{L^r} &\leq C\{\|\partial_x^m v\|_{L^q}\|v - w\|_{L^p} \\
&\quad + (\|v\|_{L^p} + \|w\|_{L^p}\|\partial_x^m (v - w)\|_{L^q})\}(\|v\|_{L^\infty} + \|w\|_{L^\infty})^{\theta-1},
\end{align*}
\]

(3.1)

where $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ and $1 \leq p, q, r \leq +\infty$.

Based on the decay estimates of solutions to the linear problem (2.1), we define the following solution space:

$$X = \{ u \in C([0, \infty); H^{s+2}(\mathbb{R}^n)) \cap C^1([0, \infty); H^s(\mathbb{R}^n)) : \|u\|_X < \infty \},$$

where

$$\|u\|_X = \sup_{t \geq 0} \left\{ \sum_{k \leq s+2} (1 + t)^{\frac{\alpha}{2} + \frac{s}{2}} \|\partial_x^k u(t)\|_{L^2} + \sum_{k \leq s} (1 + t)^{\frac{\alpha}{2} + \frac{s}{2}} \|\partial_x^k u(t)\|_{L^2} \right\} .$$

For $R > 0$, we define $X_R = \{ u \in X : \|u\|_X \leq R \}$.

Theorem 1. Let $n \geq 1$, $s \geq \max\{0, \frac{n}{2} - 1\}$ and suppose that functions $u_0 \in H^{s+2}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$, $u_1 \in H^s(\mathbb{R}^n) \cap \dot{W}^{-1,1}(\mathbb{R}^n)$ and functions $f(v), g(v)$ are smooth and satisfy $f(v) = O(v^2)$, $g(v) = O(v^2)$ for $v \to 0$. Put

$$E_0 := \|u_0\|_{L^1} + \|u_1\|_{\dot{W}^{-1,1}} + \|u_0\|_{H^{s+2}} + \|u_1\|_{H^s} .$$

If E_0 is suitably small, the Cauchy problem (1.1) and (1.2) has a unique global solution $u(x,t)$ satisfying

$$X = u \in C([0, \infty); H^{s+2}(\mathbb{R}^n)) \cap C^1([0, \infty); H^s(\mathbb{R}^n)) .$$

Also, the solution satisfies the decay estimates

$$\|\partial_x^k u(t)\|_{L^2} \leq CE_0(1 + t)^{-\frac{n}{2} - \frac{k}{2}}, \quad \|\partial_x^l u(t)\|_{L^2} \leq CE_0(1 + t)^{-\frac{n}{2} - \frac{l+1}{2}}$$

for $0 \leq k \leq s + 2$ and $0 \leq l \leq s$.

Proof. The Gagliardo-Nirenberg inequality gives
\[\|u(t)\|_{L^\infty} \leq C\|\partial_x^s u\|_{L^2}^{\theta} \|u\|_{L^2}^{1-\theta} \leq C(1 + t)^{-\frac{\theta}{2}} \|u\|_X, \]
where \(s_0 = \frac{n}{2} + 1, \theta = \frac{n}{2s_0}; \) i.e. \(s \geq \left[\frac{n}{2}\right] - 1. \) We define (see (2.10))
\[\Phi(u) = G(t) * u_1 + H(t) * u_0 + \int_0^t G(t - \tau) * \Delta(Z(u, u_t)(\tau)) d\tau, \]
where \(Z(u, u_t)(t) = f(u(t)) - \beta g(u_t(t)) \). We apply \(\partial_x^k \) to \(\Phi \) and take the \(L^2 \) norm. We obtain
\[\|\partial_x^k \Phi(u)\|_{L^2} \leq \|\partial_x^k G(t) * u_1\|_{L^2} + \|\partial_x^k H(t) * u_0\|_{L^2}, \]
where \(k = 0 \).

First, we estimate \(I_1 \). We apply (2.19) with \(p = 1, j = 0, l = 0 \) and get
\[I_1 \leq C(1 + t)^{-\frac{4}{3} - \frac{k}{2}} \|u_1\|_{W^{-1,1}} + C e^{-c t} \|\partial_x^{(k-2)} u_1\|_{L^2} \leq C E_0 (1 + t)^{-\frac{n}{3} - \frac{k}{2}}, \]
where \((k - 2)_+ = \max\{k - 2, 0\} \).

For the term \(I_2 \), we apply (2.20) with \(p = 1, j = 0 \) and \(l = 0 \). This yields
\[I_2 \leq C(1 + t)^{-\frac{4}{3} - \frac{k}{2}} \|u_0\|_{L^1} + C e^{-c t} \|\partial_x^k u_0\|_{L^2} \leq C E_0 (1 + t)^{-\frac{n}{3} - \frac{k}{2}}. \]

Next, we estimate \(J \). Let
\[J = \int_0^t G(t - \tau) * \Delta(Z(u, u_t)(\tau)) d\tau = \int_0^{t/2} G(t - \tau) * \Delta(Z(u, u_t)(\tau)) d\tau + \int_{t/2}^t G(t - \tau) * \Delta(Z(u, u_t)(\tau)) d\tau =: J_1 + J_2. \]

For the term \(J_1 \), using (2.23) with \(p = 1, j = 0 \) and \(l = 0 \), we have
\[J_1 \leq C \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{4} - \frac{k+1}{2}} \|Z(u, u_t)(\tau)\|_{L^1} d\tau + C \int_0^{t/2} e^{-c(\tau-t)} \|\partial_x^k (Z(u, u_t)(\tau))\|_{L^2} d\tau =: J_{11} + J_{12}. \]

Note that by lemma (3.1) we have
\[\|f(u)\|_{L^1} \leq C \|u\|_{L^2}^2 \leq C R^2 (1 + \tau)^{-\frac{n}{2}}, \]
\[\|g(u_t)\|_{L^1} \leq C \|u_t\|_{L^2}^2 \leq C R^2 (1 + \tau)^{-\frac{n}{2}}. \]

Therefore we have
\[J_{11} \leq C R^2 \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{4} - \frac{k+1}{2}} (1 + \tau)^{-\frac{n}{2}} d\tau \leq C R^2 (1 + t)^{-\frac{n}{4} - \frac{k+1}{2}} \int_0^{t/2} (1 + \tau)^{\frac{n}{2}} d\tau \leq C R^2 (1 + t)^{-\frac{n}{4} - \frac{k}{2}} \eta(t), \]
where \(\eta(t) \) is a function of \(t \) and depends on the initial data.
where
\[\eta(t) = \begin{cases}
1, & n = 1, \\
(1 + t)^{-\frac{1}{2}} \ln(2 + t), & n = 2, \\
(1 + t)^{-\frac{1}{2}}, & n \geq 3.
\end{cases} \tag{3.4} \]

We use (3.1) and obtain
\[\|\partial^k_x (Z(u, u_t)(\tau))\|_{L^2} \leq CR^2 (1 + t)^{-\frac{n}{2} - \frac{k}{2} - \frac{n}{4}}. \tag{3.5} \]

Consequently, we get
\[J_{12} \leq CR^2 \int_0^{t/2} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n}{2} - \frac{k}{2} - \frac{n}{4}} d\tau \leq CR^2 e^{-ct}. \]

Finally, we estimate the term \(J_2 \) on the time interval \([t/2, t] \). Applying (2.23) with \(p = 2, j = k, l = 0 \) and using (3.5), we can estimate term \(J_2 \) as
\[J_2 \leq C \int_{t/2}^{t} (1 + t - \tau)^{-\frac{1}{2}} \|\partial^k_x (Z(u, u_t)(\tau))\|_{L^2} d\tau
+ C \int_{t/2}^{t} e^{-c(t-\tau)} \|\partial^k_x (Z(u, u_t)(\tau))\|_{L^2} d\tau
\leq CR^2 (1 + t)^{-\frac{n}{2} - \frac{k}{2} - \frac{n}{4}}. \tag{3.6} \]

Thus we have shown that
\[J \leq CR^2 (1 + t)^{-\frac{n}{2} - \frac{k}{2}} \eta(t). \]

Substituting all these estimates into (3.3), we have
\[(1 + t)^{\frac{n}{2} + \frac{k}{2}} \|\partial^k_x \Phi(u)\| \leq CE_0 + CR^2, \tag{3.7} \]
for \(0 \leq k \leq s + 2 \). It follows from that (3.3)
\[\Phi(u)_t = G_t(t) * u_1 + H_t(t) * u_0
+ \int_0^t G_t(t - \tau) * \Delta(Z(u, u_t)(\tau)) \|_{L^2} d\tau. \tag{3.8} \]

We use \(\partial^k_x \) to \(\Phi(u)_t \) and take \(L^2 \) norm. This yields
\[\|\partial^k_x \Phi(u)_t\|_{L^2} \leq \|\partial^k_x G_t(t) * u_1\|_{L^2} + \|\partial^k_x H_t(t) * u_0\|_{L^2}
+ C \int_0^t \|\partial^k_x G_t(t - \tau) * \Delta(Z(u, u_t)(\tau))\|_{L^2} d\tau =: \hat{I}_1 + \hat{I}_2 + \hat{J}, \tag{3.9} \]
for \(0 \leq k \leq s \). For the term \(\hat{I}_1 \), we apply (2.21) with \(p = 1, j = 0 \) and \(l = 0 \) and obtain
\[\hat{I}_1 \leq C(1 + t)^{-\frac{n}{2} - \frac{k+1}{2}} \|u_1\|_{W^{-1,1}} + Ce^{-ct} \|\partial^k_x u_1\|_{L^2} \leq CE_0(1 + t)^{-\frac{n}{2} - \frac{k+1}{2}}. \]

Also, for the term \(\hat{I}_2 \), we apply (2.22) with \(p = 1, j = 0 \) and \(l = 0 \) and get
\[\hat{I}_2 \leq C(1 + t)^{-\frac{n}{2} - \frac{k+1}{2}} \|u_0\|_{L^1} + Ce^{-ct} \|\partial^{k+2} u_0\|_{L^2} \leq CE_0(1 + t)^{-\frac{n}{2} - \frac{k+1}{2}}. \]
To estimate the nonlinear term \dot{J}, we divide as $\dot{J} = \dot{J}_1 + \dot{J}_2$, where \dot{J}_1 and \dot{J}_2 correspond to the time intervals $[0, t/2]$ and $[t/2, t]$, respectively. By applying (2.24) with $p = 1$, $j = 0$ and $l = 0$, we have

$$
\dot{J}_1 \leq C \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k+1}{2}} \|Z(u, u_t)(\tau)\|_{L^1} d\tau + C \int_0^{t/2} e^{-c(t-\tau)} \|\partial_x^{k+2}(Z(u, u_t)(\tau))\|_{L^2} d\tau
$$

By (3.1), we obtain

$$
\|Z(u, u_t)(\tau)\|_{L^1} \leq CR^2(1 + \tau)^{-\frac{n}{2}}.
$$

Therefore we get

$$
\dot{J}_{11} \leq CR^2 \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k+1}{2}} (1 + \tau)^{-\frac{n}{2}} d\tau
$$

$$
\leq CR^2(1 + t)^{-\frac{n}{2} - \frac{k+1}{2}} \eta(t).
$$

Similarly as before, we can estimate \dot{J}_{12} and obtain $\dot{J}_{12} \leq CR^2 e^{-ct}$. Finally, we estimate the term \dot{J}_2 by using (2.24) with $p = 2$, $j = k + 2$, $l = 0$ and get

$$
\dot{J}_2 \leq C \int_{t/2}^t \|\partial_x^{k+2}(Z(u, u_t)((\tau))\|_{L^2} d\tau
$$

$$
+ C \int_{t/2}^t \frac{n}{4} - \frac{k + 1}{2} - \frac{n}{2} e^{-c(t-\tau)} \|\partial_x^{k+2}(Z(u, u_t)(\tau))\|_{L^2} d\tau
$$

$$
\leq CR^2 \int_{t/2}^t (1 + \tau)^{-\frac{n}{4} - \frac{k+1}{2} - \frac{n}{2}} d\tau \leq CR^2(1 + t)^{-\frac{n}{4} - \frac{k+1}{2} - \frac{n-1}{2}}.
$$

Consequently we have that

$$
\dot{J} \leq CR^2(1 + t)^{-\frac{n}{4} - \frac{k+1}{2}} \eta(t).
$$

The above inequality implies

$$
(1 + t)^\frac{n}{4} + \frac{k+1}{2} \|\partial_x^k \Phi(u)_t\|_{L^2} \leq CE_0 + CR^2.
$$

Combining (3.10) and (3.7) and taking E_0 and R suitably small, we obtain $\|\Phi(u)\|_X \leq R$. For $u, \tilde{u} \in X_R$, (3.3) gives

$$
\|\partial_x^k (\Phi(u) - \Phi(\tilde{u}))\|_{L^2} = \int_0^t \|\partial_x^k G(t - \tau) * \Delta(f(u) - f(\tilde{u})) - \beta(g(u_t) - g(\tilde{u}_t))\|_{L^2} d\tau
$$

$$
- \int_0^{t/2} \|\partial_x^k G(t - \tau) * \Delta(f(u) - f(\tilde{u})) - \beta(g(u_t) - g(\tilde{u}_t))\|_{L^2} d\tau + \int_{t/2}^t \|\partial_x^k G(t - \tau) * \Delta(f(u) - f(\tilde{u})) - \beta(g(u_t) - g(\tilde{u}_t))\|_{L^2} d\tau
$$

$$
=: J_1 + J_2.
$$
For the term J_1, we apply (2.23) with $p = 1$, $j = 0$ and $l = 0$, we arrive at

$$J_1 \leq C \int_0^{t/2} (1 + t - \tau)^{-\frac{a}{2} - \frac{k+1}{2}} \| (f(u) - f(\tilde{u})(\tau) - \beta(g(u_t) - g(\tilde{u}_t))(\tau) \|_{L^1} d\tau$$

$$+ C \int_0^{t/2} e^{-c(t-\tau)} \| \partial_x^k (f(u) - f(\tilde{u}) - \beta(g(u_t) - g(\tilde{u}_t))(\tau) \|_{L^2} d\tau$$

$$=: J_{11} + J_{12}.$$

By (3.2), we can estimate J_{11} as

$$J_{11} \leq CR\| u - \tilde{u} \|_X \int_0^{t/2} (1 + t - \tau)^{-\frac{a}{2} - \frac{k+1}{2}} (1 + \tau)^{-\frac{a}{2}} d\tau$$

$$\leq CR\| u - \tilde{u} \|_X (1 + t)^{-\frac{a}{2} - \frac{k}{2}} (1 + t)^{-\frac{a}{2}} \eta(t),$$

where η be defined in (3.4). It follows from the Gagliardo-Nirenberg inequality and (3.2) that

$$J_{12} \leq \int_0^{t/2} e^{-c(t-\tau)} \left((\| \partial_x^k u \|_{L^2} + \| \partial_x^k \tilde{u} \|_{L^2}) \| u - \tilde{u} \|_{L^\infty} \right.$$

$$+ (\| u \|_{L^\infty} + \| \tilde{u} \|_{L^\infty}) \| \partial_x^k (u - \tilde{u}) \|_{L^2} + (\| \partial_x^k u_t \|_{L^2} + \| \partial_x^k \tilde{u}_t \|_{L^2}) \times \| u_t - \tilde{u}_t \|_{L^\infty} + (\| u_t \|_{L^\infty} + \| \tilde{u}_t \|_{L^\infty}) \| \partial_x^k (u_t - \tilde{u}_t) \|_{L^2} \right) d\tau$$

$$\leq CR \int_0^{t/2} e^{-c(t-\tau)} (1 + \tau)^{-\frac{a}{2} - \frac{k}{2} - \frac{a}{2}} \| u - \tilde{u} \|_X d\tau$$

$$\leq CR\| u - \tilde{u} \|_X e^{ct}.$$

Finally, we estimate term J_2 on the time $[t/2, t]$. Applying (2.23) with $p = 2$, $j = k$, $l = 0$ and using (3.2), we obtain

$$J_2 \leq C \int_{t/2}^{t} (1 + t - \tau)^{-\frac{1}{2}} \| \partial_x^k (f(u) - f(\tilde{u}) - \beta(g(u_t) - g(\tilde{u}_t))(\tau) \|_{L^2} d\tau$$

$$+ C \int_{t/2}^{t} e^{-c(t-\tau)} \| \partial_x^k (f(u) - f(\tilde{u}) - \beta(g(u_t) - g(\tilde{u}_t))(\tau) \|_{L^2}$$

$$\leq CR\| u - \tilde{u} \|_X \int_{t/2}^{t} (1 + t - \tau)^{-\frac{1}{2}} (1 + t)^{-\frac{n-1}{2}} d\tau$$

$$\leq CR\| u - \tilde{u} \|_X (1 + t)^{-\frac{n}{2} - \frac{k}{2} - \frac{n-1}{2}}.$$

which implies

$$(1 + t)^{\frac{n}{2} + \frac{k}{2}} \| \partial_x^k \Phi(u) - \Phi(\tilde{u}) \|_{L^2} \leq CR\| u - \tilde{u} \|_X.$$

Similarly, for $0 \leq k \leq s$ and $u, \tilde{u} \in X$ from (3.2) and (2.24), we deduce that

$$\| \partial_x^k (\Phi(u) - \Phi(\tilde{u})) \|_{L^2}$$

$$= \int_0^t \| \partial_x^k G_t(t - \tau) * (\Delta(f(u) - f(\tilde{u}) - \beta(g(u_t) - g(\tilde{u}_t))(\tau) \|_{L^2} d\tau$$

For the term \(J_1 \), we use (2.24) with \(p = 1 \), \(j = 0 \) and \(l = 2 \). We have

\[
\begin{align*}
\dot{J}_1 & \leq C \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k+2}{2}} \| f(u) - f(\bar{u})(\tau) - \beta(g(u_t) - g(\bar{u}_t))(\tau) \|_{L^1} d\tau \\
& + C \int_0^{t/2} e^{-c(t - \tau)} \| \partial_x^{k+2} (f(u) - f(\bar{u}) - \beta(g(u_t) - g(\bar{u}_t))(\tau) \|_{L^2} d\tau \\
& =: \dot{J}_{11} + \dot{J}_{12}.
\end{align*}
\]

By (3.2), we have

\[
\begin{align*}
\dot{J}_{11} & \leq \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k+2}{2}} (\| u \|_{L^2}^{1/2} + \| \bar{u} \|_{L^2}) \| u - \bar{u} \|_{L^2} d\tau \\
& + (\| u_t \|_{L^2}^{1/2} + \| \bar{u}_t \|_{L^2}) (\| u_t - \bar{u}_t \|_{L^2}) d\tau \\
& \leq CR \| u - \bar{u} \|_{X} (1 + t)^{-\frac{n}{2} - \frac{k+1}{2}} \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2}} d\tau \\
& \leq CR \| u - \bar{u} \|_{X} (1 + t)^{-\frac{n}{2} - \frac{k+1}{2}} \eta(t),
\end{align*}
\]

where \(\eta \) be defined in (3.4). Also, the term \(\dot{J}_{12} \) is estimated similarly as before and we can estimate the term \(\dot{J}_{12} \) as

\[
\dot{J}_{12} \leq CR \| u - \bar{u} \|_{X} e^{-ct}.
\]

By applying (2.24) with \(p = 2 \), \(j = k + 2 \), \(l = 0 \) and (3.1), we obtain

\[
\begin{align*}
\dot{J}_2 & \leq C \int_{t/2}^{t} \| \partial_x^{k+2} (f(u) - f(\bar{u}) - \beta(g(u_t) - g(\bar{u}_t))(\tau) \|_{L^2} d\tau \\
& + C \int_{t/2}^{t} e^{-c(t - \tau)} \| \partial_x^{k+2} (f(u) - f(\bar{u}) - \beta(g(u_t) - g(\bar{u}_t))(\tau) \|_{L^2} d\tau \\
& \leq \int_{t/2}^{t} \left(\| \partial_x^{k+2} u \|_{L^2} + \| \partial_x^{k+2} \bar{u} \|_{L^2} \right) \| u - \bar{u} \|_{L^\infty} d\tau \\
& + (\| u \|_{L^\infty} + \| \bar{u} \|_{L^\infty}) \| \partial_x^{k+2} (u - \bar{u}) \|_{L^2} d\tau \\
& + (\| \partial_x^{k+2} u_t \|_{L^2} + \| \partial_x^{k+2} \bar{u}_t \|_{L^2}) \| u_t - \bar{u}_t \|_{L^\infty} d\tau \\
& + (\| u_t \|_{L^\infty} + \| \bar{u}_t \|_{L^\infty}) \| \partial_x^{k+2} (u - \bar{u}_t) \|_{L^2} d\tau \\
& \leq CR \| u - \bar{u} \|_{X} \int_{t/2}^{t} (1 + \tau)^{-\frac{n}{2} - \frac{k+2}{2} - \frac{n}{2}} d\tau \\
& \leq CR \| u - \bar{u} \|_{X} (1 + t)^{-\frac{n}{2} - \frac{k+1}{2} - \frac{n-1}{2}} \\
& \leq CR \| u - \bar{u} \|_{X} (1 + t)^{-\frac{n}{2} - \frac{k+1}{2}}.
\end{align*}
\]
Substituting all these estimates together with the previous estimate and taking \(R \) suitably small, yields
\[
\|\Phi(u) - \Phi(\tilde{u})\|_X \leq \frac{1}{2} \|u - \tilde{u}\|_X. \tag{3.11}
\]
From (3.11), we deduce that \(\Phi \) is strictly contracting mapping. Then there exists a fixed point \(u \in X_R \) of the mapping \(\Phi \), which is a solution to (1.1)–(1.2). The proof of the theorem is now complete. \(\square \)

The proof of the previous theorem shows that when \(n \geq 2 \), the solution \(u \) to the integral equation (2.10) is asymptotic to the linear solution \(u_L(t) \) given by the formula \(u_L(t) = G(t) * u_1 + H(t) * u_0 \) as \(t \to \infty \). This result is stated as follows.

Lemma 5. Let \(n \geq 2 \) and assume the same conditions of Theorem 1. Then the solution \(u \) of problem (1.1)–(1.2) which is constructed in Theorem 1, can be approximated by the solution \(u_L \) to the linearized problem (2.1), (2.2) as \(t \to \infty \). More precisely, we have
\[
\|\partial^k_x (u - u_L)(t)\|_{L^2} \leq C E_0^2 (1 + t)^{-\frac{n}{4} - \frac{k}{2}} \eta(t),
\]
\[
\|\partial^k_x (u - u_L)_t(t)\|_{L^2} \leq C E_0^2 (1 + t)^{-\frac{n}{4} - \frac{k+1}{2}} \eta(t),
\]
for \(0 \leq k \leq s+2 \) and \(0 \leq k \leq s \), respectively, where \(u_L(t) := G(t) * u_1 + H(t) * u_0 \) is the linear solution and \(\eta(t) \) is defined in (3.4).

4 Decay estimates of solutions for \(L^2 \)

In the previous section, we have proved global existence and asymptotic behavior of solutions to the Cauchy problem (1.1)–(1.2) with \(L^1 \) data.

In this section, we prove a similar decay estimate of solution with \(L^2 \) data for \(n \geq 2 \). Based on the decay estimates of solutions to the linear problem (2.1)–(2.2), we define the following solution space:
\[
X = \{ u \in C([0, \infty); H^{s+2}(\mathbb{R}^n)) \cap C^1([0, \infty); H^s(\mathbb{R}^n)) : \|u\|_X < \infty \},
\]
where
\[
\|u\|_X = \sup_{t \geq 0} \left\{ \sum_{k \leq s+2} (1 + t)^{\frac{k}{2}} \|\partial^k_x u(t)\|_{L^2} + \sum_{k \leq s} (1 + t)^{\frac{k}{2}} \|\partial^k_x u_t(t)\|_{L^2} \right\}.
\]
For \(R > 0 \), we define
\[
X_R = \{ u \in X : \|u\|_X \leq R \}.
\]
Note that from the Gagliardo-Nirenberg inequality for \(u \in X_R \), we have
\[
\|u(t)\|_{L^\infty} \leq C (1 + t)^{-\frac{n}{4}}.
\]
The solution \(u \) satisfies \(f(v) = O(v^2) \), \(g(v) = O(v^2) \) for \(v \to 0 \). Let
\[
E_1 := \left\| u_0 \right\|_{L^2} + \left\| u_1 \right\|_{\dot{W}^{-1,2}} + \left\| u_0 \right\|_{H^{s+2}} + \left\| u_1 \right\|_{H^s}.
\]
If \(E_0 \) is suitably small, the Cauchy problem (1.1) and (1.2) has a unique global solution \(u(x,t) \) satisfying
\[
X = u \in C(0, \infty; H^{s+2}(\mathbb{R}^n)) \cap C^1([0, \infty); H^s(\mathbb{R}^n)).
\]
The solution \(u \) also satisfies the decay estimate
\[
\left\| \partial_x^k u(t) \right\|_{L^2} \leq CE_1(1 + t)^{-\frac{k}{2}}, \quad \left\| \partial_x^k u(t) \right\|_{L^2} \leq CE_1(1 + t)^{-\frac{k+1}{2}}, \quad (4.1)
\]
for \(0 \leq k \leq s + 2 \) and \(0 \leq h \leq s \).

Proof. Let the mapping \(\Phi \) be defined in (3.3). Applying \(\partial_x^k \) to \(\Phi \) and take \(L^2 \) norm. We have
\[
\left\| \partial_x^k \Phi(u) \right\|_{L^2} \leq \left\| \partial_x^k G(t) * u_1 \right\|_{L^2} + \left\| \partial_x^k H(t) * u_0 \right\|_{L^2} + C \int_0^t \left\| \partial_x^k G(t - \tau) * (Z(u, u_t)) \right\|_{L^2} d\tau := I_1 + I_2 + J.
\]
We use (2.19) with \(p = 2 \) and \(j = l = 0 \) and get
\[
I_1 \leq C(1 + t)^{-\frac{k}{2}} \left\| u_1 \right\|_{\dot{W}^{-1,2}} + Ce^{-ct} \left\| \partial_x^{(k-2)} u_1 \right\|_{L^2} \leq CE_1(1 + t)^{-\frac{k}{2}},
\]
where \((k - 2)_+ = \max\{k - 2, 0\}\). By applying (2.20) with \(p = 2 \) and \(j = l = 0 \), we get
\[
I_2 \leq C(1 + t)^{-\frac{k}{2}} \left\| u_0 \right\|_{L^2} + Ce^{-ct} \left\| \partial_x^k u_0 \right\|_{H^{s+2}} \leq CE_1(1 + t)^{-\frac{k}{2}}.
\]
To estimate the nonlinear \(J \), as in the previous section, we divide as \(J = J_1 + J_2 \) where \(J_1 \) and \(J_2 \) correspond to the time intervals \([0, t/2]\) and \([t/2, t]\), respectively. For the term \(J_1 \), we use (2.23) with \(p = 1 \) and \(j = l = 0 \) and deduce that
\[
J_1 \leq C \int_0^{t/2} (1 + t - \tau)^{-\frac{\alpha}{2} - \frac{k+1}{2}} \left\| Z(u, u_t) \right\|_{L^1} d\tau + C \int_0^{t/2} e^{-c(t-\tau)} \left\| \partial_x^k (Z(u, u_t)) \right\|_{L^2} d\tau =: J_{11} + J_{12}.
\]
By (3.1), we have \(\left\| Z(u, u_t) \right\|_{L^1} \leq CR^2 \). Thus we can estimate the \(J_{11} \) as
\[
J_{11} \leq CR^2 \int_0^{t/2} (1 + t - \tau)^{-\frac{\alpha}{2} - \frac{k+1}{2}} (1 + \tau)^{-\frac{\alpha}{2}} d\tau \leq CR^2 (1 + t)^{-\frac{\alpha}{2}} \int_0^{t/2} (1 + \tau)^{-\frac{\alpha}{2}} d\tau \leq CR^2 (1 + t)^{-\frac{\alpha}{2}}.
\]
Global Existence and Asymptotic Behavior of Solutions...

By applying (3.1) and the Gagliardo-Nirenberg inequality, we get
\[
\|\partial^k_x f(u)\|_{L^2} \leq C\|u\|_{L^\infty}\|\partial^k_x u\|_{L^2} \leq C(1 + t)^{-\frac{2}{3} - \frac{k}{2}} R^2,
\]
\[
|\partial^k_x g(u_t)|_{L^2} \leq C\|u_t\|_{L^\infty}\|\partial^k_x u_t\|_{L^2} \leq C(1 + t)^{-\frac{2}{3} - \frac{k}{2}} R^2. \tag{4.2}
\]

Thus we have
\[
J_{12} \leq CR^2 \int_t^{t/2} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n}{2} - \frac{k}{2}} d\tau \leq CR^2 e^{-ct}.
\]

It follows from (2.23) with \(p = 1, j = k \) and \(l = 2 \) that
\[
J_2 \leq C \int_t^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k}{2}} \|\partial^k_x (Z(u, u_t)(\tau))\|_{L^1} d\tau
\]
\[
+ C \int_t^{t/2} e^{-c(t-\tau)} \|\partial^{k+2}_x (Z(u, u_t)(\tau))\|_{L^2} = J_{21} + J_{22}.
\]

We have from (3.2) that
\[
J_{21} \leq C \int_t^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k}{2}} (\|u\|_{L^2} \|\partial^k_x u\|_{L^2} + \|u_t\|_{L^2} \|\partial^k_x u_t\|_{L^2}) d\tau
\]
\[
\leq CR^2 \int_t^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k}{2}} (1 + \tau)^{-\frac{k}{2}} d\tau
\]
\[
\leq CR^2 (1 + t)^{-\frac{k}{2}} \int_t^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k}{2}} d\tau \leq CR^2 (1 + t)^{-\frac{k}{2}}.
\]

To estimate the term \(J_{22} \), we have from (4.2) that
\[
J_{22} \leq C \int_t^{t/2} e^{-c(t-\tau)} \|\partial^{k+2}_x (Z(u, u_t)(\tau))\|_{L^2} d\tau
\]
\[
\leq CR^2 \int_t^{t/2} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n}{2} - \frac{k+2}{2}} d\tau \leq CR^2 (1 + t)^{-\frac{k}{2}}.
\]

The above inequality shows that
\[
(1 + t)^{\frac{k}{2}} \|\partial^k_x \Phi(u)\| \leq CE_1 + CR^2. \tag{4.3}
\]

We deduce from (3.3) that
\[
(\Phi(u))_t = G_t(t) * u_1 + H_t(t) * u_0 + \int_0^t G_t(t - \tau) * \Delta(Z(u, u_t)(\tau))_{L^2} d\tau. \tag{4.4}
\]

Applying \(\partial^k_x \) to \(\Phi(u)_t \) and taking \(L^2 \)-norm we have
\[
\|\partial^k_x \Phi(u)_t\|_{L^2} \leq \|\partial^k_x G_t(t) * u_1\|_{L^2} + \|\partial^k_x H_t(t) * u_0\|_{L^2}
\]
\[
+ C \int_0^t \|\partial^k_x G_t(t - \tau) * \Delta(Z(u, u_t)(\tau))\|_{L^2} d\tau =: \dot{I}_1 + \dot{I}_2 + \dot{J}.
\]
To estimate the term I_1, apply (2.21) with $p = 2, l = j = 0$. It yields

$$ I_1 \leq C(1 + t)^{-\frac{k+1}{2}} \| u_1 \|_{W^{-1,2}} + C e^{-ct} \| \partial_x^k u_1 \|_{L^2} \leq C E_1 (1 + t)^{-\frac{k+1}{2}}. $$

Similarly, using (2.22) with $p = 2, j = l = 0$, we have

$$ I_2 \leq C(1 + t)^{-\frac{k+1}{2}} \| u_0 \|_{L^2} + C e^{-ct} \| \partial_x^{k+2} u_0 \|_{L^2} \leq C E_1 (1 + t)^{-\frac{k+1}{2}}. $$

To estimate the nonlinear term J, let

$$ J = C \int_0^{t/2} \| \partial_x^k G_t(t - \tau) \star \Delta(Z(u, u_t)(\tau)) \|_{L^2} d\tau $$

$$ + C \int_{t/2}^t \| \partial_x^k G_t(t - \tau) \star \Delta(Z(u, u_t)(\tau)) \|_{L^2} d\tau =: I_1 + I_2 + J. $$

It yields from (2.24) with $p = 1$ and $j = l = 0$ that

$$ J_1 \leq C \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{4} - \frac{k+2}{2}} \| Z(u, u_t)(\tau) \|_{L^1} d\tau $$

$$ + C \int_{t/2}^t e^{-c(t-\tau)} \| \partial_x^{k+2} Z(u, u_t)(\tau) \|_{L^2} d\tau =: J_{11} + J_{12}. $$

We obtain from (3.1) that

$$ \| Z(u, u_t)(\tau) \|_{L^1} \leq CR^2. $$

Thus we can estimate J_{11} as

$$ J_{11} \leq CR^2 \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{4} - \frac{k+2}{2}} d\tau $$

$$ \leq CR^2(1 + t)^{-\frac{k+1}{2}} \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{4} - \frac{1}{2}} d\tau \leq CR^2(1 + t)^{-\frac{k+1}{2}}. $$

For the term J_{12}, we have from (4.2) that

$$ J_{12} \leq CR^2 \int_0^{t/2} e^{-c(t-\tau)} (1 + t)^{-\frac{n}{4} - \frac{k+2}{2}} d\tau \leq CR^2 e^{-ct}. $$

Applying (2.24) with $p = 2, j = k + 2$ and $l = 0$, we get

$$ J_2 \leq C \int_{t/2}^t \| \partial_x^{k+2} Z(u, u_t)(\tau) \|_{L^2} d\tau $$

$$ + C \int_{t/2}^t e^{-c(t-\tau)} \| \partial_x^{k+2} Z(u, u_t)(\tau) \|_{L^2} d\tau $$

$$ \leq CR^2 \int_{t/2}^t (1 + \tau)^{-\frac{n}{4} - \frac{k+2}{2}} d\tau $$

$$ \leq CR^2(1 + \tau)^{-\frac{k+1}{2}} \int_{t/2}^t (1 + \tau)^{-\frac{n}{4} - \frac{1}{2}} d\tau \leq CR^2(1 + \tau)^{-\frac{k+1}{2}}. $$
Thus we have
\[(1 + t)^{-\frac{k+1}{2}} \|\partial_x^k \Phi(u_\tau)\|_{L^2} \leq CE_1 + CR^2. \tag{4.5}\]
Combining (4.3) and (4.5) and taking E_0 and R suitably small, we obtain $\|\Phi(u)\|_X \leq R$.

For $u, \tilde{u} \in X_R$, by using (3.3) we obtain
\[
\|\partial_x^k (\Phi(u) - \Phi(\tilde{u}))\|_{L^2}
= \int_0^t \|\partial_x^k G(t - \tau) \Delta (f(u) - f(\tilde{u}) - \beta(g(u_\tau) - g(\tilde{u}_\tau))(\tau)\|_{L^2} d\tau
\]
\[
= \int_0^{t/2} \|\partial_x^k G(t - \tau) \Delta (f(u) - f(\tilde{u}) - \beta(g(u_\tau) - g(\tilde{u}_\tau))(\tau)\|_{L^2} d\tau
+ \int_{t/2}^t \|\partial_x^k G(t - \tau) \Delta (f(u) - f(\tilde{u}) - \beta(g(u_\tau) - g(\tilde{u}_\tau))(\tau)\|_{L^2} d\tau
= : J_1 + J_2.
\]

By applying (2.23) with $p = 1, j = 0$ and $l = 0$, we have
\[
J_1 \leq C \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k+1}{2}} \| (f(u) - f(\tilde{u}))(\tau) - \beta(g(u_\tau) - g(\tilde{u}_\tau))(\tau)\|_{L^1} d\tau
+ C \int_0^{t/2} e^{-c(t-\tau)} \|\partial_x^k (f(u) - f(\tilde{u}) - \beta(g(u_\tau) - g(\tilde{u}_\tau)))(\tau)\|_{L^2} d\tau
= : J_{11} + J_{12}.
\]

Using (3.2), we get
\[
J_{11} \leq CR \|u - \tilde{u}\|_X \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k+1}{2}} d\tau
\leq CR \|u - \tilde{u}\|_X (1 + t)^{-\frac{n}{2} - \frac{1}{2}} \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{1}{2}} d\tau.
\leq CR \|u - \tilde{u}\|_X (1 + t)^{-\frac{n}{2}}.
\]

Also, we have
\[
J_{12} \leq \int_0^{t/2} e^{-c(t-\tau)} \left[\left(\|\partial_x^k u\|_{L^2} + \|\partial_x^k \tilde{u}\|_{L^2} \right) \|u - \tilde{u}\|_{L^\infty}
+ \left(\|u\|_{L^\infty} + \|\tilde{u}\|_{L^\infty} \right) \|\partial_x^k (u - \tilde{u})\|_{L^2}
+ \left(\|u_\tau\|_{L^\infty} + \|\tilde{u}_\tau\|_{L^\infty} \right) \|\partial_x^k (u_\tau - \tilde{u}_\tau)\|_{L^2} \right] d\tau
\leq CR \|u - \tilde{u}\|_X \int_0^{t/2} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n}{2} - \frac{k}{2}} d\tau \leq CR \|u - \tilde{u}\|_X e^{-ct}.
\]

To estimate the term J_2, apply (2.23) with $p = 1, j = k, l = 2$. We obtain
\[
J_2 \leq C \int_0^t (1 + t - \tau)^{-\frac{n}{2} - \frac{1}{2}} \|\partial_x^k (f(u) - f(\tilde{u}) - \beta(g(u_\tau) - g(\tilde{u}_\tau))(\tau)\|_{L^1} d\tau
+ C \int_0^t e^{-c(t-\tau)} \|\partial_x^{k+2} (f(u) - f(\tilde{u}) - \beta(g(u_\tau) - g(\tilde{u}_\tau))(\tau)\|_{L^2} d\tau
= : J_{21} + J_{22}.
\]
By using (3.2), we get

\[J_{21} \leq \int_{t/2}^{t} (1 + t - \tau)^{-\frac{n}{2} - \frac{1}{2}} \left[\left(\| \partial_x^k u \|_{L^2} + \| \partial_x^k \tilde{u} \|_{L^2} \right) \| u - \tilde{u} \|_{L^2} \\ + \left(\| u \|_{L^2} + \| \tilde{u} \|_{L^2} \right) \| \partial_x^k (u - \tilde{u}) \|_{L^2} + \left(\| \partial_x^k u_t \|_{L^2} + \| \partial_x^k \tilde{u}_t \|_{L^2} \right) \| u_t - \tilde{u}_t \|_{L^2} \\ + \left(\| u_t \|_{L^2} + \| \tilde{u}_t \|_{L^2} \right) \| \partial_x^k (u_t - \tilde{u}_t) \|_{L^2} \right] d\tau \leq CR \| u - \tilde{u} \|_{X} \int_{t/2}^{t} (1 + t - \tau)^{-\frac{n}{2} - \frac{1}{2}} (1 + \tau)^{-\frac{k}{2}} d\tau \leq CR \| u - \tilde{u} \|_{X} (1 + t)^{-\frac{k}{2}}. \]

Finally, we estimate the term \(J_{22} \) as

\[J_{22} \leq \int_{t/2}^{t} e^{-c(t - \tau)} \left[\left(\| \partial_x^{k+2} u \|_{L^2} + \| \partial_x^{k+2} \tilde{u} \|_{L^2} \right) \| u - \tilde{u} \|_{L^2} \\ + \left(\| u \|_{L^2} + \| \tilde{u} \|_{L^2} \right) \| \partial_x^k (u - \tilde{u}) \|_{L^2} + \left(\| \partial_x^k u_t \|_{L^2} + \| \partial_x^k \tilde{u}_t \|_{L^2} \right) \| u_t - \tilde{u}_t \|_{L^2} \\ + \left(\| u_t \|_{L^2} + \| \tilde{u}_t \|_{L^2} \right) \| \partial_x^k (u_t - \tilde{u}_t) \|_{L^2} \right] d\tau \leq CR \| u - \tilde{u} \|_{X} \int_{t/2}^{t} e^{-c(t - \tau)} (1 + \tau)^{-\frac{n}{2} - \frac{k+2}{2}} d\tau \leq CR \| u - \tilde{u} \|_{X} (1 + \tau)^{-\frac{k}{2}}. \]

Thus we have shown that

\[(1 + t)^{\frac{k}{2}} \| \partial_x^k (\Phi(u) - \Phi(\tilde{u})) \|_{L^2} \leq CR \| u - \tilde{u} \|_{X}. \quad (4.6) \]

Suppose that \(u, \tilde{u} \in X_R \). It follows from (3.3) that

\[\| \partial_x^k (\Phi(u) - \Phi(\tilde{u})) \|_{L^2} = \int_{0}^{t} \| \partial_x^k G_t(t - \tau) * \Delta (f(u) - f(\tilde{u}) - \beta(g(u_t)) - g(\tilde{u}_t)) \|_{L^2} d\tau \]

\[= \int_{0}^{t/2} \| \partial_x^k G_t(t - \tau) * \Delta (f(u) - f(\tilde{u}) - \beta(g(u_t)) - g(\tilde{u}_t)) \|_{L^2} d\tau + \int_{t/2}^{t} \| \partial_x^k G_t(t - \tau) * \Delta (f(u) - f(\tilde{u}) - \beta(g(u_t)) - g(\tilde{u}_t)) \|_{L^2} d\tau \]

\[=: J_1 + J_2. \]

By using (2.24) with \(p = 1, j = 0 \), we have

\[J_1 \leq C \int_{0}^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{k+2}{2}} \| f(u) - f(\tilde{u}) - \beta(g(u_t)) - g(\tilde{u}_t) \|_{L^1} d\tau + C \int_{0}^{t/2} e^{-c(t - \tau)} \| \partial_x^{k+2} (f(u) - f(\tilde{u}) - \beta(g(u_t)) - g(\tilde{u}_t)) \|_{L^2} d\tau \]

\[=: J_{11} + J_{12}. \]
By (3.2), we obtain
\[
\mathcal{J}_{11} \leq \int_0^{t/2} (1 + t - \tau)^{-\frac{n}{2} - \frac{1}{2}} \left(\|u\|_{L^2} + \|\bar{u}\|_{L^2} \right) \|u - \bar{u}\|_{L^2} \times (\|u_t\|_{L^2} + \|\bar{u}_t\|_{L^2}) d\tau
\]
\[
\leq CR\|u - \bar{u}\|_X (1 + t)^{-\frac{n+1}{2}} \int_0^{t/2} (1 + t\tau)^{-\frac{n}{2} - \frac{1}{2}} d\tau
\]
\[
\leq CR\|u - \bar{u}\|_X (1 + t)^{-\frac{n+1}{2}}.
\]
For the term \(\mathcal{J}_{12}\), by (3.2) we get
\[
\mathcal{J}_{12} \leq \int_0^{t/2} e^{-c(t-\tau)} \left(\left(\|\partial_x^{k+2}u\|_{L^2} + \|\partial_x^{k+2}\bar{u}\|_{L^2} \right) \|u - \bar{u}\|_{L^\infty}
\right.
\]
\[
\left. + (\|u\|_{L^\infty} + \|\bar{u}\|_{L^\infty}) \|\partial_x^{k+2}(u - \bar{u})\|_{L^2}
\right) \times (\|u_t\|_{L^\infty} + \|\bar{u}_t\|_{L^\infty}) \|\partial_x^{k+2}(u_t - \bar{u}_t)\|_{L^2} d\tau
\]
\[
\leq CR\|u - \bar{u}\|_X \int_0^{t/2} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n+2}{2}} (1 + \tau)^{-\frac{n}{2}} d\tau
\]
\[
\leq CR\|u - \bar{u}\|_X e^{-ct}.
\]
By applying (2.24) with \(p = 2, j = k + 2\) and \(l = 0\), we conclude that
\[
\mathcal{J}_2 \leq C \int_{t/2}^t \|\partial_x^{k+2}(f(u) - f(\bar{u}) - \beta(g(u_t) - g(\bar{u}_t)(\tau)))\|_{L^2} d\tau
\]
\[
+ C \int_{t/2}^t e^{-c(t-\tau)} \|\partial_x^{k+2}(f(u) - f(\bar{u}) - \beta(g(u_t) - g(\bar{u}_t)(\tau)))\|_{L^2} d\tau
\]
\[
\leq \int_{t/2}^t \left(\left(\|\partial_x^{k+2}u\|_{L^2} + \|\partial_x^{k+2}\bar{u}\|_{L^2} \right) \|u - \bar{u}\|_{L^\infty}
\right.
\]
\[
\left. + (\|u\|_{L^\infty} + \|\bar{u}\|_{L^\infty}) \|\partial_x^{k+2}(u - \bar{u})\|_{L^2}
\right) \times (\|u_t\|_{L^\infty} + \|\bar{u}_t\|_{L^\infty}) \|\partial_x^{k+2}(u_t - \bar{u}_t)\|_{L^2} d\tau
\]
\[
\leq CR\|u - \bar{u}\|_X \int_{t/2}^t (1 + \tau)^{-\frac{n}{2} - \frac{k+2}{2}} d\tau
\]
\[
\leq CR\|u - \bar{u}\|_X (1 + t)^{-\frac{n+1}{2}} \int_{t/2}^t (1 + \tau)^{-\frac{n}{2} - \frac{1}{2}} d\tau
\]
\[
\leq CR\|u - \bar{u}\|_X (1 + t)^{-\frac{n+1}{2}}.
\]
Consequently, we have shown that
\[
(1 + t)^{\frac{k+1}{2}} \|\partial_x^k(\Phi(u) - \Phi(\bar{u}))\|_{X} \leq CR\|u - \bar{u}\|_X.
\] (4.7)
Using (4.5) and (4.7) and taking \(R\) suitably small, it yields
\[
\|\Phi(u) - \Phi(\bar{u})\|_X \leq \frac{1}{2} \|u - \bar{u}\|_X.
\] (4.8)
Finally we study the asymptotic linear profile of the solution.

Suppose that u_L given by the formula $u_L(t) = G(t) \ast u_1 + H(t) \ast u_0$. In the previous two section, we have shown that the solution u to problem (1.1) and (1.2) can be approximated by the linear solution u_L. Now the aim is to derive a simpler asymptotic profile of the linear solution u_L.

In the Fourier space, we obtain $\hat{\dot{u}}_L(\xi, t) = \hat{\dot{G}}(\xi, t)\hat{u}_1(\xi, t) + \hat{\dot{H}}(\xi, t)\hat{u}_0(\xi)$, where $\hat{G}(\xi, t)$ and $\hat{H}(\xi, t)$ are given explicitly in (2.6) and (2.7). First we give the asymptotic expansions of $\hat{G}(\xi, t)$ and $\hat{H}(\xi, t)$ for $\xi \to 0$. By using the Taylor expansion to (2.4), we obtain

$$\lambda_{\pm}(\xi) = \frac{1}{2}(\alpha|\xi|^2 - |\xi|^4) \pm \frac{|\xi|^i}{2}(2 + |\xi|^2 - \frac{\alpha^2}{4}|\xi|^4 + O(|\xi|^4))$$

and

$$\frac{1}{\lambda_+ - \lambda_-} = \frac{1}{i|\xi|\sqrt{4 + 4|\xi|^2 - |\xi|^6 - \alpha^2|\xi|^4 + 2\alpha|\xi|^2}}$$

Substituting these expansions to (2.6) and (2.7), we obtain

$$\hat{\dot{G}}(\xi, t) = \frac{e^{\lambda_+ t} - e^{\lambda_- t}}{\lambda_+ - \lambda_-}$$

and

$$\lambda_+ e^{\lambda_- t} - \lambda_- e^{\lambda_+ t}$$

for $\xi \to 0$. Let

$$\hat{G}_0(\xi, t) = \frac{1}{2i|\xi|} e^{\frac{\alpha}{2}|\xi|^2 t}(e^{i|\xi|t} - e^{-i|\xi|t})$$

and

$$\hat{H}_0(\xi, t) = \frac{1}{2} e^{\frac{\alpha}{2}|\xi|^2 t}(e^{i|\xi|t} + e^{-i|\xi|t})$$

Thus for $|\xi| \leq r_0$ we obtain

$$|\langle \hat{G} - \hat{G}_0 \rangle(\xi, t)| \leq C e^{-c|\xi|^2 t}, \quad |\langle \hat{H} - \hat{H}_0 \rangle(\xi, t)| \leq C|\xi| e^{-c|\xi|^2 t},$$

where r_0 is a small positive constant. Now we define \overline{u}_L by

$$\overline{u}_L(t) = G_0(t) \ast u_1 + H_0(t) \ast u_0.$$ (4.9)

\overline{u}_L gives an asymptotic profile of the linear solution u_L.

From (4.8), we conclude that Φ is a contracting mapping. Then there exists a fixed point $u \in X_R$ of mapping Φ, which is a solution (1.1) and (1.2) and the proof is completed. \(\Box\)
Theorem 3. Suppose that $n \geq 1$, $s \geq 0$ and $u_0 \in H^{s+2} \cap L^1$ and $u_1 \in H^s \cap \dot{W}^{-1,1}$. Put $E_0 = \|u_0\|_{L^1} + \|u_1\|_{\dot{W}^{-1,1}} + \|u_0\|_{H^{s+2}} + \|u_1\|_{H^s}$. Let u_L be the linear solution and \tilde{u}_L be defined by (4.9). Thus we have
\[\|\partial_x^k (u_L - \tilde{u}_L)(t)\|_{L^2} \leq CE_0 (1 + t)^{-\frac{n+k+1}{2}} \]
for $0 \leq k \leq s + 2$.

Proof. It follows from definition that
\[(u_L - \tilde{u}_L)(t) = (G - G_0)(t) * u_1 + (H - H_0)(t) * u_0. \]
So it suffices to show the following estimates:
\[\|\partial_x^k (G - G_0)(t) * u_1\|_{L^2} \leq C(1 + t)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2}\right) - \frac{k+1-j}{2}} \|\partial_x^j u_1\|_{\dot{W}^{-1,p}} + Ce^{-ct} \|\partial_x^{k+l-2} u_1\|_{L^2}, \]
\[\|\partial_x^k (H - H_0)(t) * u_0\|_{L^2} \leq C(1 + t)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2}\right) - \frac{k+1-j}{2}} \|\partial_x^j u_0\|_{L^p} + Ce^{-ct} \|\partial_x^{k+l} \phi\|_{L^2}, \]
where $1 \leq p \leq 2$, and k, j and l are nonnegative integers such that $0 \leq j \leq k+1$. We assumed $k + l - 2 \geq 0$ in the first estimate. These estimates can be proved similarly as in the proof of Lemma 5 by using (4.1) for $|\xi| \leq r_0$ and (2.17) and (4.4) for $|\xi| \geq r_0$. We omit the details. \qed

5 Conclusions

In the body of the paper, we have considered a dissipative Boussinesq-type equation. This equation (see Equation (1.1)) arises in the study of the stability of one-dimensional periodic patterns in systems with Galilean invariance and also the oscillations of elastic beams. Here we have shown that the Cauchy problem associated to this equation has a unique global solution in some suitable Sobolev space. The main difficulty was how to control the nonlinear term of the equation which is a combination of u and u_t. Under small condition on the initial value, we proves the existence by the contraction mapping principle due to small nonlinear terms. We also obtained some asymptotic behavior of global solutions in some time weighted spaces. In the presence of the dissipation and small nonlinearities, we established that the solution the nonlinear initial value problem behaves like the linear solution, and thus it can be approximated by the linear solution.

In the future, we plan to study this equation with more general nonlinearity. The sharpness of the decay estimates and low regularity of the solutions will be also very important and interesting issues.

Acknowledgements

The authors wish to thank the unknown referees for their careful reading.

References

