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Abstract. In this article, an elliptic equation, which type degenerates (either weakly
or strongly) at the axis of 3-dimensional cylinder, is considered. The statement of
a Dirichlet type problem in the class of smooth functions is given and, subject to
the type of degeneracy, the classical solutions are composed. The uniqueness of the
solutions is proved and the continuity of the solutions on the line of degeneracy is
discussed.
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1 Introduction and statement of the problem

In the cylinder Q = {(x, y, z): x2 + y2 < ρ2, 0 < z < h}, we consider the
equation

r2α(uxx + uyy + uzz)− cu = 0, α > 0, (1.1)

where r =
√
x2 + y2, c > 0 is a real constant. Evidently, equation (1.1) is

elliptic outside of the line x = y = 0 and its order degenerates at this line, i.e.
at the axis of cylinder Q. If α ≤ 1, then the type of degeneracy of Eq. (1.1) is
called to be regular (or weak), and in the case α > 1 it called to be irregular
(or strong) [14].

The Diriclet type problems for the elliptic systems, which are irregularly
degenerate at the inner point of a considered domain, are developed, e.g., in
[2, 7, 8]. In [9, 10,11], the Dirichlet problem is considered for equation

uzz + r2α(uxx + uyy)− cu = 0, α > 0, (1.2)

degeneracy of which is the other than in the case of Eq. (1.1), i.e. the type of
Eq. (1.2) degenerates at z-axis. There is shown here that, under zero boundary
value conditions on the bases of cylinderQ, this problem has the unique solution
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from the class C2(Q0) ∩ C(Q), and, in the case of the general boundary value
conditions, the well-posedness of Dirichlet problem and the continuity of the
solution on the line x = y = 0 is related with the behavior of the boundary
functions in the vicinity of the points P0(0, 0, 0) and Ph(0, 0, h), in which this
line crosses the bases of cylinder Q. Also there is shown that, in particular case
α = 1, the solution of this problem is non-continuous on the liene x = y = 0, if
the boundary value conditions are non-zero on the bases of cylinder Q.

In this paper, we discuss the Dirichlet type problem to Eq. (1.1). We shall
show up here that, under the zero boundary value conditions on both bases of
cylinder Q, this problem has the unique solution for all α > 1 from the same
class C2(Q0)∩C(Q) as in the case of Eq. (1.2). If the boundary value conditions
are non-zero, in the case α = 1, we shall show that the solution can be not only
non-continuous (differently than in the case of Eq. (1.2), but also continuous
on the line of the degeneracy. Specifically, we obtain the sufficient conditions of
the continuity, which are related with the behavior of the boundary functions
at both points P0, Ph and also with the coefficient c.

It is convenient to introduce the cylindrical coordinates r, ϕ, z (|ϕ| ≤ π) in
which an Eq. (1.1) takes the form

uzz + L(u) = 0, (1.3)

where operator L is defined by

L =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂ϕ2
− r−2αc.

(Here we denote a solution v(r, ϕ, z) = u(r cosϕ, r sinϕ, z) of Eq. (1.3) by
u(r, ϕ, z) again.)

In these coordinates, Q = {(r, ϕ, z): (r, ϕ) ∈ ∆, 0 < z < h}, where ∆ is
the disk {(r, ϕ): r < ρ, |ϕ| ≤ π}. Besides, we use the following denotations:
K = ∂∆ is the circle, S = K × [0, h] is the lateral surface and Bi = {(r, ϕ, z):
(r, ϕ) ∈ ∆, z = (i−1)h}, i = 1, 2, are the bases of cylinder Q, ∆δ = {(r, ϕ): δ <
r < ρ, |ϕ| ≤ π}, δ ≥ 0, is the ring, Qδ = {(r, ϕ, z): (r, ϕ) ∈ ∆δ, 0 < z < h} is
cylindrical ring, Biδ = {(r, ϕ, z): (r, ϕ) ∈ ∆δ, z = (i − 1)h}, i = 1, 2, are the
bases of the cylindrical ring Qδ, Ω is the domain {(ϕ, z): |ϕ| ≤ π, 0 ≤ z ≤ h}.
As usually, we denote by D the closure of any domain D, by N and N0 the set of
natural numbers and the set of non-negative integer numbers, correspondingly,
and by Cl(D) the class of functions which derivatives are continuous trough
up to the order l in a domain D.

The object of this work is the following Dirichlet problem.

Problem D. Find the solution u(r, ϕ, z) of Eq. (1.3) in the class of functions
C2(Q0) ∩ C(Q \ {r = 0}) (or, maybe, in the class C2(Q0) ∩ C(Q), which is
bounded in Q0 and satisfies the boundary value conditions

u(ρ, ϕ, z) = f(ϕ, z) (1.4)

for (ϕ, z) ∈ Ω and

u
(
r, ϕ, (i− 1)h

)
= fi(r, ϕ), i = 1, 2, (1.5)
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for (r, ϕ) ∈ ∆0 ∪ K (or, maybe, for (r, ϕ) ∈ ∆, where f and fi are given
continuous and 2π-periodic in ϕ functions such that

f
(
ϕ, (i− 1)h

)
= fi(ρ, ϕ), i = 1, 2. (1.6)

The particular case of Problem D, when fi(r, ϕ) ≡ 0, i = 1, 2, in the disk ∆,
we shall call as Problem D0. Obviously, in this case, condition (1.5) takes the
shape

u
(
r, ϕ, (i− 1)h

)
= 0, i = 1, 2.

If compatibility condition (1.6) is replaced by

f
(
ϕ, (i− 1)h

)
= fi(ρ, ϕ) = 0, i = 1, 2, (1.7)

such partial case of Problem D we call as Problem D1.

2 Solutions of Problem D0

Primarily, we indicate the maximum principle for the solutions of Problem D.

Lemma 1. If the solution u ∈ C2(Q0) ∩ C(Q \ {r = 0}) of Problem D does
not attain neither positive maximum nor negative minimum on the line r = 0,
then there holds the estimate∣∣u(r, ϕ, z)

∣∣ < max
{

max
Ω

∣∣f(ϕ, z)
∣∣, max
i=1,2

max
∆

∣∣fi(r, ϕ)
∣∣}, ∀(r, ϕ, z) ∈ Q0.

Proof. Due to the ellipticity of Eq. (1.3) in Q0 and in view of inequality c > 0,
any solution of this equation attains neither positive maximum nor negative
minimum in Q0 [1] . Then, under the assumption of the Lemma, the solution
u ∈ C2(Q0)∩C(Q\{r = 0}) of Problem D attains either positive maximum or
negative minimum only on the surface of cylinder Q0. Therefore, estimate (1.7)
holds because of (1.4), (1.5). ut

By the separation of variables, we obtain the following partial solutions

um(r, ϕ, z; γ) = Rm(r; γ)Z(z; γ)

{
cosmϕ, m ∈ N,
sinmϕ, m ∈ N0

of Eq. (1.3), where Z(z; γ) and Rm(r; γ) are the solutions of corresponding
equations

Z ′′ + γZ = 0, (2.1)

r
d

dr

(
r

dR

dr

)
−
(
m2 + γr2 + cr2(1−α)

)
R = 0. (2.2)

Setting in (2.1) and (2.2)

γ = γ2n := (nπ/h)
2
,
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we get the sequence of partial solutions

umn(r, ϕ, z) = Rmn(r) sin γnz

{
cosmϕ, m, n ∈ N,
sinmϕ, m ∈ N0, n ∈ N

(2.3)

of Eq. (1.3), where Rmn(r) := Rm(r; γ2n). Evidently, these partial solutions
satisfy condition (1.5).

According to the statement of Problem D, we take interest only in the
bounded in Q0 solutions of Eq. (1.3). Thus, the function Rmn in (2.3) ought to
be bounded at the point r = 0. So we are in need to investigate the behavior
of the solutions of the equation

r
d

dr

(
r

dR

dr

)
−
(
m2 + γ2nr

2 + cr2(1−α)
)
R = 0 (2.4)

at the point r = 0. If α 6= 1, then the solutions of Eq. (2.4) can not be expressed
analytically by elementary or transcendental functions. However, in all cases,
one can give the asymptotics of linear independent solutions of this equation.

Let α < 1. In this case, there exist the solutions R
(1)
mn and R

(2)
mn such that

R(1)
mn(r)=rm

[
1+o(1)

]
, m ∈ N0, R(2)

mn(r) =

{
r−m[1 + o(1)], m ∈ N,
ln r[1 + o(1)], m = 0

(2.5)

as r → 0 [6].
If α = 1, then Eq. (2.4) represents so called Bessel equation, which linear

independent solutions R
(3)
mn and R

(4)
mn are of the shape

R(3)
mn(r) = I√m2+c(γnr), R(4)

mn(r) = K√m2+c(γnr),

here I√m2+c and K√m2+c are the modified Bessel functions of the first and
second kind, respectively. It is well known that [3, 13]

R(3)
mn(r) = c(1)mnr

√
m2+c

[
1 +O

(
r2
)]
, R(4)

mn(r) = c(2)mnr
−
√
m2+c

[
1 + o(1)

]
(2.6)

as r → 0. (Here c
(1)
mn and c

(2)
mn are some non-zero constants, which can be

calculated exactly.) Thus, only the solution R
(3)
mn is bounded at the point

r = 0. Specifically, limr→0R
(3)
mn(r) = 0 for all m ∈ N0 and for all n ∈ N.

Assume that α > 1. According to Eq. (2.4), the function

P =
√
rR (2.7)

satisfies the equation

P ′′ −
[
cr−2α + gmn(r)

]
P = 0, (2.8)

wheregmn(r) = (m2 − 1/4)r−2 + γ2n. Due to the evident condition∫ ρ

0

rα
∣∣gmn(r)

∣∣dr <∞, α > 1,
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the main parts of asymptotic of the solutions of Eq. (2.8) do not depend of
function gmn as r → 0 [5]. Namely, there exist the linear independent solutions

P
(1)
mn and P

(2)
mn such that

P (1)
mn(r) = rα/2 exp

{
−
√
c

α− 1
r1−α

}[
1 +O

(
rα−1

)]
, (2.9)

P (2)
mn(r) = rα/2 exp

{ √
c

α− 1
r1−α

}[
1 + o(1)

]
as r → 0 for all m ∈ N0 and for all n ∈ N [5, 6]. Jointly with (2.7), this yields
the existence of linear independent solutions

R(5)
mn(r) = r−1/2P (1)

mn(r), R(6)
mn(r) = r−1/2P (2)

mn(r)

of Eq. (2.4) with the asymptotic expansions:

R(5)
mn(r) = r(α−1)/2 exp

{
−
√
c

α− 1
r1−α

}[
1 +O

(
rα−1

)]
, (2.10)

R(6)
mn(r) = r(α−1)/2 exp

{ √
c

α− 1
r1−α

}[
1 + o(1)

]
as r → 0. Thus, limr→0R

(5)
mn(r) = 0 and limr→0R

(6)
mn(r) = ∞ for all m ∈ N0

and for all n ∈ N.

Let us note that the solutions R
(1)
mn(r) and R

(5)
mn(r) are one-valued by (2.5)

and (2.10), respectively. There holds the following lemma.

Lemma 2. The solutions R
(j)
mn(r), j = 1, 3, 5, of Eq. (2.4) are monotonously

increasing for all m ∈ N0 and for n ∈ N.

Proof. Let us note that the solutions of Eq. (2.4) cannot attain neither positive
maximum nor negative minimum on the interval (0,+∞). Then monotonously

increase of the solutions R
(1)
mn(r) for m,n ∈ N and R

(j)
mn(r), j = 3, 5, for m ∈ N0

and n ∈ N follows immediately from asymptotic expressions (2.5), (2.6) and
(2.9), because the limit of these solutions is vanish for r = 0.

Let us examine the solution R
(1)
0n , n ∈ N. It follows from (2.5) that

limr→0R
(1)
0n (r) = 1. Assume that this solution decreases on some interval

(0, r0), where r0 is thus small that R
(1)
0n (r) is positive on (0, r0], and it does not

have any positive minimum on (0, r0). Then R′0n(r) < 0, r ∈ (0, r0]. Further,
since

d

dr

(
r

dR
(1)
0n

dr

)
≡ r
(
γ2n + cr−2α

)
R

(1)
0n > 0, r ∈ (0, r0],

the function rR′0n(r) is monotonously increasing on the interval (0, r0) and it
is negative on (0, r0]. Then there exists a constant µ > 0 such that

d

dr
R

(1)
0n (r) ≤ −µ

r
, r ∈ (0, r0].

Math. Model. Anal., 22(5):717–732, 2017.
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Integrating this inequality on the interval (ε, r0), we obtain that

R
(1)
0n (ε) ≥ µ ln

r0
ε

+R0n(r0);

consequently, limε→0R0n(ε) = +∞, but this is in contradiction with the bound-

edness of the solution R
(1)
0n at the point r = 0. Therefore, this solution is in-

creasing in a neighbourhood of the point r = 0. That yields the increase of

R
(1)
0n on the interval (0,+∞), because the solutions of Eq. (1.3) cannot attain

any positive maximum on the interval (0,+∞). ut

Assume that f ∈ C2(Ω) and f(ϕ, (i − 1)h) = 0, i = 1, 2. Then function f
can be expanded into double Fourier series

f(ϕ, z) =

∞∑
n=1

a0n sin γnz +

∞∑
n=1

∞∑
m=1

(amn cosmϕ+ bmn sinmϕ) sin γnz, (2.11)

(ϕ, z) ∈ Ω, with the coefficients

amn
bmn

}
=
κmn
π2

∫ h

0

sin γnz dz

∫ π

−π
f(ϕ, z)

{
cosmϕ
sinmϕ

}
dϕ, (2.12)

where κ00 = 1 and κ0n = 1
2 , κmn = 1

4 for m,n ∈ N. Since f ∈ C2(Ω),
series (2.11) converges uniformly and absolutely on Ω [4].

Introduce the series

u
(j)
0 (r, ϕ, z) =

∞∑
n=1

R
(j)
0n (r)

R
(j)
0n (ρ)

a0n sin γnz

+

∞∑
n=1

∞∑
m=0

R
(j)
mn(r)

R
(j)
mn(ρ)

(amn cosmϕ+ bmn sinmϕ) sin γnz, j = 1, 3, 5, (2.13)

which represent the composition of partial solutions of Eq. (1.3), evidently.
By virtue of Lemma 1,

0 < R
(j)
0n (r) ≤ R(j)

0n (ρ), j = 1, 3, 5,

on [0, ρ], hence

∣∣u(j)0 (r, ϕ, z)
∣∣ =

∞∑
n=1

|a0n|+
∞∑
n=1

∞∑
m=0

(
|amn|+ |bmn|

)
<∞, j = 1, 3, 5,

for each (r, ϕ, z) ∈ Q because of absolutely convergence of series (2.11). There-
fore, series (2.13) converge uniformly and absolutely everywhere in cylinder Q
including the line of degeneracy r = 0. Further, it is easily seen that

u
(j)
0 (ρ, ϕ, z) = f(ϕ, z) ∀(ϕ, z) ∈ Ω,

u
(j)
0 (r, ϕ, 0) = u

(j)
0 (r, ϕ, h) = 0 ∀(r, ϕ) ∈ ∆, j = 1, 3, 5.
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So by (2.13), boundary value conditions (1.4) and (1.5) are satisfied. Due to
the ellipticity of Eq. (1.3) in Q0 and because of the maximum principle for
elliptic equations, which holds in view of the condition c > 0, the sums of
series (2.13) are twice continuously differentiable and satisfy Eq. (1.3) in Q0.

Hence, by (2.13), we represent the solutions u
(1)
0 , u

(3)
0 and u

(3)
0 of Problem D0

corresponding to the parameter 0 < α < 1, α = 1 and α > 1.
Further, according to (2.5), (2.6), (2.10), we get immediately from (2.13)

that

lim
r→0

u
(j)
0 (r, ϕ, z) =

{∑∞
n=0 α0n sin γnz, for j = 1,

0, for j = 3, 5.

Since
∞∑
n=0

α0n sin γnz =
1

2π

∫ π

−π
f(ϕ, z)dϕ,

(because of definition (2.12) of the coefficients α0n), this yields the estimate

∣∣u(1)0 (0, ϕ, z)
∣∣ ≤ 1

2π

∫ π

−π

∣∣f(ϕ, z)
∣∣dϕ ≤ max

Ω

∣∣f(ϕ, z)
∣∣.

So all solutions u
(j)
0 , j = 1, 3, 5, do not attain neither positive maximum nor

negative minimum on the line r = 0. Thus, it follows from Lemma 1 that∣∣u(j)0 (r, ϕ, z)
∣∣ < max

Ω

∣∣f(ϕ, z)
∣∣, j = 1, 3, 5

everywhere in Q0. This yields the uniqueness of the obtained solutions of
Problem D0.

It follows from above the following theorem.

Theorem 1. Let f ∈ C2(Ω) and let f(ϕ, (i − 1)h) = 0, i = 1, 2. Then Prob-
lem D0 has the unique solution from the class C2(Q0) ∩ C(Q). Subject to the
type of the degeneracy of Eq. (1.3), the solution of this problem can be expressed
by series (2.13).

3 Solution of Problem D1 (the case α = 1)

Next we consider only the case of the operator L, when α = 1. Preliminary,
we deal with the following eigenvalues problem.

EV-Problem. Find the solutions w(r, ϕ; γ) of equation

L(w) :=
1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2
∂2w

∂ϕ2
− c

r2
w = −γw (3.1)

in the class of functions C2(∆0 ∪ K), which are bounded in ∆0, also are 2π-
periodic in ϕ and satisfy the boundary value condition

w(ρ, ϕ; γ) = 0. (3.2)

Math. Model. Anal., 22(5):717–732, 2017.
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Using the method of separate variables, we obtain the following partial
solutions of Eq. (3.1):

Rm(r; γ)×

{
cosmϕ, m ∈ N0,

sinmϕ, m ∈ N,

where Rm(r; γ) is the non-trivial solution of Sturm–Liouville problem (next we
call it SL-Problem)

1

r

d

dr

(
r

dR

dr

)
− m2 + c

r2
R = −γR, (3.3)

R(ρ) = 0,
∣∣R(r)

∣∣ <∞ on (0, ρ]. (3.4)

Eq. (3.3) has only one bounded solution

Rm(r; γ) = J√m2+c(γr)

with the accuracy of constant multiplier, whereas all other linear independent
solutions are unbounded at the point r = 0. (Here Jν is Bessel function of the
first kind of order ν [13].) Let

λm0 < λm1 < · · · < λmn < · · ·

be the positive roots of Bessel function J√m2+c. Choose in Eq. (3.1) the values
of the parameter γ by the definition

γmn = λmn/ρ, n ∈ N0. (3.5)

Then Bessel functions J√m2+c(λmnr/ρ), n ∈ N0 represent the set of the eigen-
functions of SL-Problem (3.3), (3.4), which are continuous at the point r = 0
because of the asymptotic expansion [3, 13]

J√m2+c

(
λmn

r

ρ

)
=

(
λmn
2ρ

)√m2+c

r
√
m2+c

(
1 +O(r)

)
(3.6)

as r → 0. So we get the following sequence of the eigenfunctions of EV-Problem
(3.1), (3.2)):

wmn(r, ϕ) := w (r, ϕ;λmn/ρ)

= J√m2+c

(
λmn
ρ
r

)
×

{
cosmϕ, m, n ∈ N0,

sinmϕ, m ∈ N, n ∈ N0.
(3.7)

According to (3.6), wmn(0, ϕ) = 0 and wmn ∈ C2(∆0) ∩ C(∆).
Next we shall deal with the conditions under which the boundary functions

fi(r, ϕ), i = 1, 2, from (1.5) can be expressed in the defined by (3.7) eigenfun-
tions wmn of EV-Problem (3.1), (3.2).

Lemma 3. Assume that functions fi, i = 1, 2, are such that
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(i) fi and ∂fi
∂ϕ ∈ C(∆);

(ii) fi(ρ, ϕ) = 0 for all ϕ ∈ [−π, π], ∂fi
∂r ∈ C(∆0 ∪K) and∫ ρ

0

∣∣∣∂fi(r, ϕ)

∂r

∣∣∣dr <∞, ∀ϕ ∈ [−π, π].

Then, under conditions (i), (ii), each function fi can be expanded into the series

fi(r, ϕ) =
1

2

∞∑
n=0

a0nJ√c

(
λ0n
ρ
r

)

+

∞∑
m=1

∞∑
n=0

J√m2+c

(
λmn
ρ
r

)(
a(i)mn cosmϕ+ b(i)mn sinmϕ

)
, (3.8)

where

a
(i)
mn

b
(i)
mn

}
=

2

πρ2J2
1+
√
m2+c

(λmn)

×
∫ ρ

0

J√m2+c

(λmn
ρ
r
)
r dr

∫ π

−π
fi(r, ϕ)

{
cosmϕ
sinmϕ

}
dϕ. (3.9)

These series converge uniformly in the ring ∆δ and converge uniformly and
absolutely in the ring ∆δ \∆ρ−δ for every δ ∈ (0, ρ).

Let, besides (i) and (ii), there hold conditions

(iii) fi(0, ϕ) = 0 for all ϕ ∈ [−π, π];

(iv) ∂fi
∂r ∈ C(∆), ∂2fi

∂r2 ∈ C(∆0 ∪K), also ∂fi(r,ϕ)
∂r = o(1) and ∂2fi(r,ϕ)

∂r2 = O(1)
uniformly with respect to ϕ as r → 0.

Then series (3.8) converges uniformly and absolutely in the whole disk ∆.

Proof. Under condition (i), one can expand both function fi(r, ϕ), i = 1, 2,
by uniformly and absolutely converging in ∆ Fourier series [12]

fi(r, ϕ) =
1

2
a
(i)
0 (r) +

∞∑
m=1

(
a(i)m (r) cosmϕ+ b(i)m (r) sinmϕ

)
, (3.10)

where

a
(i)
m (r)

b
(i)
m (r)

}
=

1

π

∫ π

−π
fi(r, ϕ)

{
cosmϕ
sinmϕ

}
dϕ,

m ∈ N0,
m ∈ N. (3.11)

Obviously, if we want have the expansion of the functions fi(r, ϕ) by the
eigenfunctions wmn of EV-Problem, then there is suffice to expand the coef-

ficients a
(i)
m (r) and b

(i)
m (r), i = 1, 2, of series (3.10) in the eigenfunctions of

SL-Problem (3.4), (3.5).

Math. Model. Anal., 22(5):717–732, 2017.



726 S. Rutkauskas

Let conditions (i) and (ii) hold. Then it follows from (3.11) that

a(i)m (ρ) = 0, a(i)m ∈ C[0, ρ],
dam
dr
∈ C(0, ρ]

and ∫ ρ

0

∣∣∣∣da(i)m (r)

dr

∣∣∣∣dt =
1

π

∫ ρ

0

∣∣∣∣ ∫ π

−π

∂g(r, ϕ)

∂r
cosmϕdϕ

∣∣∣∣dr
≤ 1

π

∫ π

−π
dϕ

∫ ρ

0

∣∣∣∣∂g(r, ϕ)

∂r

∣∣∣∣dr <∞.
These properties of functions a

(i)
m (r), i = 1, 2, are sufficient in order to expand

them into Fourier–Bessel series

a(i)m (r) =

∞∑
n=0

a(i)mnJ
√
m2+c

(
λmn
ρ
r

)
, m ∈ N0, (3.12)

where

a(i)mn =
2

ρ2J2√
m2+c+1

(λmn)

∫ ρ

0

a(i)m (r)J√m2+c

(
λmn
ρ
r

)
r dr. (3.13)

These series converge uniformly on each interval [δ, ρ] and converge uniformly
and absolutely on each interval [δ, ρ− δ] for every δ ∈ (0, ρ) (see [12,13]).

Let all conditions (i)–(iv) of the lemma hold. Then we obtain from (3.11)
that

a(i)m ∈ C1
(
[0, ρ]

)
, a(i)m (0) = a(i)m (ρ) =

da
(i)
m (0)

dr
= 0,∣∣∣∣d2a

(i)
m (r)

dr2

∣∣∣∣ <∞ ∀r ∈ (0, ρ), i = 1, 2.

This additional collection of the properties of functions a
(i)
m , i = 1, 2, yields

the possibility to expand these functions into series (3.12), which converge
uniformly and absolutely on the whole interval [0, ρ] (see [12]).

Further, replacing in equality (3.13) the functions a
(i)
m (r), i = 1, 2, by their

expressions (3.11), we get for the coefficients a
(i)
mn, i = 1, 2, definition (3.9).

Just under the same conditions as in the case of the functions a
(i)
mn, in the

same way as above, we obtain the expansions

b(i)m (r) =

∞∑
n=0

b(i)mnJ
√
m2+c

(
λmn
ρ
r

)
, i = 1, 2, m ∈ N (3.14)

with the coefficients b
(i)
mn defined by (3.9). Subject to the conditions of the

Lemma, the properties of the convergence of series (3.14) are analogous as in
the case of series (3.12).
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Finally, putting (3.12) and (3.14) into (3.10), we obtain representations
(3.9). Moreover, it follows from the above the uniform convergence of series
(3.9) in every ring ∆δ and uniform and absolute convergence in every ∆δ \∆ρ−δ
under conditions (i), (ii), and the uniform and absolute convergence in whole
disk ∆ under conditions (i)–(iv). ut

Remark. Even though functions fi, i = 1, 2, are such that fi(0, ϕ) = 0, condi-
tions (i)–(ii) of Lemma 3 do not warrant entirely the uniformly convergence of
series (3.12) and (3.14) on the whole interval [0, ρ]. That is the reason why, in
the case of conditions (i)–(ii), we do not require for the vanishing of the both
functions fi for r = 0.

Remembering that γmn is defined by (3.6), denote by Z
(i)
mn(z), i = 1, 2,

the solutions of Eq. (2.1) with γ = −γmn, which satisfy the boundary value
conditions

Z(1)
mn(0) = a(1)mn, Z(1)

mn(h) = a(2)mn; Z(2)
mn(0) = b(1)mn, Z(2)

mn(h) = b(2)mn, (3.15)

where a
(i)
mn and b

(i)
mn, i = 1, 2, are given by (3.9). It is easily seen that those

solutions are as follows:

Z(1)
mn(z) = sinh−1

√
γmnh

(
a(1)mn sinh

√
γmn(h− z) + a(2)mn sinh

√
γmnz

)
,

Z(2)
mn(z) = sinh−1

√
γmnh

(
b(1)mn sinh

√
γmn(h− z) + b(2)mn sinh

√
γmnz

)
.

So we obtain the following partial solutions

J√m2+c

(
λmn
ρ
r

)
×

{
Z

(1)
mn(z) cosmϕ, m, n ∈ N0,

Z
(2)
mn(z) sinmϕ, m ∈ N, n ∈ N0

of Eq. (1.3). Evidently, they are continuous in Q.
Let us compose the series

u1(r, ϕ, z) =
1

2

∞∑
n=0

J√c

(
λmn
ρ
r

)
Z

(1)
0n (z)

+

∞∑
m=1

∞∑
n=0

J√m2+c

(
λmn
ρ
r

)(
Z(1)
mn(z) cosmϕ+Z(2)

mn(z) sinmϕ
)
. (3.16)

In view of (3.15), this series coincides on the bases Bi with the series (3.8) of
the respective functions fi, i = 1, 2. Observe also that u1(ρ, ϕ, z) = 0 because
of J√m2+c(λmn) = 0, i.e. series (3.16) converges (uniformly) on the surface S
of cylinder Q. Further, due to the obvious inequalities∣∣Z(1)

mn(z)
∣∣ ≤ ∣∣a(1)mn∣∣+

∣∣a(2)mn∣∣, ∣∣Z(2)
mn(z)

∣∣ ≤ ∣∣b(1)mn∣∣+
∣∣b(2)mn∣∣

and in view of Lemma 4, we get from (3.16) that∣∣u1(r, ϕ, z)
∣∣ ≤ 1

2

∞∑
n=0

(∣∣a(1)0n

∣∣+
∣∣a(2)0n

∣∣)∣∣∣J√c(λmnρ r
)∣∣∣

+

∞∑
m=1

∞∑
n=0

(∣∣a(1)mn∣∣+
∣∣a(2)mn∣∣+

∣∣b(1)mn∣∣+
∣∣b(2)mn∣∣)∣∣∣J√m2+c

(λmn
ρ
r
)∣∣∣ <∞ (3.17)
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in cylindrical ring Ωδ, δ ∈ (0, ρ), under conditions (i), (ii) and in Q under
conditions (i)–(iv) of Lemma 3.

Thus, if functions fi, i = 1, 2, satisfy conditions (i)–(iv), then series (3.16)
converges uniformly in Q, hence, u1 ∈ C(Q) and u1(0, ϕ, z) = 0 because of
(3.6). Moreover, in view of the ellipticity of Eq. (1.3) in Q0 and due to the
condition c > 0, the sum u1(r, ϕ, z) of series (3.16) is twice continuously dif-
ferentialable in Q0, i.e. it represents the solution of Eq. (1.3) from the class
C2(Q0) ∩ C(Q). Evidently, u1 satisfies the boundary value conditions:

u1
(
r, ϕ, (i− 1)h

)
= fi(r, ϕ), i = 1, 2, (3.18)

for (r, ϕ) ∈ ∆, i.e. on the bases Bi of cylinder Q, and

u1(ρ, ϕ, z) = 0 (3.19)

for (ϕ, z) ∈ Ω, i.e. on the lateral surface S of cylinder Q.

If functions fi, i = 1, 2, satisfy conditions (i), (ii), then it follows from (3.17)
the uniform convergence of series (3.16) for r = δ, i.e. on the interior lateral
surface of cylindrical ring Qδ. According to Lemma 3, series (3.8) converge uni-
formly in ∆δ. This implies the uniform convergence of series (3.16) on the both
bases Biδ of cylindrical ring Qδ. Therefore, series (3.16) converges uniformly on
the whole boundary of cylindrical ring Qδ. Then by similar reasoning as above,
we obtain that this series converges uniformly in Qδ and its sum u1(r, ϕ, z) rep-
resents the solution of Eq. (1.3) from C2(Q0)∩C(Qδ). Since δ is whatever, we
get that u1 ∈ C2(Q0) ∩ C(Q \ {r = 0}). Obviously, in this case, u1 satisfies
condition (3.19), but condition (3.18) is satisfied only for (r, ϕ) ∈ ∆0 ∪K.

Assuming that compatibility condition (1.7) holds, let us consider the solu-
tion

u2 = u
(3)
1 + u1 (3.20)

of Eq. (1.3), where u
(3)
1 is the obtained above solution of Problem D0 for α = 1

(see (2.13)) and u1 is the solution given by (3.16). Note that

u2(ρ, ϕ, z) = f(ϕ, z), (ϕ, z) ∈ Ω, u2
(
r, ϕ, (i− 1)h

)
= fi(r, ϕ), i = 1, 2,

for each (r, ϕ) ∈ ∆0 ∪K, if functions fi satisfy conditions (i), (ii), and for each
(r, ϕ) ∈ ∆, if these functions satisfy conditions (i)–(iv) of Lemma 3. Thus, u2
is the solution of Problem D1.

The uniqueness of the solution of Problem D1 follows from Lemma 1.

From reasoning above, we get the following theorem.

Theorem 2. Let f ∈ C2(Ω) and let fi, i = 1, 2, satisfy conditions (i), (ii) of
Lemma 3. If α = 1, then there exists the unique solution u2 of Problem D1
from the class C2(Q0)∩C(Q\{r = 0}). If fi, i = 1, 2, satisfy all conditions (i)–
(iv) of Lemma 3, then u2 ∈ C2(Q0) ∩ C(Q). The solution u2 can be expressed
exactly by (3.20).
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4 Solution of Problem D (the case α = 1)

Assume that f ∈ C2(Ω), f(ϕ, (i−1)h) 6= 0, i = 1, 2, identically, and compatibil-
ity condition (1.6) holds. Then, similarly to (2.11), function f can be expanded
into uniformly and absolutely converging in Ω double Fourier series [4]

f(ϕ, z) =

∞∑
n=0

a0n cos γnz +

∞∑
n=1

∞∑
m=1

(αmn cosmϕ+ βmn sinmϕ) cos γnz, (4.1)

where

αmn
βmn

}
=
κmn
π2

∫ h

0

cos γnz dz

∫ π

−π
f(ϕ, z)

{
cosmϕ
sinmϕ

}
dϕ,

m, n ∈ N0,
m ∈ N, n ∈ N0,

κ00 = 1, κ0n =
1

2
, κmn =

1

4
, m, n ∈ N.

By the method of separate variables, let us compose the auxiliary solution
ua of Eq. (1.3) by

ua(r, ϕ, z) =

∞∑
n=0

I√c(γnr)

I√c(γnρ)
α0n cos γnz

+

∞∑
n=0

∞∑
m=1

I√m2+c(γnr)

I√m2+c(γnρ)
(αmn cosmϕ+ βmn sinmϕ) cos γnz, (4.2)

which satisfies the evident condition

ua(ρ, ϕ, z) = f(ϕ, z), (ϕ, z) ∈ Ω. (4.3)

(The convergence of series (4.2) to the solution of Eq. (1.3) and inclusion ua ∈
C2(Q0) ∩ C(Q) can be justified just in the same way as in the case of series
(2.13)).

Lemma 4. Let f ∈ C2(Ω). Then ∂ua

∂ϕ ∈ C(Ω) and

∂kua(r, ϕ, z)

∂rk
= O

(
r
√
c−k) as r → 0, k = 0, 1, 2, (4.4)

uniformly in Q.

Proof. Due to the assumption f ∈ C2(Ω), series (3.20) is term-by-term dif-
ferentiable with respect to ϕ, i.e.

∂f(ϕ, z)

∂ϕ
=

∞∑
n=1

∞∑
m=1

m(−αmn cosmϕ+ βmn sinmϕ) cos γnz,

besides, the series on right-hand side converges uniformly and absolutely in Ω.
Thus,

∞∑
n=1

∞∑
m=1

m
(
|αmn|+ |βmn|

)
<∞.
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By differentiation of series (4.2) with respect to ϕ, we obtain that

∂ua(r, ϕ, z)

∂ϕ
=

∞∑
n=1

∞∑
m=1

I√m2+c(γnr)

I√m2+c(γnρ)
m(−αmn cosmϕ+ βmn sinmϕ) cos γnz.

Since functions I√m2+c(γnr), m ∈ N0, are monotonically decreasing on the
interval (0, ρ) [13], we get that∣∣∣∣∂ua(r, ϕ, z)

∂ϕ

∣∣∣∣ ≤ ∞∑
n=1

∞∑
m=1

m
(
|αmn|+ |βmn|

)
<∞

in (r, ϕ, z) ∈ Q. Thus the first assertion of the lemma is true.
Further, it follows from asymptotic properties of modified Bessel functions

[3, 13] that

dk

drk
I√m2+c(γnr) = κk

(
γn
2
r

)√m2+c−2(
1 +O

(
r2
))
, k = 0, 1, 2,

as r → 0, m,n ∈ N0, where κ0 = 1 and κk = 1
2 for k = 1, 2. According to this,

we obtain from (4.2) that

lim
r→0

rk−
√
c ∂

kua(r, ϕ, z)

∂rk
= 2−

√
c
∞∑
n=0

γ
√
c−k

n

I√c(γnρ)
α0n cos γnz, k = 0, 1, 2.

Since
γ
√
c−1

n

I√c(γnρ)
→ 0 as n→∞

(because of asymptotic properties of Bessel function I√c(t) as t → +∞ [3]),
the absolute convergence of series (4.1) yields the absolute convergence of
the series on the right of the last equality. Therefore, assertion (4.4) is also
true. ut

Introduce the functions gi, i = 1, 2, by

gi(r, ϕ) := ua
((
r, ϕ, (i− 1)h

))
− fi(r, ϕ), (4.5)

where ua is given by (4.2). Observe that

gi(ρ, ϕ) = f
(
ϕ, (i− 1)h

)
− fi(ρ, ϕ) = 0

because of (1.7).
Directly from Lemma 4, we obtain the following corollary.

Corollary. Let compatibility condition (1.7) holds. If f ∈ C2(Ω) and the func-
tions fi, i = 1, 2, satisfy conditions (i), (ii) of Lemma 3, then the functions
gi, i = 1, 2, also satisfy the same conditions. If, in addition, the functions fi,
i = 1, 2, satisfy conditions (iii), (iv) of Lemma 4 and the inequality c ≥ 4 holds,
then the functions gi, i = 1, 2, satisfy all conditions ((i)–(iv) of Lemma 3.
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Theorem 3. Let f ∈ C2(Ω) and let compatibility condition (1.7) holds. If
functions fi, i = 1, 2, satisfy conditions (i), (ii) of Lemma 3, then there exists
the solution of Problem D from the class C2(Q0)∩C(Q\{r = 0}). If functions
fi, i = 1, 2, are such that all conditions ( (i)–(iV) are satisfied and if c ≥ 4,
then Problem D has the solution from the class C2(Q0) ∩ C(Q). In both cases
the solution is unique.

Proof. Let us consider the following Problem D1 to Eq. (1.3):

u(ρ, ϕ, z) = 0, (ϕ, z) ∈ Ω, (4.6)

u
((
r, ϕ, (i− 1)h

))
= gi(r, ϕ), i = 1, 2, (4.7)

where functions gi are defined by (4.5). According to Theorem 2 and to Corol-

lary, there exists the unique solution u
(0)
1 (r, ϕ, z) of problem (4.6), (4.7) such

that
a) u

(0)
1 ∈ C2(Q0) ∩ C(Q \ {r = 0}) and boundary value condition (4.7) is

satisfied for (r, ϕ) ∈ ∆0 ∪K, if functions fi, i = 1, 2, satisfy conditions (i), (ii)
of Lemma 3;

b) u
(0)
1 ∈ C2(Q0) ∩ C(Q) and boundary value condition (4.7) is satisfied

for each in (r, ϕ) ∈ ∆, if functions fi, i = 1, 2, satisfy conditions (i)–(iv) of
Lemma 3 and if c ≥ 4.

Besides, the solution u
(0)
1 can be obtained analytically in the same way as

the solution u1 (see (3.16)) of the identically problem with boundary value
condition (1.5).

Introduce the following solution of Eq. (1.3):

u = ua − u(0)1 , (4.8)

where the component ua is given by (4.2). Since ua ∈ C2(Q0) ∩ C(Q) under

condition f ∈ C2(Ω), solution (4.8) is from the same class as the solution u
(0)
1

of problem (4.6), (4.7). It is easily seen that

u(ρ, ϕ, z) = f(ϕ, z), (ϕ, z) ∈ Ω,

(in view of (4.3) and (4.6)) and

u
(
r, ϕ, (i− 1)h

)
= fi(r, ϕ), i = 1, 2,

(due to definition (4.5)) for (r, ϕ) ∈ ∆0 ∪ K, if functions fi, i = 1, 2, satisfy
conditions (i), (ii), and for (r, ϕ) ∈ ∆, if both fi satisfy conditions (i)–(iv) of
Lemma 3. Thus, the boundary value conditions (1.4), (1.5) are satisfied and,
consequently, (4.8) represents the solution of Problem D.

Since ua(0, ϕ, z) = u
(0)
1 (0, ϕ, z) = 0, the uniqueness of solution u of Problem

D follows from Lemma 1. ut

Conclusions

1. The continuity of the solution of Problem D on the line of the degeneracy
depends on the behavior of the given boundary functions in the vicinity of
the points P0 and Ph, in which this line crosses the bases of cylinder Q.
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2. If the boundary functions being continuous on the surface of cylinder Q
are not identically equal to zero on the both edges of this cylinder, then
the continuity of the solution of Problem D depends on the properties of
boundary functions, but also on the coefficient c of considered equation.
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