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1 Introduction

Let s = σ + it be a complex variable, χ be a Dirichlet character and α, 0 <
α ≤ 1, be a fixed parameter. The Dirichlet L-function L(s, χ) and Hurwitz
zeta-function ζ(s, α) are defined, for σ > 1, by the series

L(s, χ) =

∞∑
m=1

χ(m)

ms
and ζ(s, α) =

∞∑
m=0

1

(m+ α)s

and continue meromorphically to the whole complex plane. If χ(m) is a non-
principal character, then L(s, χ) is an entire function, while if χ(m) is the
principal character modulo q, then L(s, χ) has a simple pole at the point s = 1
with residue

∏
p|q (1− 1/p), where p denotes a prime number. The function

ζ(s, α) has a simple pole at the point s = 1 with residue 1.
It is well known that L(s, χ) 6= 0 in the half-plane σ > 1. Moreover, the

function L(s, χ) has infinitely many zeros lying in the critical strip {s ∈ C :
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0 < σ < 1}. The generalized Riemann hypothesis asserts that all these zeros
lie on the critical line.

The properties of the function ζ(s, α), including the zero-distribution, de-
pend on the arithmetical nature of the parameter α. In [5], it was proved
that the function ζ(s, α) with transcendental or rational parameter α 6= 1, 12
has infinitely many zeros in the half-plane {s ∈ C : σ > 1}. J.W.S. Cassels
extended [4] the latter result for the case of algebraic irrational α. The above
results also can be found in [14].

It is also known that the function ζ(s, α) has zeros in the strip D ={
s ∈ C : 1

2 < σ < 1
}

. Let α = a
q , (a, q) = 1 and 0 < a < q. Then S.M. Voronin

in his thesis [22], see also [23], obtained, that, for every σ1, σ2, 1
2 < σ1 < σ2 < 1,

there exists a constant c = c(α, σ1, σ2) > 0 such that, for sufficiently large T ,
the function ζ(s, α) has more than cT zeros lying in the rectangle {s ∈ C :
σ1 < σ < σ2, |t| < T}. S.M. Gonek in [6] proved an analogical result in the
case of transcendental α.

The case of algebraic irrational α remains an open problem. The same re-
sults on zeros of ζ(s, α) in the strip D were obtained independently by B. Bagchi
in his thesis [1], they also can be found in [14]. Proofs of the statements on zero
distribution of ζ(s, α) in D are based on the universality property of ζ(s, α).
Denote by measA the Lebesgue measure of a measurable set A ⊂ R. Then the
universality of ζ(s, α) is contained in the following statement. Suppose that α
is rational 6= 1, 12 or transcendental number. Let K ⊂ D be a compact subset
with connected complement, and let f(s) be a continuous function on K which
is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α)− f(s)| < ε

}
> 0.

The later theorem for rational α in non-explicit form was proved by S.M. Voro-
nin [22]. Both the cases of rational and transcendental α by different methods
were treated in [6] and [1].

Clearly, ζ(s, 1) = ζ(s) and ζ
(
s, 12
)

= (2s − 1) ζ(s), where ζ(s) is the Rie-
mann zeta-function. Therefore, in those cases, ζ(s, α) is also universal, however,
the approximated function f(s) must be non-vanishing on K. From this, it fol-
lows that the universality can not be used to detect zeros of ζ(s, α) in D if
α = 1 or α = 1

2 .

The present paper is devoted to zeros of certain combinations and more
general functions of Dirichlet L-functions and Hurwitz zeta-functions.

We say that, for a function L(s), the assertion A(σ1, σ2; c, T ) is valid if,
for every σ1, σ2,

1
2 < σ1 < σ2 < 1, there exists a constant c > 0 such that,

for sufficiently large T , the function L(s) has more than cT zeros lying in the
rectangle {s ∈ C : σ1 < σ < σ2, 0 < t < T}.

A lot of results on the number of zeros of linear combinations of universal
functions can be found in [18]. The paper [19] also is rich by interesting results
on zeros of some polynomials of universal functions. For example, a partial
case of a corollary of Theorem 2 from [18] is the following theorem.
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Theorem 1. Suppose that χ1, . . . , χn are pairwise non–equivalent Dirichlet
characters, and P1(s), . . . , Pn(s) are not identically vanishing general Dirich-
let series which are absolutely convergent for σ > 1

2 , and at least two of the
series Pj(s) are non-vanishing in the strip D. Then there exists a constant
c = c(χ1, . . . , χn, P1, . . . , Pn, σ1, σ2) > 0 such that, for the linear combination

P1(s)L(s, χ1) + · · ·+ Pn(s)L(s, χn)

the assertion A(σ1, σ2; c, T ) is valid.

Denote by H(G) the space of analytic functions on G endowed with the
topology of uniform convergence on compacta. Let

S =

{
g ∈ H(D) :

1

g(s)
∈ H(D) or g(s) ≡ 0

}
and denote by Un the class of continuous operators F : Hn(D)→ H(D) such
that, for every open set G ⊂ H(D),(

F−1G
)
∩ Sn 6= ∅.

Theorem 2. Suppose that χ1, . . . , χn are pairwise non-equivalent Dirichlet
characters, and that F ∈ Un. Then there exists a constant c = c(χ1, . . . , χn, F,
σ1, σ2) > 0 such that, for the function F (L(s, χ1), . . . , L(s, χn)), the assertion
A(σ1, σ2; c, T ) is valid.

The class Un is theoretical, it is difficult to check its hypotheses. Now we
define a simpler class of operators F . Let V be an arbitrary positive number,
DV =

{
s ∈ C : 1

2 < σ < 1, |t| < V
}

and

SV =

{
g ∈ H(DV ) :

1

g(s)
∈ H(DV ) or g(s) ≡ 0

}
.

We say that the continuous operator F : Hn(DV ) → H(DV ) belongs to the
class Un,V if, for every polynomial p = p(s),(

F−1{p}
)
∩ SnV 6= ∅.

Theorem 3. Suppose that χ1, . . . , χn are pairwise non-equivalent Dirichlet
characters, and that F ∈ Un,V with sufficiently large V . Then there exists a
constant c = c(χ1, . . . , χn, F, σ1, σ2) > 0 such that, for the function F (L(s, χ1),
. . . , L(s, χn)) the assertion A(σ1, σ2; c, T ) is valid with T < V .

We give an example of F ∈ UV . Let F (g1, g2) = g21 + g22 , g1, g2 ∈ H(DV ).
Let p(s) be an arbitrary polynomial. Then there exists a constant c1 > 0 such
that |p(s)| ≤ c1 for s ∈ DV . We take C > c1, and

p1(s) =
p(s) + C

2
√
C

, p2(s) =
p(s)− C

2i
√
C

.

Then we have that p1(s) 6= 0 and p2(s) 6= 0 on DV . Moreover,

p21(s) + p22(s) = p(s).

Math. Model. Anal., 22(6):733–749, 2017.
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Thus, (p1, p2) ∈
(
F−1{p}

)
∩ S2

V . Therefore, if χ1 and χ2 are non-equivalent
characters, then the function

L2(s, χ1) + L2(s, χ2)

has more than cT zeros ir the rectangle {s ∈ C : σ1 < σ < σ2, 0 < t < T}
with sufficiently large T < V .

The second example is of the following form. Let P1(s), . . . , Pn(s) be ana-
lytic functions on D, two of them are non-vanishing, and the remaining func-
tions are bounded by polynomials. Then, for the function

P1(s)L(s, χ1) + · · ·+ Pn(s)L(s, χn),

where χ1, . . . , χn are pairwise non-equivalent Dirichlet characters, the assertion
A(σ1, σ2; c, T ) is valid. Indeed, the operator F : Hn(DV ) → H(DV ) given by
the formula

F (g1, . . . , gn) = P1g1 + · · ·+ Pngn, g1, . . . , gn ∈ H(DV ),

is continuous. Let p = p(s) be an arbitrary polynomial. Without loss of
generality, we can suppose that P1(s) and P2(s) are non-vanishing for s ∈ D.
Moreover, there exist polynomials qj(s), j = 3, . . . , n, such that, for s ∈ D,
|Pj(s)| ≤ |qj(s)|, j = 3, . . . , n. We take

g1(s) =
p(s) + C

P1(s)
, g2(s) =

−(P3(s) + · · ·+ Pn(s))− C
P2(s)

,

g3(s) = · · · = gn(s) = 1,

where C > 0 is such that p(s) +C 6= 0 and −(P3(s) + · · ·+ Pn(s))−C 6= 0 on
DV . Then we have that

P1g1 + · · ·+ Pngn = p

and g1, . . . , gn 6= 0 on DV . Therefore the hypotheses of Theorem 3 are satisfied.
Now we state the results on zeros of certain functions related to Hurwitz

zeta-functions. Define

L (α1, . . . , αn) = {log(m+ αj) : m ∈ N0 = N ∪ {0}, j = 1, . . . , n} .

Theorem 4. Suppose that the set L(α1, . . . , αn) is linearly independent over
the field of rational numbers Q, and c1, . . . , cn are complex numbers, at least
one of them is non-zero. Then there exists a constant c = c(α1, . . . , αn, c1, . . . ,
cn, σ1, σ2) > 0 such that, for the function

c1ζ(s, α1) + · · ·+ cnζ(s, αn)

the assertion A(σ1, σ2; c, T ) is valid.

Denote by Ûn the class of continuous operators F : Hn(D) → H(D) such
that, for every open set G ⊂ H(D), the set F−1G is non-empty.
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Theorem 5. Suppose that the set L(α1, . . . , αn) is linearly independent over Q,
and that F ∈ Ûn. Then there exists a constant c = c(α1, . . . , αn, F, σ1, σ2) >
0 such that, for the function F (ζ(s, α1), . . . , ζ(s, αn)), the assertion A(σ1, σ2;
c, T ) is valid.

Now we consider a simpler class of operators. Denote by Ûn1 the class of
continuous operators F : Hn(D)→ H(D) such that each polynomial p(s) has
its preimage F−1{p}.

Theorem 6. Suppose that the set L(α1, . . . , αn) is linearly independent over
Q, and that F ∈ Ûn1. Then there exists a constant c = c(α1, . . . , αn, F, σ1, σ2)
> 0 such that, for the function F (ζ(s, α1), . . . , ζ(s, αn)), the assertion A(σ1, σ2;
c, T ) is valid.

For example, the operator F : H2(D) → H(D) defined by the formula
F (g1, g2) = g21 + g22 belongs to the class Û21. Really, for any polynomial p(s),
there exist two polynomials

p1(s) =
p(s) + 1

2
and p2(s) =

p(s)− 1

2i
,

and p21(s) + p22(s) = p(s).

Remark 1. In view of Theorem 6, the numbers c1, . . . , cn in Theorem 4 can be
replaced by functions analytic in D.

Now we consider a collection of functions L(s, χ1), . . . , L(s, χl), ζ(s, α1),
. . . , ζ(s, αr). Denote by P the set of all prime numbers, and define the set

L (P, α1, . . . , αr) = {(log p : p ∈ P), (log(m+ αj) : m ∈ N0, j = 1, . . . , r)} .

Theorem 7. Suppose that χ1, . . . , χl are pairwise non-equivalent Dirichlet cha-
racters, and that the set L (P, α1, . . . , αr) is linearly independent over Q. Let
c1, . . . , cl, ĉ1, . . . , ĉr be complex numbers, at least one of ĉj is non-zero. Then
there exists a positive constant c = c(χ1, . . . , χl, α1, . . . , αr, c1, . . . , cl, ĉ1, . . . , ĉr,
σ1, σ2) > 0 such that, for the function

c1L(s, χ1) + · · ·+ clL(s, χl) + ĉ1ζ(s, α1) + · · ·+ ĉrζ(s, αr)

the assertion A(σ1, σ2; c, T ) is valid.

We say that a continuous operator F : H l+r(D) → H(D) belongs to the
class Ul,r if, for every polynomial p(s), the set (F−1{p}) ∩ (Sl × Hr(D)) is
non-empty.

Theorem 8. Suppose that χ1, . . . , χl are pairwise non-equivalent Dirichlet cha-
racters, the set L (P, α1, . . . , αr) is linearly independent over Q, and that F ∈
Ul,r. Then there exists a constant c = c(χ1, . . . , χl, α1, . . . , αr, F, σ1, σ2) > 0
such that, for the function

F (L(s, χ1), . . . L(s, χl), ζ(s, α1) . . . , ζ(s, αr))

the assertion A(σ1, σ2; c, T ) is valid.

Math. Model. Anal., 22(6):733–749, 2017.
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For example, if χ1 and χ2 are non-equivalent characters, and the numbers
α1 and α2 are algebraically independent over Q, then the function L(s, χ1)
L(s, χ2)ζ(s, α1)ζ(s, α2) satisfies the hypotheses of Theorem 8, since a poly-
nomial p(s) has a preimage (1, 1, 1, p(s)) ∈ S2 × H2(D), and the algebraic
independence of the numbers α1 and α2 implies the linear independence of the
set L(P, α1, α2).

Remark 2. In view of Theorem 8, the numbers cj and ĉj in Theorem 7 can be
replaced by functions analytic in D.

2 Universality

In Introduction, we have mentioned the universality of the Hurwitz zeta-func-
tion. In this section, we present more general universality results which will
be applied for the proof of Theorems 1-8. We start with a joint universality
theorem for Dirichlet L-functions. In this theorem, a collection of shifts of
Dirichlet L-functions with non-equivalent Dirichlet characters, uniformly on
compact sets of the strip D, can approximate simultaneously a collection of
non-vanishing analytic functions.

Theorem 9. Suppose that χ1, . . . , χn are pairwise non-equivalent Dirichlet
characters. For j = 1, . . . , n, let Kj be a compact set of the strip D with
connected complement, and let fj(s) be a continuous non-vanishing function
on Kj which is analytic in the interior of Kj. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤n
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)|< ε
}
> 0.

Theorem 9 in a weaker non-explicit form has been obtained by S.M. Voronin
in [21], and applied for the functional independence of Dirichlet L-functions.
First in a weaker explicit form the theorem was given in [22], see also [23]. Simi-
lar results independently by different methods were obtained by S.M. Gonek [6]
and B. Bagchi [1, 2]. In the present form, the theorem was stated in [20] and
discussed in [11]. A full proof of Theorem 9 is given in the master work [17].

Theorem 10. Suppose that χ1, . . . , χn are pairwise non-equivalent Dirichlet
characters, and that F ∈ Un. Let K ⊂ D be a compact set with connected
complement, and let f(s) be a continuous function on K which is analytic in
the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|F (L

(
s+ iτ, χ1), . . . , L(s+ iτ, χn)

)
−f(s)| < ε

}
> 0.

The theorem is proved in [11], Theorem 4.

Theorem 11. Suppose that χ1, . . . , χn are pairwise non-equivalent Dirichlet
characters, and that K and f(s) are the same as in Theorem 10. Let V > 0
be such that K ⊂ DV , and that F ∈ Un,V . Then the same assertion as in
Theorem 10 is valid.
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The proof of the theorem is given in [11], Theorem 5.
Now we state joint universality theorems for Hurwitz zeta-functions.

Theorem 12. Suppose that the set L(α1, . . . , αn) is linearly independent over
Q. For j = 1, . . . , n, let Kj be a compact subset of the strip D with connected
complement, and let fj(s) be a continuous function on Kj which is analytic in
the interior of Kj. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤n
sup
s∈Kj

|ζ(s+ iτ, αj)− fj(s)| < ε
}
> 0.

The theorem is proved in [9].
Theorem 12 implies the following two universality theorems for composite

functions obtained in [12].

Theorem 13. Suppose that the set L(α1, . . . , αn) is linearly independent over
Q, and that F ∈ Ûn. Let K and f(s) be the same as in Theorem 10. Then,
for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|F (ζ

(
s+ iτ, α1), . . . , ζ(s+ iτ, αn)

)
−f(s)| < ε

}
> 0.

Theorem 14. Suppose that the set L(α1, . . . , αn) is linearly independent over
Q, and that F ∈ Ûn1. Let K and f(s) be the same as in Theorem 10. Then
the same assertion as in Theorem 13 is true.

In [12], theorems on universality of F (ζ(s, α1), . . . , ζ(s, αn)) for some other
classes of operators F also can be found.

Denote by B(S) the class of Borel sets of the space S, and on (H l+r(D),
B(H l+r(D))) define the probability measure PT by

PT (A) =
1

T
meas

{
τ ∈ [0, T ] :

(
L(s+ iτ, χ1), . . . , L(s+ iτ, χl),

ζ(s+ iτ, α1), . . . , ζ(s+ iτ, αr)
)
∈ A

}
, A ∈ B(H l+r(D)).

To state a limit theorem for the measure PT , we need some notation and
definitions. Denote by γ the unit circle on the complex plane, and define

Ω̂ =
∏
p

γp and Ω =

∞∏
m=0

γm,

where γp = γ for all primes p, and γm = γ for all m ∈ N0. The tori Ω̂
and Ω with the product topology and pointwise multiplication are compact
topological Abelian groups. Let Ω = Ω̂ × Ω1 × · · · × Ωr, where Ωj = Ω for
j = 1, . . . , r. Then again Ω is a compact topological Abelian group. Therefore,
on (Ω,B(Ω)), the probability Haar measure mH can be defined, and this leads
to the probability space (Ω,B(Ω),mH). Note that the measure mH is the

Math. Model. Anal., 22(6):733–749, 2017.
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product of the Haar measures m̂H and mjH on (Ω̂,B(Ω̂)) and (Ωj ,B(Ωj)),
respectively, j = 1, . . . , r. Denote elements of Ω by ω = (ω̂, ω1, . . . , ωr), where
ω̂ ∈ Ω̂, and ωj ∈ Ωj , j = 1, . . . , r. Moreover, let ω̂(p) and ωj(m) be the

projections of ω̂ ∈ Ω̂ to γp and ωj ∈ Ωj to γm, respectively, j = 1, . . . , r. Now,
on the probability space (Ω,B(Ω),mH), define the H l+r(D) valued random
element Ξ(s, ω) by the formula

Ξ(s, ω) = (L(s, ω̂, χ1), . . . , L(s, ω̂, χl), ζ(s, α1, ω1), . . . , ζ(s, αr, ωr)) ,

where
L(s, ω̂, χj) =

∏
p

(
1− χj(p)ω̂(p)

ps

)−1
, j = 1, . . . , l,

and
ζ(s, αj , ωj) =

∞∑
m=0

ωj(m)

(m+ αj)s
, j = 1, . . . , r.

Let PΞ be the distribution of the random element Ξ(s, ω), i.e., for A ∈ B(H l+r

(D)),
PΞ(A) = mH (ω ∈ Ω : Ξ(s, ω) ∈ A) .

Proposition 1. Suppose that the set L(P, α1, . . . , αr) is linearly independent
over Q. Then the measure PT converges weakly to PΞ as T →∞.

Proof of the proposition is based on the following lemmas.

Lemma 1. Suppose that the set L(P, α1, . . . , αr) is linearly independent over
Q. Then the probability measure

QT (A)
def
=

1

T
meas

{
τ ∈ [0, T ] :

(
(p−iτ : p ∈ P),

(
(m+ α1)−iτ : m ∈ N0

)
,

. . . ,
(
(m+ αr)

−iτ : m ∈ N0

))
∈ A

}
, A ∈ B(Ω),

converges weakly to the Haar measure mH as T →∞.

Proof. As in the proof of Theorem 3 in [10], we have that the Fourier trans-
form gT (k, l1, . . . , lr), k = (kp : p ∈ P), l1 = (l1m : m ∈ N0), . . . , lr = (lrm :
m ∈ N0) of the measure QT is given by

gT (k, l1, . . . , lr) =

∫
Ω

( ∏
p∈P

ω̂kp(p)

r∏
j=1

∞∏
m=0

ω
ljm
j (m)

)
dQT

=
1

T

∫ T

0

exp

{
− iτ

(∑
p∈P

kp log p+

r∑
j=1

∞∑
m=0

ljm log(m+ αj)
)}

dτ, (2.1)

where only a finite number of integers kp and ljm, j = 1, . . . , r, are distinct from
zero. Now we use essentially the fact that the set L(P, α1, . . . , αr) is linearly
independent over Q, and, after integration, we obtain from (2.1) that

lim
T→∞

gT (k, l1, . . . , lr) =

{
1, if (k, l1, . . . , lr) = (0, 0, . . . , 0),

0, if (k, l1, . . . , lr) 6= (0, 0, . . . , 0).

This proves the lemma. ut
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Let σ1 >
1
2 be a fixed number, and

v(m,n) = exp
{
−
(m
n

)σ1
}
, m, n ∈ N,

vj(m,n) = vj(m,n, αj) = exp

{
−
(
m+ αj
n+ αj

)σ1
}
, m ∈ N0, n ∈ N.

Define the series

Ln(s, χj) =

∞∑
m=1

χj(m)v(m,n)

ms
, j = 1, . . . , l,

ζn(s, αj) =

∞∑
m=0

vj(m,n)

(m+ αj)s
, j = 1, . . . , r,

Ln(s, ω̂, χj) =

∞∑
m=1

χj(m)ω̂(m)v(m,n)

ms
, j = 1, . . . , l,

ζn(s, αj , ωj) =

∞∑
m=0

ωj(m)vj(m,n)

(m+ αj)s
, j = 1, . . . , r.

It follows by a standard way that the series for Ln(s, χj), ζn(s, αj) and Ln(s, ω̂,
χj), ζn(s, αj , ωj) converge absolutely for σ1 >

1
2 . Define the probability mea-

sures

PT,n(A) =
1

T
meas

{
τ ∈ [0, T ] :

(
Ln(s+ iτ, χ1), . . . , Ln(s+ iτ, χl),

ζn(s+ iτ, α1), . . . , ζn(s+ iτ, αr)
)
∈ A

}
, A ∈ B(H l+r(D)),

P̂T,n(A) =
1

T
meas

{
τ ∈ [0, T ] :

(
Ln(s+ iτ, ω̂, χ1), . . . , Ln(s+ iτ, ω̂, χl),

ζn(s+ iτ, α1, ω1), . . . , ζn(s+ iτ, αr, ωr)
)
∈ A

}
, A ∈ B(H l+r(D)).

Lemma 1, the absolute convergence of the above series and a property of
the weak convergence of probability measures related by continuous mappings
imply the following lemma.

Lemma 2. Suppose that the set L(P, α1, . . . , αr) is linearly independent over
Q. Then, on (H l+r(D),B(H l+r(D))), there exists a probability measure Pn
such that both the measures PT,n and P̂T,n converges weakly to Pn as T →∞.

The next step of the proof of Proposition 1 consists of the approximation
of the functions L(s, χj) and ζ(s, αj) by Ln(s, χj) and ζn(s, αj), respectively.
Let ρ be the metric on H(D) inducing the topology of uniform convergence on
compacta, see, for example, [8]. Define the metric on H l+r(D) by

ρ(g
1
, g

2
) = max

1≤j≤l+r
ρ(g1j , g2j),

where g
j

= (gj,1, . . . , gj,l+r) ∈ H l+r(D), j = 1, 2. Using the known one-

dimensional results of [7] and [15] for periodic zeta-functions, we obtain ap-
proximations in the space H l+r(D).
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Lemma 3. We have

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
((
L(s+ iτ, χ1), . . . , L(s+ iτ, χl), ζ(s+ iτ, α1), . . . ,

ζ(s+ iτ, αr)
)
,
(
Ln(s+ iτ, χ1), . . . , Ln(s+ iτ, χl), ζn(s+ iτ, α1), . . . ,

ζn(s+ iτ, αr)
))

dτ = 0.

In the case of ζ(s, αj , ωj), a one-dimensional approximation is obtained
for transcendental αj , however, the transcendence is used only for a linear
independence of the set {log(m + αj) : m ∈ N0}. Therefore, we have the
following analogue of Lemma 3.

Lemma 4. Suppose that the set L(P, α1, . . . , αr) is linearly independent over
Q. Then, for almost all ω ∈ Ω,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
((
L(s+ iτ, ω̂, χ1), . . . , L(s+ iτ, ω̂, χl), ζ(s+ iτ, α1, ω1),

. . . , ζ(s+ iτ, αr, ωr)
)
,
(
Ln(s+ iτ, ω̂, χ1), . . . , Ln(s+ iτ, ω̂, χl),

ζn(s+ iτ, α1, ω1), . . . , ζn(s+ iτ, αr, ωr)
))

dτ = 0.

Define one more probability measure

P̂T (A) =
1

T
meas

{
τ ∈ [0, T ] :

(
L(s+ iτ, ω̂, χ1), . . . , L(s+ iτ, ω̂, χl),

ζ(s+ iτ, α1, ω1), . . . , ζ(s+ iτ, αr, ωr)
)
∈ A

}
, A ∈ B(H l+r(D)).

Lemma 5. Suppose that the set L(P, α1, . . . , αr) is linearly independent over
Q. Then, on (H l+r(D),B(H l+r(D))), there exists a probability measure P such
that both the measures PT and P̂T converges weakly to P as T →∞.

The lemma is a consequence of Lemmas 2 – 4. Its proof runs similarly to
that of Theorem 6 from [10].

For the proof of Proposition 1, it is sufficient to show that the measure P
in Lemma 5 coincides with PΞ . For this, again the linear independence of the
set L(P, α1, . . . , αr) is applied.

Let aτ = {(p−iτ : p ∈ P), ((m+α1)−iτ : m ∈ N0), . . . , ((m+αr)
−iτ : m ∈

N0)} for τ ∈ R. Define a family {Φτ : τ ∈ R} of measurable measure preserving
transformations on Ω by the formula Φτ (ω) = aτω, ω ∈ Ω. This family is a
one-parameter group. A set A ∈ B(Ω) is called invariant with respect to the
group {Φτ : τ ∈ R} if, for each τ ∈ R, the sets A and Aτ = Φτ (A) may
differ one from another only by mH -measure zero. All invariant sets form a
σ-subfield of B(Ω). The group {Φτ : τ ∈ R} is ergodic, if the latter σ-subfield
consists only of the sets of mH -measure zero or one.

Lemma 6. Suppose that the set L(P, α1, . . . , αr) is linearly independent over
Q. Then the group {Φτ : τ ∈ R} is ergodic.
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Proof. A method of Fourier transform is used, and the arguments are similar
to those of Lemma 7 from [10], where the case of the algebraically independent
numbers α1, . . . , αr was considered. ut

Proof of Proposition 1. On the probability space (Ω,B(Ω),mH), define a ran-
dom variable ξ by the formula

ξ(ω) =

{
1, if Ξ(s, ω) ∈ A,

0, if Ξ(s, ω) 6∈ A,

where A is a fixed continuity set of the measure P in Lemma 5. Thus

lim
T→∞

PT (A) = P (A).

Lemma 6 implies the ergodicity of the random process ξ(Φτ (ω)). Therefore, by
the Birkhoff-Khintchine theorem,

lim
T→∞

1

T

∫ T

0

ξ(Φτ (ω))dτ = Eξ,

where Eξ is the expectation of ξ. On the other hand, the definitions of ξ and
Φτ yield the equalities

Eξ =

∫
Ω

ξdmH = PΞ(A),
1

T

∫ T

0

ξ(Φτ (ω))dτ = P̂T (A).

Combining the above four equalities, we find that P (A) = PΞ(A). Since A
was arbitrary, this is true for all continuity sets of the measure P , hence,
P (A) = PΞ(A) for all A ∈ B(H l+r(D)). The proposition is proved. ut

For the proof of universality theorems, we additionally need the support of
the measure PΞ . Since the space H l+r(D) is separable, the support of PΞ is a
minimal closed set SΞ ∈ B(H l+r(D)) such that PΞ(SΞ) = 1.

Proposition 2. Suppose that χ1, . . . , χl are pairwise non-equivalent Dirichlet
characters, and that the set L(P, α1, . . . , αr) is linearly independent over Q.
Then the support of the measure PΞ is the set Sl ×Hr(D).

Proof. Since the characters χ1, . . . , χl are pairwise non-equivalent, the support
of the random element

L(s, ω̂, χ1, . . . , χl) = (L(s, ω̂, χ1), . . . , L(s, ω̂, χl))

is the set Sl [11]. The linear independence of the set L(P, α1, . . . , αr) implies
that of the set L(α1, . . . , αr). Therefore, by [9], the support of the random
element ζ(s, α1, . . . , αr, ω1, . . . , ωr) = (ζ(s, α1, ω1), . . . , ζ(s, αr, ωr)) is Hr(D).

Since the spaces H l(D) and Hr(D) are separable, we have [3] that

B(H l+r(D)) = B(H l(D))× B(Hr(D)). (2.2)
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Let mr
H be the Haar measure on

(∏r
j=1Ωj ,B

(∏r
j=1Ωj

))
. Then mH is the

product of the measures m̂H andmr
H . Let A1 ∈ B(H l(D)) and A2 ∈ B(Hr(D)).

Then, in view of (2.2), it suffices to consider PΞ(A) with A = A1 ×A2. Thus,
by the above remark,
PΞ(A) = mH(ω ∈ Ω : Ξ(s, ω) ∈ A) = m̂H

(
ω̂ ∈ Ω̂ : L(s, ω̂, χ1, . . . , χl) ∈ A1

)
×mH

(
(ω1, . . . , ωr) ∈

r∏
j=1

Ωj : ζ(s, α1, . . . , αr, ω1, . . . , ωr) ∈ A2

)
.

This, together with supports of the random elements L(s, ω̂, χ1, . . . , χl) and
ζ(s, α1, . . . , αr, ω1, . . . , ωr) proves the proposition. ut

Now we are ready to prove a joint universality theorem for a collection
L(s, χ1), . . . , L(s, χl), ζ(s, α1), . . . , ζ(s, αr).

Theorem 15. Suppose that χ1, . . . , χl are pairwise non-equivalent Dirichlet
characters, and that the set L(P, α1, . . . , αr) is linearly independent over Q.
For j = 1, . . . , l, let Kj ⊂ D be a compact subset with connected complement,
and let fj(s) be a continuous non-vanishing function on Kj which is analytic

in the interior of Kj. For j = 1, . . . , r, let K̂j ⊂ D be a compact subset with

connected complement, and let f̂j(s) be a continuous function on K̂j which is

analytic in the interior of K̂j. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤l
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε,

sup
1≤j≤r

sup
s∈K̂j

|ζ(s+ iτ, αj)− f̂j(s)| < ε
}
> 0.

Proof. By the Mergelyan theorem [16], see also [24], there exist polynomials
pj(s), j = 1, . . . , l, and qj(s), j = 1, . . . , r, such that

sup
1≤j≤l

sup
s∈Kj

∣∣∣fj(s)− epj(s)∣∣∣ < ε/2, (2.3)

sup
1≤j≤r

sup
s∈K̂j

∣∣∣f̂j(s)− qj(s)∣∣∣ < ε/2. (2.4)

Define the set

G =

{
(g1, . . . , gl, ĝ1, . . . , ĝr) ∈ H(D) : sup

1≤j≤l
sup
s∈Kj

∣∣∣gj(s)− epj(s)∣∣∣ < ε/2,

sup
1≤j≤r

sup
s∈K̂j

|ĝj(s)− qj(s)| < ε/2

}
.

Then, in view of Proposition 2, G is an open neighbourhood of the element
(ep1 , . . . , epl , q1, . . . , qr) of the support of the measure PΞ . Thus, PΞ(G) > 0.
Therefore, by Proposition 1,

lim inf
T→∞

1

T
meas {τ ∈ [0, T ] : (L(s+ iτ, χ1), . . . , L(s+ iτ, χl), ζ(s+ iτ, α1),

. . . , ζ(s+ iτ, αr)) ∈ G} ≥ PΞ(G) > 0.

From this, the definition ofG and equalities (2.3) and (2.4), the theorem follows.
ut
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Proposition 3. Suppose that the set L(P, α1, . . . , αr) is linearly independent
over Q, and that F ∈ Ul,r. Then the probability measure

PT,F (A)
def
=

1

T
meas {τ ∈ [0, T ] : F (L(s+ iτ, χ1), . . . , L(s+ iτ, χl),

ζ(s+ iτ, α1), . . . , ζ(s+ iτ, αr)) ∈ A} , A ∈ B(H(D)),

converges weakly to PΞF
−1 as T →∞.

Proof. The proposition is a consequence of Proposition 1, of the continuity
of F and Theorem 5.1 from [3]. ut

Proposition 4. Suppose that χ1, . . . , χl are pairwise non-equivalent Dirichlet
characters, the set L(P, α1, . . . , αr) is linearly independent over Q, and that
F ∈ Ul,r. Then the support of the measure PΞF

−1 is the whole of H(D).

Proof. Let g be an arbitrary element of H(D), and G be its open neighbour-
hood. From the continuity of F , we have that the F−1G is open, too.

It is well known that the approximation in the space H(D) reduces to
an approximation on compact subsets with connected complement, see, for
example, [13]. Therefore, by the Mergelyan theorem, there exists a polynomial
p = p(s) such that p ∈ G. Since, by the hypothesis of the proposition, the
set (F−1{p}) ∩ (Sl × Hr(D)) is non-empty, we have that the set (F−1G) ∩
(Sl × Hr(D)) also is non-empty. This means that the set F−1G is an open
neighbourhood of the element g ∈ Sl ×Hr(D). In view of Proposition 2, the

set Sl×Hr(D) is the support of the measure PΞ , thus PΞ(F−1G) > 0. Hence,

PΞF
−1(G) = PΞ(F−1G) > 0.

Since g and G are arbitrary, this proves the proposition. ut

Theorem 16. Suppose that χ1, . . . , χl are pairwise non-equivalent Dirichlet
characters, and that the set L(P, α1, . . . , αr) is linearly independent over Q,
and that F ∈ Ul,r. Let K ⊂ D be a compact set with connected complement,
and f(s) be a continuous function on K which is analytic in the interior of K.
Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤l
sup
s∈Kj

|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χl)

ζ(s+ iτ, α1), . . . , ζ(s+ iτ, αr))− f(s)| < ε
}
> 0.

Proof. We repeat the arguments similar to those of the proof of Theorem 15.
By the Mergelyan theorem, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε

2
. (2.5)

Define the set

G =
{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
.
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Then, by Proposition 4, the set G is an open neighbourhood of the element
p(s) of the support of PΞF

−1. Therefore, Proposition 3 implies the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : F (L(s+ iτ, χ1), . . . , L(s+ iτ, χl),

ζ(s+ iτ, α1), . . . , ζ(s+ iτ, αr)) ∈ G
}
≥ PΞF−1(G) > 0.

Combining this with (2.5) and the definition of G completes the proof. ut

3 Proof of the main theorems

Proofs of all theorems on zeros are based on the corresponding universality
theorems as well as on the classical Rouché theorem.

Proof of Theorem 2. We take f(s) = s− σ0 in Theorem 10. Then, by Theo-
rem 10, for every ε > 0, the set of τ ∈ R satisfying the inequality

sup
|s−σ0|≤ρ0

|F (L(s+ iτ, χ1), . . . , L(s+ iτ, χn))− (s− σ0)| < ε

has a positive lower density. Now we take ε such that

0 < ε <
1

10
inf

|s−σ0|=ρ0
|s− ρ0| =

ρ0
10
.

Thus, the functions s − σ0 and F (L(s + iτ, χ1), . . . , L(s + iτ, χn)) − (s − σ0)
on the disc |s − σ0| ≤ ρ0 satisfy the hypotheses of the Rouché theorem. This
proves the theorem. ut

Proof of Theorem 3. We use Theorem 11 and repeat the proof of Theorem 2.
ut

Proof of Theorem 4. We use the notation

σ0 =
σ1 + σ2

2
, ρ0 =

σ2 − σ1
2

, C =

n∑
j=1

|cj |.

Without loss of generality, we may suppose that c1 6= 0. Let

f1(s) = c−11 (s− σ0), f2(s) = · · · = fn(s) = ε > 0,

where the number ε satisfies inequality

Cε <
1

20
min

|s−σ0|=ρ0
|s− σ0| =

ρ0
20
.

Suppose that reals τ satisfy the inequality

sup
1≤j≤n

sup
|s−σ0|≤ρ0

|ζ(s+ iτ, αj)− fj(s)| < ε.
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From this, we find that

sup
|s−σ0|≤ρ0

∣∣∣∣ n∑
j=1

cjζ(s+ iτ, αj)−
n∑
j=1

cjfj(s)

∣∣∣∣ < Cε.

Therefore, by the definition of f1(s), . . . , fn(s),

sup
|s−σ0|=ρ0

∣∣∣∣ n∑
j=1

cjζ(s+ iτ, αj)− (s− σ0)

∣∣∣∣ < 2Cε

and the proof finishes by application of Theorem 12 and the Rouché theorem.
ut

Proof of Theorem 5. We use Theorem 13 and the Rouché theorem, and argue
similarly to the proof of Theorem 2. ut

Proof of Theorem 6. The proof coincides with that of Theorem 5. In place of
Theorem 13, we apply Theorem 14. ut

Proof of Theorem 7. Without loss of generality, we may assume that ĉ1 6= 0.
We take in Theorem 15

f1(s) = · · · = fl(s) = ε, f̂1(s) = ĉ−11 (s− σ0), f̂2(s) = · · · = f̂r(s) = ε,

where the positive number ε satisfies the inequality

(C1 + C2)ε <
1

20
min

|s−σ0|=ρ0
|s− ρ0| =

ρ0
20

and

C1 =

l∑
j=1

|cj |, C2 =

r∑
j=1

|ĉj |.

Let τ satisfy the inequalities

sup
1≤j≤l

sup
|s−σ0|≤ρ0

|L(s+ iτ, χj)− fj(s)| < ε

and

sup
1≤j≤r

sup
|s−σ0|≤ρ0

|ζ(s+ iτ, αj)− f̂j(s)| < ε.

Then, for these τ , we find that

sup
|s−σ0|≤ρ0

∣∣∣∣ l∑
j=1

cjL(s+ iτ, χj) +

r∑
j=1

ĉjζ(s+ iτ, αj)−
l∑

j=1

cjfj(s)

−
r∑
j=1

ĉj f̂j(s)

∣∣∣∣ < (C1 + C2)ε.
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Moreover,

sup
|s−σ0|≤ρ0

∣∣∣∣ l∑
j=1

cjfj(s) +

r∑
j=1

ĉj f̂j(s)− (s− σ0)

∣∣∣∣ < (C1 + C2)ε.

Two latter inequalities show that

sup
|s−σ0|=ρ0

∣∣∣∣ l∑
j=1

cjL(s+ iτ, χj) +

r∑
j=1

ĉjζ(s+ iτ, αj)− (s− σ0)

∣∣∣∣ < 2(C1 + C2)ε.

From this and the definition of ε, it follows that the functions

l∑
j=1

cjL(s+ iτ, χj) +

r∑
j=1

ĉjζ(s+ iτ, αj)− (s− σ0)

and s−σ0 in the disc |s−σ0| ≤ ρ0 satisfy the hypotheses of the Rouché theorem.
Hence, the theorem follows. ut

Proof of Theorem 8. We use Theorem 16 and repeat the proof, for example,
of Theorem 2. ut
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[15] A. Laurinčikas and D. Šiaučiūnas. Remarks on the universality of periodic zeta-
function. Math. Notes, 80(3-4):711–722, 2006.

[16] S.N. Mergelyan. Uniform approximations to functions of complex variable. Usp.
Mat. Nauk., 7:31–122, 1952 (in Russian).
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